A second ICLR paper is our ConFIG paper, which has been online for a while now (Congrats to Qiang 👏). The ConFIG method is a generic method for optimization problems involving multiple loss terms (e.g., Multi-task Learning, Continuous Learning, and Physics Informed Neural Networks). It prevents the optimization from getting stuck into a local minimum of a specific loss term due to the conflict between losses. On the contrary, it leads the optimization to the shared minimum of all losses by providing a conflict-free update direction.

Source code and examples available in this GitHub repo.

Full abstract: The loss functions of many learning problems contain multiple additive terms that can disagree and yield conflicting update directions. For Physics-Informed Neural Networks (PINNs), loss terms on initial/boundary conditions and physics equations are particularly interesting as they are well-established as highly difficult tasks. To improve learning the challenging multi-objective task posed by PINNs, we propose the ConFIG method, which provides conflict-free updates by ensuring a positive dot product between the final update and each loss-specific gradient. It also maintains consistent optimization rates for all loss terms and dynamically adjusts gradient magnitudes based on conflict levels. We additionally leverage momentum to accelerate optimizations by alternating the back-propagation of different loss terms. The proposed method is evaluated across a range of challenging PINN scenarios, consistently showing superior performance and runtime compared to baseline methods. We also test the proposed method in a classic multi-task benchmark, where the ConFIG method likewise exhibits a highly promising performance.