Nils ThuereyMy research targets deep learning methods for physical simulations. The key question here is: How can we leverage our existing knowledge about numerical methods to improve our understanding of physical systems with the help of deep learning. In this context, I believe that neural networks are an exciting area for research, even more so when going beyond the established paths of pattern recognition problems. E.g., trained deep nets are able to learn structures of numerical errors of PDEs for which we have no analytical formulations, and they’re able to anticipate the dynamics of complex physical systems. There are many fascinating topics left to explore here.

If you’re interested in bachelor or master theses along these lines, please contact me. There are currently several interesting topics available in this area.

How to get in Touch

  • eMail: nils.thuerey (at)
  • Phone: +49 89 289 19484
  • Fax: +49 89 289 19462
  • Room: 02.13.061 

Research (Selection)

Full CV: PDF.
Some statistics: Google-scholar, MS-academic, DBLP.
And here are some previews of selected works. You can check out the full list on our publications page. Among others, we’ve worked on for super-resolution fluids with a physics-based GAN:

And adversarial video super-resolution with temporal coherence using deep learning:

Our SIGGRAPH paper on flow descriptors from convolutional neural networks (numerical-viscosity-aware) for fluid flow:

Preceptual evaluations of physics simulation methods, independent of rendering styles:

For fun – here’s also an older animation I did with our fluid control algorithm and Blender: