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Fig. 1. An example sequence of our ScalarFlow data set. Four frames of our data set are re-rendered as thick smoke. Insets of the corresponding frames of one
of the captured video streams, i.e. the real-world reference, are shown in the lower left corners.

In this paper, we present ScalarFlow, a first large-scale data set of recon-

structions of real-world smoke plumes. In addition, we propose a framework

for accurate physics-based reconstructions from a small number of video

streams. Central components of our framework are a novel estimation of

unseen inflow regions and an efficient optimization scheme constrained

by a simulation to capture real-world fluids. Our data set includes a large

number of complex natural buoyancy-driven flows. The flows transition

to turbulence and contain observable scalar transport processes. As such,

the ScalarFlow data set is tailored towards computer graphics, vision, and

learning applications. The published data set contains volumetric recon-

structions of velocity and density as well as the corresponding input image

sequences with calibration data, code, and instructions how to reproduce

the commodity hardware capture setup. We further demonstrate one of

the many potential applications: a first perceptual evaluation study, which

reveals that the complexity of the reconstructed flows would require large

simulation resolutions for regular solvers in order to recreate at least parts

of the natural complexity contained in the captured data.
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1 INTRODUCTION
Despite the long-standing success of physical simulations as tools

for visual effects (VFX) production, there is a notable lack of bench-

mark cases and data sets for evaluating the simulated results. While

other fields of research, such as computational photography and

geometry processing, can rely on large image and model databases

for evaluation as well as machine learning applications, simulations

for visual effects typically are only evaluated in terms of visuals by

a small number of experts. This is partially caused by the inherent

difficulties of capturing real-world counterparts for the simulated

phenomena. Typically, we are dealing with volumetric effects, such

as clouds of smoke, liquids, or deformable bodies, that inherently

require a full acquisition of the three-dimensional (3D) volume and

its motion. Thus, it is crucial to obtain a 3D description of the con-

figuration of a material and its velocity field in order to compare

and align the corresponding simulated quantities.

In addition, the advent of data-driven methods, deep learning

techniques in particular, has demonstrated the possibilities that arise

from the availability of data sets. Most famously, the ImageNet data

set [Deng et al. 2009] has been used in thousands of studies and led

to huge advances for image classification. By now, many other data

sets exist ranging from videos for action recognition [Abu-El-Haija

et al. 2016] to 3D scenes for geometry reconstruction [Knapitsch

et al. 2017]. These data sets illustrate the potential for invigorating

research, encouraging reproducible evaluations, and reducing the

barrier of entry for newcomers. Overall, the availability of reliable

data sets with sufficient complexity has led to significant progress

of research in the corresponding fields. While first studies have

successfully established connections between learning methods

with physics-based simulations [Chu and Thuerey 2017; Ladický

2019-09-02 14:35. Page 1 of 1–16. ACM Trans. Graph., Vol. 38, No. 6, Article 239. Publication date: November 2019.

https://doi.org/10.1145/3355089.3356545
https://doi.org/10.1145/3355089.3356545


239:2 • Marie-Lena Eckert, Kiwon Um, and Nils Thuerey

Top valve

Bottom valve

Fog machine

Calibrated volume

b) Hardware flow setup: c) Numerical simulation setup:

Reconstruction 
volume 

a) Photos of real-world capture setup:

Calibration pattern Fog machine Cameras
Insulated containerInflow region

Fog machine

Diffuse background

Heating cable

Co
nt

ai
ne

r

Co
nt

ai
ne

r

Γ
Container

O
ut

flo
w 

BC
s

Inflow flux 
estimation

Calibrated volume

ΓR
ΓRI

ΓI

Inflow region

Fig. 2. An overview of our capture setup: the container for smoke, calibration plate and camera setup (a), an illustration of the core components (b), and the
corresponding numerical simulation and reconstruction domain (c).

et al. 2015; Ma et al. 2018], all of the studies so far purely rely on

case-specific and synthetic (i.e., purely simulated) data.

Our goal with this work is to provide a first large-scale data set

of real smoke clouds. The data was captured with a sparse, physics-

based, multi-view tomography and contains volumetric reconstruc-

tions (i.e., velocity and density fields), video data, and camera cal-

ibrations. In addition, source code for capture and reconstruction

will be published.

The primary contribution of our work is the creation of a carefully

designed data set with a large number of accurate reconstructions of

real-world scalar transport phenomena. Beyond this primary goal,

our work contains several technical contributions: we propose the

design of a low-cost hardware setup and an efficient optimization

scheme for tomographic reconstructions. Our approach is able to

recreate real-world smoke behavior even on modest resolutions by

guiding a simulator along real-world footage and by employing an

advanced method for estimating inflow boundary conditions. We

also present, as a very first model application, a perceptual user

study of different simulation methods and resolutions for buoyant

smoke clouds based on our data set. Interestingly, these studies

reveal that our reconstructions contain detail and natural dynamics

that require forward simulations with very high resolutions in order

to be matched.

2 RELATED WORK
Scientific Data Sets have a long history in research, and a popular

example from the computational fluid dynamics (CFD) community is

the Johns Hopkins Turbulence Database. It contains eight very finely

resolved simulations of different turbulent flows [Li et al. 2008].

Despite being widely used for turbulence modeling, the data sets

in this database focus on non-visual flows, i.e., without observable

quantities, and contain a single data set for each of the eight setups.

Hence, the data is not readily usable for graphics, vision, or deep

learning applications. Other CFD and fluid flow databases, such

as the THT Lab [Myong and Kasagi 1990], KTH Flow [Schlatter

and Orlu 2010], and FDY DNS [Avsarkisov et al. 2014] databases,

share these characteristics: they offer single simulated data sets with

varying resolutions.

