arXiv, 1802.10123

Authors
Steffen Wiewel, Technical University of Munich
Moritz Becher, Technical University of Munich
Nils Thuerey, Technical University of Munich

Abstract
Our work explores methods for the data-driven inference of temporal evolutions of physical functions with deep learning techniques. More specifically, we target fluid flow problems, and we propose a novel network architecture to predict the changes of the pressure field over time. The central challenge in this context is the high dimensionality of Eulerian space-time data sets. Key for arriving at a feasible algorithm is a technique for dimensionality reduction based on convolutional neural networks, as well as a special architecture for temporal prediction. We demonstrate that dense 3D+time functions of physics system can be predicted with neural networks, and we arrive at a neural-network based simulation algorithm with practical speed-ups. We demonstrate the capabilities of our method with a series of complex liquid simulations, and with a set of single-phase simulations. Our method predicts pressure fields very efficiently. It is more than two orders of magnitudes faster than a regular solver. Additionally, we present and discuss a series of detailed evaluations for the different components of our algorithm.

Links
Preprint
Main Video
Code (coming soon)
 Trained models (coming soon)