arXiv

Authors
Georg Kohl, Technical University of Munich
Li-Wei Chen, Technical University of Munich
Nils Thuerey, Technical University of Munich

Abstract
Simulating turbulent flows is crucial for a wide range of applications, and machine learning-based solvers are gaining increasing relevance. However, achieving stability when generalizing to longer rollout horizons remains a persistent challenge for learned PDE solvers. We address this challenge by introducing a fully data-driven fluid solver that utilizes an autoregressive rollout based on conditional diffusion models. We show that this approach offers clear advantages in terms of rollout stability compared to other learned baselines. Remarkably, these improvements in stability are achieved without compromising the quality of generated samples, and our model successfully generalizes to flow parameters beyond the training regime. Additionally, the probabilistic nature of the diffusion approach allows for inferring predictions that align with the statistics of the underlying physics. We quantitatively and qualitatively evaluate the performance of our method on a range of challenging scenarios, including incompressible and transonic flows, as well as isotropic turbulence.

Keywords
turbulent flow, PDEs, numerical simulation, diffusion models, autoregressive models

Links
Preprint
Source Code