With our database, we target scalar transport processes in the

form of buoyant plumes of hot smoke, which represent a large

class of fluid problems in computer animation [Fedkiw et al. 2001a;

Sato et al. 2018]. At the same time, scalar transport phenomena are

important for engineering [Moin et al. 1991; Yazdani et al. 2018] and

medical applications [Morris et al. 2016] because the transported

quantities yield important information about the flow motion. We

specifically aim for providing many varied data sets of a single

phenomenon, e.g., to support the construction of reduced models.

Fluid Simulations are important and established components in

numerous fields [Cummins et al. 2018; Harlow and Welch 1965]. In

graphics, a popular Eulerian, i.e. grid-based, solver for flow simu-

lations is the Stable Fluids algorithm [Stam 1999] and various ex-

tensions are available, e.g., to retain kinetic energy [Fedkiw et al.

2001b; Selle et al. 2005], to speed up the pressure projection com-

ponent [McAdams et al. 2010; Setaluri et al. 2014], and to improve

the accuracy of the advection step [Kim et al. 2005; Selle et al. 2008;

Zehnder et al. 2018]. For many VFX applications, guiding and con-

trol [Nielsen et al. 2009; Pan and Manocha 2017; Shi and Yu 2005]

are highly important. In addition, the material point method has

become a popular alternative for complex, fluid-like materials [Jiang

et al. 2016; Stomakhin et al. 2013; Tampubolon et al. 2017], while

the class of smoothed particle hydrodynamics methods represent

purely Lagrangian variants [Ihmsen et al. 2014]. Additionally, vor-

tex filaments [Angelidis et al. 2006; Weißmann and Pinkall 2010]

are a popular Lagrangian representation for volumetric flows. We

will focus on Eulerian solvers as they are widely used for single-

phase smoke simulations. A thorough overview can be found in

corresponding text books [Bridson 2015]. Note that while graphics

publications typically refer to dense, passively advected tracers as

smoke, our hardware setup diffuses water and, as such, produces fog.
However, this is purely a difference in terminology; the underlying

physics are equivalent. Thus, our setup is representative for the

commonly used hot smoke simulations [Fedkiw et al. 2001b], and

we will refer to the tracers as smoke from now on.
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Flow Capture and Tomography: Fluid flows are inherently diffi-

cult to capture. While traditional experiments often perform only

very localized measurements of quantities like pressure and velocity

[Kavandi et al. 1990], methods such as particle image velocimetry
(PIV) [Elsinga et al. 2006] can be used to recover volumetric infor-

mation about flow motions by injecting particles. While specialized

methods were able to recover 3D flows over time [Xiong et al. 2017],

PIV cannot be employed in graphics settings as substances in the

fluid such as smoke would immediately obscure the particles and

the process is typically restricted to relatively small volumes.

While laser scanning setups [Hawkins et al. 2005], sheet-based

reconstructions [Hasinoff and Kutulakos 2007], and Schlieren-based

capture algorithms [Atcheson et al. 2009, 2008] have been proposed,

tomographic reconstructions are a more widely used alternative.

In this case, external observations, typically in the form of two-

dimensional (2D) images, are used to recover a 3D density. Beyond

themedical field, suchmethods were successfully used to, e.g., recon-

struct flames [Ihrke and Magnor 2004, 2006] and nebulae [Wenger

et al. 2013]. Higher-level optimization involving tomographies were

also proposed for the detailed capture of slowly deforming objects

[Zang et al. 2018a,b]. We likewise make use of tomographic recon-

structions from a sparse set of views, which are combined with phys-

ical constraints to obtain a realistic flow field. Algorithms employing

physical simulations (or parts thereof) were successfully used in

previous work to capture liquids [Wang et al. 2009], divergence-free

motions [Gregson et al. 2014], and smoke volumes via appearance

transfer [Okabe et al. 2015]. Similar in spirit to our work, a physics-

based single-view reconstruction was proposed [Eckert et al. 2018],

which, however, lacks our procedure for inflow estimation and does

not yield sufficiently reliable reconstructions due to being restricted

to a single viewpoint.

Applications Areas: There are numerous potential areas of appli-

cation for volumetric flow data sets in the areas of computer vision,

graphics, and machine learning alone. To leverage machine learning

in the context of simulations, researchers have, e.g., used machine

learning to drive particle-based simulations [Ladický et al. 2015],

replaced the traditional pressure solve with pre-trained models

[Tompson et al. 2017], and augmented simulated data with learned

descriptors [Chu and Thuerey 2017]. Others have focused on learn-

ing controllers for rigid body interactions [Ma et al. 2018] or aimed

for temporal coherence with adversarial training [Xie et al. 2018].

This is a nascent field with growing interest, where our data set can

provide a connection of simulations with the real world. Although

this is a promising direction, we will focus on evaluating the results

of established simulation techniques in comparison to real-world

flows as a first demonstration of the usefulness of a volumetric flow

data set. Perceptual evaluations have been used to evaluate render-

ing algorithms [Cater et al. 2002], tone mapping [Masia et al. 2009],

and animations of human characters [Hoyet et al. 2013]. Recently,

different methods for liquid simulations were also evaluated in re-

gard to their visual realism [Um et al. 2017]. However, to the best of

our knowledge, no perceptual evaluations of the more fundamental

algorithms for single-phase flows exist so far.

(a) Typical steps of a fluid simulator.

(b) Overview of our reconstruction method.

Fig. 3. Visual summary of a typical forward fluid simulation and its in-
verse problem of recovering a simulation that matches a set of given target
images. While we can re-use many steps from a regular simulator for the
latter, i.e. advection, pressure projection, and viscosity, we need to estimate
the unknown initial quantities, especially the 3D density, estimate a valid
density inflow in compliance with the target images, and account for any
unknown force.

3 METHOD
In the following, we will outline the reconstruction algorithm that

was used to create the ScalarFlow data set. A preview of our physical

setup for capturing real-world smoke plumes is shown in Fig. 2 and

will be explained in more detail in Sec. 4. Our goal is to jointly

reconstruct smoke density Φ and velocity u from a small number of

image sequences i . This represents an inverse problem as our goal

is to find a solution of a numerical simulation that matches a set of

observations. The widely established physical model for fluids are

the incompressible Navier-Stokes equations, written as

∂u
∂t
+ u · ∇u = −∇p + ν△u + fext

∇ · u = 0,
(1)

where u is velocity, p is pressure, fext are external body forces, and

ν is kinematic viscosity. Typical simulators solve those equations

for each time step t via operator splitting: the velocity is advected

forward, projected onto the divergence-free space via the so-called

pressure solve, viscosity and external forces are added, and option-

ally, inflow quantities are added. A schematic overview can be found

in Fig. 3a. Note that common simulators often exhibit a limit on

resolvable features and, as such, sub-grid effects such as turbulent

mixing are not directly captured.

It is inherently difficult to re-simulate real-world fluid phenomena

as initial density distribution Φ0
, density inflow Φt

I
, initial velocity

u0, velocity inflow, and ambient air motions are unknown. External

forces fext such as buoyancy are likewise typically difficult to model.

Furthermore, simulators introduce numerical errors, which need

to be counteracted, particularly for moderate domain resolutions,

in order to reproduce the turbulent motion found in real-world

smoke plumes. In this context, our approach shares similarities with

methods for flow guiding [Nielsen et al. 2009; Pan et al. 2013]. To

2019-09-02 14:35. Page 3 of 1–16. ACM Trans. Graph., Vol. 38, No. 6, Article 239. Publication date: November 2019.



239:4 • Marie-Lena Eckert, Kiwon Um, and Nils Thuerey

match the real-world capture, we account for all unknown changes

of velocities, i.e., forces, by calculating a residual velocity ∆ut and
a density inflow Φt

I
.

Our full reconstruction algorithm is visualized in Fig. 3b and de-

scribed in Appendix B in Alg. 3 with pseudocode. We also provide

algorithms in pseudocode for all of the following steps. In our re-

construction algorithm, we first estimate the initial density volume

Φ0
with a single pass of regular tomography and assume the fluid

is initially at rest, i.e., u0 = 0. Then, in order to ensure temporal

coherence, we predict velocity ũt by advecting the previous velocity
ut−1 forward, making it divergence-free, and applying viscosity. To

obtain a prediction for density, we calculate and add to Φt−1 an

inflow source Φ̃t
I
before advecting Φt−1 with ũt . Details of this step

will be given in Sec. 3.3. The predicted density Φ̃t is an intermediate

variable that is only required to calculate the residual velocity, as

shown in Fig. 3b. Our reconstruction method proceeds by account-

ing for the residual velocity that is necessary to match the motion

and shape from the input image sequences by computing ∆ut . In
an alignment step, ∆ut and ũt are accumulated to yield the final

velocity ut . For computing the final density field Φt , it is crucial to
estimate the correct amount of inflow density Φt

I
, which is added to

Φt−1 before it is advected with ut to finally obtain Φt . It is impor-

tant to emphasize that, similar to a regular forward simulation, the

smoke density is solely changed via advection. We never modify

densities outside the inflow region directly. We denote our recon-

struction domain with Γ, while the inflow region is denoted with

ΓI , which is visualized in Fig. 2c. Outflow boundary conditions are

set at the domain sides. Here velocity is allowed to move freely and

densities in this region are removed.

3.1 Residual Velocity Estimation
We calculate a residual velocity ∆ut that moves the predicted den-

sity Φ̃t such that the input images it are matched. We denote the

density change induced by ∆ut with ∆Φt . This change in density is

an important intermediate variable required to enforce constraints

on the density, which then constrains the residual velocity through

our combined optimization scheme. As formulated in Eq. (2), we

use the following physical assumptions for our reconstruction ap-

proach: residual velocity ∆ut and density ∆Φt must comply with

the transport equations; the total velocity inflow ũt |I + ∆ut |I is
equal to a constant c; the residual velocity field is incompressible;

projecting the residual density back to each camera plane should

be equal to the difference between input images it and the current,

projected density prediction ĩt . Finally, the sum of residual and

predicted density must be non-negative. This yields the following

minimization problem:

minimize

∆Φt ,∆ut
д(∆ut ,∆Φt ) =

∆Φt + ∇Φ̃t · ∆ut 2
subject to P ∆Φt = it − ĩt , ∆Φt + Φ̃t ≥ 0,

∆ut |I = c − ũt |I ,∇ · ∆ut = 0,

(2)

where P is the matrix projecting 3D density back to each 2D image,

the finite difference for
∂Φ̃t

∂t is denoted with ∆Φt , and c is a constant
approximating the average upwards speed of the observed flow. A

detailed derivation of Eq. (2) can be found in Appendix C.

Following common practice [Parikh et al. 2014], we make our

problem formulation convex by adding smoothness and kinetic

energy regularizers for both density and velocity, namely

E
smooth

(∆Φt ) = 1

2

∇(∆Φt )2 , E
smooth

(∆ut ) = 1

2

∇∆ut 2 ,
E
kin
(∆Φt ) = 1

2

∆Φt 2 , E
kin
(∆ut ) = 1

2

∆ut 2 .
(3)

The kinetic and smoothness regularizers are realized by adding

a weighted diagonal and a Laplacian matrix to the system matrix,

respectively. The Laplacian operator is discretized with central finite

differences, yielding the standard 7-point stencil. We also regularize

the density inflow. The weights for both regularizers depend on the

actual values of density and velocity. In our case, we used ((1e-1, 5e-

4), (6e-1, 5e-2), (5e-3, 1e-2)) for smoothness and kinetic regularizers

for velocity, density, and inflow density, respectively.

We compute solutions for the residual velocity’s objective func-

tionд(∆Φt ,∆ut )with least-squares and a standard Conjugate Gradi-
ent (CG) solver. As the shared objective function д is convex and we

have separate orthogonal projections for both unknowns ∆Φt and
∆ut , we use a fast primal-dual algorithm (PD) [Chambolle and Pock

2011] to solve the joint optimization problem. The divergence-free

constraint on the velocity is an orthogonal projection onto the space

of divergence-free vector fields as shown in [Gregson et al. 2014].

This is enforced via a regular pressure solver. Before enforcing in-

compressibility, we set our inflow residual velocity to the difference

between the prescribed constant c and the predicted velocity ũt .
In order to fulfill both constraints on the residual density ∆Φt , we
project it onto the space of densities where the input images are

matched and the total density is non-negative. This can be realized

by computing a density correction ∆Φtc , which is added to ∆Φt , as
will be explained in Sec. 3.2. In line with optical flow (OF) methods

[Meinhardt-Llopis et al. 2013], we solve for the residual velocity on

multiple scales, i.e. employ a hierarchical approach as outlined in

Alg. 6.

While previous work has attempted single-view reconstructions

with a similar algorithm, we leverage the described physics-con-

strained optimization scheme for accurate multi-view tomographies.

Using multiple views has the advantage that fewer unknown mo-

tions exist in the volume; thus, we do not need to employ the depth-
regularization from previous work [Eckert et al. 2018]. Next, we will

explain our novel inflow estimation step and our efficient tomogra-

phy scheme, which is important for obtaining feasible run times for

the reconstruction.

3.2 Regularized Tomography
In order to satisfy both the image-matching and non-negativity

constraints for the residual density ∆Φt , we add a correction ∆Φtc
by solving a second minimization problem:

minimize

∆Φtc
h(∆Φtc ) =

P∆Φtc − (it − ĩt − P∆Φt )2
subject to ∆Φtc + ∆Φ

t + Φ̃t ≥ 0,

(4)

where P is the matrix that projects from volume into image space,

i.e., P ∈ Rnp×nv ; np and nv denote the total number of pixels and

voxels, respectively. We use a linear image formation model, where

we integrate smoke densities along a ray. The tomography problem
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Algorithm 1 Regularized CGLS

1: function solveCGLSReg(P,R, b, bPD ,σ )
2: r0 = σbPD − PT b − PT Px0 − (R + σ I)x0;
3: p0 = r0;
4: while accuracy not reached do
5: αk = ∥rk−1∥

2 /(pTk−1P
T Ppk−1 + pTk−1(R + σ I)pk−1);

6: xk = xk−1 + αkpk−1;
7: rk = rk−1 − αk ∗ PT Ppk−1 + αk (R + σ I)pk−1;
8: βk = ∥rk ∥

2 /∥rk−1∥
2
;

9: pk = rk + βk ∗ pk−1;

is solved with PD where pseudocode for is given in Appendix B

in Alg. 4. When solving Eq. (4) with least-squares, it is necessary

to calculate the matrix product PT P. Because of the sparsity of the

views, np ≪ nv and PT P ∈ Rnv×nv is significantly larger and

usually denser than P. Hence, storing PT P explicitly is infeasible for

larger resolutions due to excessive memory consumption. Therefore,

we employ a CGLS solver [Ihrke and Magnor 2004], which solves

the normal equations like a regular CG solver but avoids computing

PT P explicitly.

For under-determined inverse problems such as our sparse tomog-

raphy, regularizers are crucial in order to obtain smooth and realistic

density estimations as well as fluid motions. However, incorporating

regularizers via a square and symmetric matrix, as commonly done

for regular CG solvers, is not straightforward in CGLS. We show

that regularizers and proximal operator extensions can be included

in CGLS without the need for an explicit calculation of the system

matrix.

A square regularization matrix R ∈ Rnv×nv for smoothness and

kinetic energy is very sparse in practice: seven entries per row in 3D

(diagonal and neighbours for smoothness, see Eq. (3)) suffice, and

hence the matrix can be stored and multiplied efficiently. Within

CGLS, it is necessary to only apply R to the residual and step size

calculations. In order to use the CGLS solver as proximal operator

within a PD optimization loop, we also need to add a weighted di-

agonal matrix σ I to the system matrix and the PD variable updates

σbPD to the right-hand side. This regularized CGLS solve is summa-

rized in Alg. 1 and used for all tomographic density reconstructions

in our framework.

3.3 Inflow Estimation Solver
Suitable boundary conditions are crucial for all physical models

and are likewise crucial for our reconstruction method. The unseen

inflow region and its boundary with the visible domain have a huge

influence on the overall reconstruction quality. Underestimating

the density inflow will yield plumes that cannot fill the desired

volume in later stages of the reconstruction, see Fig. 4a), while over-

estimations can lead to strong instabilities over the course of the

inverse solve, see Fig. 4c) for an example. We propose an approach

for solving for the correct amount of density influx by computing

the unseen inflow density Φt
I
considering the previous density Φt−1,

the final velocity ut , and the target input images it . Our result is
displayed in Fig. 4b) where our reconstruction features the right

amount of density to fill the plume in a stable manner.

a) b) c)

Fig. 4. Example reconstructions with too less density inflow a), our inflow
estimation b), and too much density inflow c).

Advecting previous and inflow density with the final velocity

should result in a density field, the sum ofwhichmatches the amount

of target smoke density Φt
tar

that is prescribed by the 2D input

images. The inflow density is hence used to fill the gap between

current density and the target amount of density. Both of them only

consider the visible domain Γ \ ΓI , i.e., not the inflow region:∑
Γ\ΓI

A(Φt−1 + Φt
I
, ut ) !

=
∑
Γ\ΓI

Φt
tar
,

(5)

where A(·, ut ) denotes advection with the known velocity ut and
Φt
tar

is the density target. Based on ut , we set up a linear system

of equations in order to estimate the inflow densities that lead to

the desired density influx; i.e., we solve AIΦ
t
I
= b for Φt

I
. In AI , we

discretize the advection operator A via semi-Lagrangian advection.

The right-hand-side b contains the missing density, which should

be added to the domain through the inflow solver. Note that, as

target domain, we only need to consider cells in the visible domain,

which back-trace into the inflow area ΓI , a region that we denote

as ΓR , as visualized in Fig. 2c). This is the only region influenced by

advecting the inflow density Φt
I
. The subset ΓR of Γ is back-traced

into a part of the inflow region, which is denoted as ΓRI in the

following. Hence, we set up AI to contain one equation for each

density in ΓRI and b to contain a target value for each voxel in ΓR .
We additionally ensure that each cell of the total inflow density is

non-negative. Negative density values never occur in reality, and we

found such enforcement to be crucial for plausible and numerically

stable reconstructions. To enforce the non-negativity constraint

in conjunction with computing AIΦ
t
I
=b, we solve for Φt

I
with

least-squares using smoothness and kinetic energy regularizers as

for our main reconstruction above and employ the same convex

optimization scheme [Chambolle and Pock 2011].

Pseudocode for the inflow estimation step is given in Alg. 2. Ad-

ditional details can be found in Appendix B.1. We first project the

target images it into the volume to obtain a 3D density target Φt
tar
.

The residual target density field ∆Φt
tar
, i.e., the missing density, is

then given by the difference of target density and the advected pre-

vious density. In order to ensure the correct density influx into the

visible domain Γ \ ΓI , the right-hand side vector b contains the total

2019-09-02 14:35. Page 5 of 1–16. ACM Trans. Graph., Vol. 38, No. 6, Article 239. Publication date: November 2019.
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Algorithm 2 Estimate inflow, such that Eq. (5) holds

1: function estimInfl(it ,Φt−1, ut )
2: Φt

tar
= reconDen(it , 0); ◃ target density

3: ∆Φt
tar
= Φt

tar
− A(Φt−1, ut ); ◃ residual target density

4: for k ← 1, 10 do ◃ Prima-Dual iterations

5: ◃ matrix AI represents advecting cells from ΓRI to ΓR
6: ◃ A = ATI AI ,AI = A(Φ

t
I
, ut )|ΓRI to ΓR ,

7: ◃ b: target missing density; A(Φt−1 + Φt
I
, ut )|ΓR ≥ 0

8: ◃ b = −ATI max

(
∆Φt

tar
|ΓR + d,−A(Φ

t−1, ut )|ΓR
)

9: +xk−1 + σyk−1

10: xk = xk−1 + σyk−1 − σsolveLSE(A, b)
11: zk = ΠNonNeg(Φ

t−1 + zk−1 − τxk );
12: yk = zk + θ (zk − zk−1);
13: extrapolateSrcValues(zk );
14: return zk ;

missing density, i.e., ∆Φt
tar

. As b covers only a subset of the domain,

i.e., ΓR , we set each entry to the corresponding value in ∆Φt
tar
|ΓR

plus an update d that accounts for further density discrepancies in

the rest of the domain, i.e., ∆Φt
tar
|Γ\(ΓR∪ΓI ). As we are solving for an

inflow update to the current inflow values in Φt−1, we must ensure

thatA(Φt−1 +Φt
I
, ut ) ≥ 0, which means b≥ −A(Φt−1, ut ), see line

8 of Alg. 2. We slightly extrapolate the inflow values in ΓI into cells

that were excluded from the solve to ensure subsequent advection

steps have full access to the densities (line 13 of Alg. 2).

As this solve only targets the inflow volume ΓI , its cost is negligi-
ble compared to the rest of the optimization procedure. However,

due to the non-linear nature of the overall optimization, it is a crucial

component for obtaining realistic reconstructions.

4 HARDWARE SETUP
In addition to the algorithmic pipeline described in the previous

section, another important component of our framework is a com-

modity hardware setup to capture real-world fluid flows. Our strong

physics-based constraints allow us to accurately capture complex

flows with very simple hardware. In particular, complex camera cal-

ibration and synchronization are not required. We use an insulated

box, which is heated to a chosen temperature in combination with

a regular fog machine to fill the box with a fluid that can be tracked

visually. A sketch of our setup is shown in Fig. 2b. Not surprisingly,

conservation of volume holds for real fluids, and as such, it is crucial

to control in- as well as outflow to and of the box. We use two

servo-controlled valves at the top and bottom of the box, which are

closed to fill the box with fog from the fog machine and opened

when initiating a capture. In practice, our heating element can yield

air temperatures of up to 60 degree Celsius (
◦
C) without posing

safety risks.

For camera calibration, we use a movable plate with ChArUco
marker patterns that yield a dense ray calibration for the volume

right above the box. After calibration, we cover the box and the

background with a diffuse black cloth in order to maximize contrast

of the visible fog. To record the fog, we use a set of five Raspberry Pi

computers with attached cameras mounted on microphone stands.

In total, the whole capture setup consists of hardware that is avail-

able for less than 1100 USD. Thus, in contrast to previously proposed

hardware setups in graphics [Hawkins et al. 2005; Xiong et al. 2017],

our setup
1
can be recreated with a very moderate investment. Fur-

thermore, other algorithms [Gregson et al. 2014] typically require

larger numbers of synchronized and carefully calibrated cameras.

5 EVALUATION
To evaluate the accuracy of our pipeline, we use a series of simulated

data sets for which we have known ground truth values available for

all quantities. We investigate the reconstruction accuracy for varied

parameters and at varying resolutions. The perturbed parameters

mimic the unknown behavior of real-world setups and, thus, can

be used to assess the robustness of our reconstruction algorithm

in practical settings. For each scenario, we vary the noise in the

inflow density of the simulation five times such that we obtain five

different instances for each synthetic case. We reconstruct all five

instances and calculate the mean and standard deviation of peak

signal-to-noise ratio (PSNR) for differences in density, velocity, and

images.

5.1 Reconstruction Accuracy
First, we simulated a plume of hot smoke with the Boussinesq ap-

proximation at a resolution of 100 × 177 × 100 and reconstructed

the data set with the same resolution using our full algorithm. The

plumes were rendered with our raycaster from five virtual views

with real-world camera calibrations in line with our hardware setup.

We then reconstructed the flow based on these images without using

any additional information such as the ground truth inflow. The

inflow was likewise computed with our estimation algorithm. This

baseline comparison achieves a very high accuracy with averaged

PSNR values of 37.3, 34.1, and 34.6 for density, velocity and image

differences, respectively, across all five instances, see Fig. 6a). A vi-

sual example can be found in Fig. 5a,e). Note that even the side view,

which is heavily under-constrained in terms of visual observations,

is reconstructed very accurately.

To evaluate the robustness of our method, we vary the size of

the inflow source or increase the buoyancy force by 50%. Thus, in

combination with the test above, these three tests yield distinct

data points in the space of possible buoyant plume parameters. The

resulting simulations exhibit significantly different flow behavior

as observed in Fig. 9b,c). Despite these variations, our algorithm

very accurately reconstructs the different flows in terms of both

visual density and flow motion (bottom row of Fig. 5). The error

measurements provide PSNR values comparable to the earlier test,

i.e., an average of 35.7, 33.3, 33.8 and 36.8, 34.9, 33.1 for density, ve-

locity, and image differences, respectively, across all five instances,

see Fig. 6b,c). These tests indicate that our method is capable of

accurately reconstructing a variety of different buoyant flows. For

our scenario with increased buoyancy, a slight drop in PSNR val-

ues is observed around t = 95. Due to the increased buoyancy,

the smoke plumes rise much faster and, as such, leave the domain

around t = 95. In order to arrive at a setup that resembles the chal-

lenging real-world conditions, we also used a reduced resolution of

1
Technical details will be published together with our data set.
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(a) Base simulation,
front, t = 170.

(b) Larger inflow area,
front, t = 145.

(c) 50 % more buoy-
ancy, front, t = 122.

(d) High-resolution,
front, t = 155.

(e) Base simulation,
side, t = 170.

(f) Larger inflow area,
side, t = 145.

(g) 50 % more buoy-
ancy, side, t = 122.

(h) High-resolution,
side, t = 155.

Fig. 5. Four different synthetic smoke simulations. Each with ground truth density (left) and reconstructed density (right), with ground truth velocity (lower
left) and reconstructed velocity (lower right), for front and side views. The high-resolution simulation and reconstruction in d) and h) are downsampled to
facilitate visual comparison. We use our real-world calibration data to generate the synthetic input images and use our inflow estimation for reconstruction.
Across varying simulation parameters as well as resolution, our reconstructions recover both density and motion accurately.
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(b) Increased inflow area
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(d) Increased resolution

Fig. 6. PSNR values of differences in density, velocity, and images for our four synthetic reconstructions in Fig. 5 with five different simulation and reconstruction
instances each. We show the mean and standard deviation of PSNR values across the five instances.

100× 177× 100 for the reconstruction of a synthetic high-resolution

simulation with a doubled resolution of 200× 354× 200. Despite the

inherently different resolution used for reconstruction, the result

of our algorithm closely matches the ground truth for both density

and velocity (Fig. 5d,h). The averaged PSNR values are 33.0, 31.6,

and 32.6 for density, velocity, and image differences, respectively,

across all five instances, see Fig. 6d).

While our reconstructions exhibit slightly less overall density, it

accurately captures the intricate shapes of the complex reference

flows as shown visually in Fig. 5 and measured through PSNR values,

see Fig. 9. All four tests with five instances each robustly produce

similar PSNR values for density, velocity, and images over multiple

time steps. As reconstruction proceeds, the PSNR values slightly

drop, but they yield high overall averages across all five instances.

The decrease of the PSNR values over time can be explained by the

flow becoming more complex over time and by occupying a larger

volume of the domain. From these tests, we conclude that, with our

strong physics-based optimization, five camera views are sufficient

to constrain a simulation to recreate realistic flow motion according

to given input images.
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a) Tomo + OF: Va b) Simplified: Vb c) Ours

Fig. 7. A visual comparison of three methods in terms of reconstructed
densities: a) a divergence-free optical flow reconstruction based on tomo-
graphic densities from previous work, b) a simplified version of our solver,
and c) our full method. Our full algorithm is needed to obtain a realistic
and detailed flow field without artifacts.
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Fig. 8. PSNR of image differences forVa (tomography plus 3D optical flow),
Vb (a simplified version of our approach), and our method.

5.2 Alternative Methods
In addition, we evaluate the gains in accuracy of our approach with

respect to a flow reconstruction method from previous work and a

simplified variant of our algorithm. The former approach, denoted as

Va in the following, first computes volumetric densities through to-

mography and then applies 3D optical flow that is constrained to be

divergence-free (in line with Gregson et al. [2014]). The second vari-

ant, denoted as Vb , uses our algorithm, but omits solving iteratively

for an advection-aware residual density as outlined in Eq. (2), and

instead uses a single delta density obtained from a separate tomog-

raphy solve. The averaged PSNR values for image differences are

25.8, 25.0, and 29.2 for Va,Vb , and our method, respectively. These

measurements show that our method reproduces the target input

images with the highest accuracy among these methods, which is

indicated by the per-time step PSNR measurements in Fig. 8. Al-

though our method outperforms the others regarding error in the

image space, there is more to consider as 2D error measurements

cannot fully evaluate the quality of the volumetric reconstructions.
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Fig. 9. PSNR values of image differences for five different real-world recon-
structions.

Therefore, a qualitative evaluation in terms of densities is visual-

ized in Fig. 7. As shown in Fig. 7a), the version Va exhibits the

typical stripe artifacts from tomographic reconstructions leading

to an overall lack of detail and clearly visible artifacts. Variant Vb
fares better as shown in Fig. 7b) but likewise lacks detail in the

side view. Additionally, the reconstruction cannot keep up with the

observations such that only two thirds of the overall length can be

reconstructed. Our full algorithm shown in Fig. 7c) reconstructs the

full sequence and develops natural, fluid-like behavior without to-

mography artifacts. These comparisons highlight that our iteratively

re-computed density change is a density field that lies within the

image formation null space and matches fluid motions significantly

better than the updates computed by previous work. This improved

quality is caused by the enhanced physical constraints which lead

to a more realistic solution from the aforementioned null space. In

this way, our method is able to produce more natural behavior and

density configurations without the typical tomography artifacts and

is especially suitable for under-constrained problems.

5.3 Performance
We also employ this setup to evaluate the performance of our op-

timized CGLS regularization. Here, a regular CG solver requires

535 seconds per tomography solve on average, while our CGLS

solver achieves the same residual accuracy with only 69 seconds

on average. While, for the regular CG, 182s are spent on the matrix

construction, only 13s are required for CGLS. Thus, instead of being

a bottleneck, the tomographic reconstruction becomes a smaller

part of the overall run time, which was 809s and 350s on average per

time step for CG and CGLS, respectively. Here, the performance of

the CG version is indicative for the run times of previously proposed

methods [Eckert et al. 2018].

In addition, the full CG solver requires approximately 15 GB of

memory to store the tomographymatrix PT P, while the CGLS solver
needs only 2.5 GB. As bothmemory and computational requirements

grow super-linearly for larger resolutions, the regularized CGLS is

crucial for obtaining reasonable run times for larger resolutions.
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6 DATA SET
We now give an overview of the ScalarFlow data set, which is avail-

able online. The data set contains 100 flow reconstructions, each

with a resolution of 100×177×100 and with at least 150 time steps

(ca. 26 billion voxels of data in total). During the capture experi-

ments, we used a temperature of 34
◦
C as higher temperatures tend

to move the visible flow too far out of the calibrated volume before

producing interesting instabilities. This produces flow velocities of

ca. 0.3 to 0.4
m

s
on average, once the fog plumes have accelerated.

Naturally, the initial velocity for all captured flows is close to zero.

Relative to the size of our calibrated capture volume of 0.9 m, this

yields Reynolds numbers of up to ca. 5400. Thus, the captured flows

transition to turbulence during the later stages of each capture. In

our reconstructions, we assume a viscosity of 1.516 · 10−5 m
2

s
for

the fluid, and we record the rising plumes with 60 fps.

Additional density and velocity visualizations for a selection of

20 reconstructions are shown in Fig. 14 in Appendix A. These vi-

sualizations show that our data set contains largely similar plume

motions, which is important as our goal is to thoroughly sample

a chosen space of physical behavior. However, despite the overall

similarity, the captured flows contain a variety of interesting and

natural variations, such as secondary plumes that form at various

stages and separate from the main plume.

The volumetric velocity and density data contained in this col-

lection can be flexibly used, e.g., for evaluations, re-simulations,

data-driven applications, or visualizations. Example renderings of

a sub-set of the density data are shown in Fig. 10. As for our com-

parison to alternative methods, we evaluate the accuracy of our

real-world reconstructions by computing the PSNR between the

captured images and the rendered reconstructed densities. As shown

in Fig. 9, the images match the captured images very well with aver-

age PSNRs between 27.4 and 29.7. All five reconstructions robustly

result in similar error ranges.

7 PERCEPTUAL EVALUATION
As a first exemplary application of our data set, we show a per-

ceptual evaluation of different simulation methods and resolutions

for buoyant smoke clouds via user studies. To achieve robust and

reliable evaluation results in these studies, a key requirement is to

have reference data that can serve as ground truth and to have a

large number of available data variants of the same phenomenon

in order to increase robustness. For our user studies, we adopt the

two-alternative forced choice (2AFC) design [Fechner 1860] and

compute scores with the Bradley-Terry model [Hunter 2004; Um

et al. 2017]. We recruited 189 participants from 48 countries via

crowd-sourcing, where each participant answered the randomized

questions twice. In total, we had 100 answers per question to obtain

statistically relevant result.

We first consider a selection of fluid solvers that are well es-

tablished in the community in order to evaluate how closely their

results resemble a real fluid. To this end, we selected four representa-

tive methods: semi-Lagrangian advection [Stam 1999], MacCormack

[Selle et al. 2008], advection-reflection [Zehnder et al. 2018], and

wavelet turbulence [Kim et al. 2008] as a representative of up-res

methods. While these methods have been compared visually in the

corresponding publications, to the best of our knowledge, no eval-

uation of these methods in comparison to a real-world reference

exists.

We implemented all simulation methods in the same solver frame-

work [Thuerey and Pfaff 2018] such that all four simulation variants

use the same initial conditions and a resolution of 100×177×100.

The base resolution of the wavelet turbulence version was halved

such that the synthetic turbulence can be added with a two times

up-sampling. Fig. 11 shows example frames of the four different

simulations as well as one of our reconstruction data set.

The result of our 2AFC user study with the different methods is

summarized in Fig. 13a. Our study shows which method resembles

a real smoke cloud more closely. For instance, our evaluations show

a chance of 64% that viewers prefer the advection-reflection version

over the MacCormack result in comparison to our reconstruction.

It is typically crucial to have full control over the setup of the

user studies. With the available 3D density of our data set, we

are able to flexibly design our psychophysical studies with custom

background, smoke color, rendering style, and viewing angles. Fur-

thermore, thanks to the variety of reconstructions in the ScalarFlow

data set, we can evaluate the aforementioned methods in compari-

son to multiple real flows. Despite their different behaviors, a range

of salient flow features appears across these smoke clouds. In this

way, we can determine the viewer’s preferences for a wider range

of natural flow behavior, and we can ensure that a singular result is

not an outlier. Conducting four additional user studies for the same

method yet with different reference data, we found that the results

of these studies were all highly correlated, ρ ≃ 0.98 (P ≃ 0.02)

on average, where ρ and P are the correlation coefficient and its

p-value, respectively. This indicates that our evaluation results are

stable. The joint preferences of our participants, computed across all

four studies, are shown in red in Fig. 13a. Interestingly, the relatively

old, procedural wavelet turbulence method exhibits a performance

that is comparable to the advection-reflection solver and slightly

outperforms the MacCormack scheme.

In addition to the different simulation methods, we further inves-

tigate the influence of simulation resolution. As graphics solvers

typically do not explicitly add viscosity, they rely on unknown

amounts of numerical viscosity in order to achieve a realistic look.

With this study, our goal was to investigate how much numerical

viscosity is actually necessary to realistically simulate a plume of

buoyant smoke approximately one meter high. Here, we focus on

the MacCormack method as a de facto standard advection scheme,

which we use to simulate five different resolutions. Starting with

a resolution of 50×88×50 as the base resolution (i.e., 1×), we in-

crease the resolution by 2×, 4×, 8×, and 12×, respectively, arriving

at 600×1062×600 for the most finely resolved version with 12×. Note

that we use a scaling factor of 1.77 for the domain’s height. Example

frames are shown in the supplemental material in Fig. 12.

Our user study, summarized in Fig. 13b, shows that the 8× and

12× resolutions are those that are considered to be closest to our

captures. Interestingly, there is a noticeable variance in the evalua-

tions across the different data sets. For version D, the 8× simulation

is even considered to be closer to the capture than the 12× simula-

tion. This behavior illustrates the need for a large number of data

sets in order to ensure a robust evaluation. This result additionally
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Fig. 10. Four captured sequences shown in terms of thickly rendered reconstructed densities. Here, we visualize the captured plumes in a way that is very
different to their real-world counterparts. This rendering style highlights the amount of small scale detail contained in our reconstructions.

Fig. 11. Example frames of user study videos for four different simulation
methods, and one ScalarFlow data set. F.l.t.r.: Semi-Lagrangian, MacCor-
mack, advection-reflection, wavelet turbulence, and ScalarFlow data.

Fig. 12. Example frames of user study videos for increasing resolutions. The
simulations with MacCormack advection for 1×, 2×, 4×, 8×, and 12× are
shown from left to right, respectively.

shows that large resolutions are required in numerical simulations

to perceptually match the behavior of real-world smoke clouds at

a scale of ca. 90 cm. Consequently, larger real-world clouds would

require even larger resolutions.

8 LIMITATIONS
Our reconstruction algorithm is a non-linear optimization proce-

dure, and as such, is not guaranteed to converge. However, this is

a limitation that our method shares with all previous work in this

area. We found the algorithm to be stable in practice, but substantial

changes in the data, like speed or brightness, can lead to diverg-

ing reconstruction runs. Here, a promising avenue for future work

would be a further improved estimation of the inflow velocity and

an automated adjustment of the reconstruction parameters, which

could lead to even more accurate reconstructions.

In practice, the ambient air motion of our capture stage makes it

difficult to fine-tune the direction of the plumes. Right now, appli-

cations of our data set have to include slight variations in terms of

the overall plume direction. However, the data could be clustered

with respect to average motions of the plume, and future extensions

of the data set could yield enough samples such that individual

directions of motion could be targeted.

In addition, we currently rely on a linear image formation model.

While we found this to yield very good results for the relatively thin

clouds of our fog machine, the linear image formation model would

not be directly applicable to denser volumes.

9 CONCLUSIONS
We have shown that it is possible to accurately capture complex

flows of scalar transport phenomena with a combination of com-

modity hardware and powerful physics-constrained reconstructions.

Our reconstruction method with its inflow solver and efficient to-

mography routine are crucial for achieving this goal. The resulting
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Fig. 13. Evaluations of different simulation methods and different resolutions via user studies. (a) Multiple evaluations (i.e., A, B, C, and D) of the same four
methods are shown as well as their combined evaluation (i.e., All). In (b) the evaluation of different resolutions is shown. ****P < 0.0001.

algorithm allowed us to assemble a first large-scale data set of realis-

tic flows. Our data set contains a unique combination of volumetric

data for turbulent flows in conjunction with visual data and process-

ing algorithms. In addition, our perceptual application demonstrated

the usefulness of the reconstructed data and led to first insights re-

garding smoke simulation methods as well as the reconstruction

itself. The studies show that the advection-reflection solver as well

as the wavelet turbulence model perform best among the set of

evaluated methods and our reconstructed flows contain dynamics

that are comparable to finely resolved simulations.

The availability of a large, volumetric data set opens up a wide

range of possibilities. In particular, the availability of velocities in

our reconstructions means that the data can be flexibly used for

re-simulations, novel visualization, incorporation into VFX scenes,

and metric evaluations, e.g., in order to compare motions. Looking

ahead, we believe that there is a wide range of exciting future appli-

cations for our data. Beyond avenues for benchmarking, accuracy

measurements, and novel reconstruction methods, we are looking

forward to developments in the area of machine learning that this

data will enable [Kim et al. 2019; Sato et al. 2018; Xie et al. 2018].
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A ADDITIONAL RECONSTRUCTIONS

Fig. 14. A sub-set of captured clouds of the ScalarFlow data set visualized in terms of density and velocity. Each row on both columns shows four frames of a
single capture.

2019-09-02 14:35. Page 13 of 1–16. ACM Trans. Graph., Vol. 38, No. 6, Article 239. Publication date: November 2019.



239:14 • Marie-Lena Eckert, Kiwon Um, and Nils Thuerey

Algorithm 3 Full Reconstruction Procedure

1: function reconVelDen(it ) ◃ reconstr. velocity and density

2: u0 = 0; ◃ init velocity

3: Φ0 = reconDen(i0, 0); ◃ init density, Eq. (11)

4: for all t do
5: ◃ predict velocity

6: ũt = ΠDIV(A(ut−1, ut−1)) + addViscosity(ut−1);
7: Φ̃t

I
= estimInfl(it , Φt−1, ũt ); ◃ estimate density inflow

8: Φ̃t = A(Φt−1 + Φ̃t
I
, ũt ); ◃ predict density

9: ◃ solve for residual velocity Eq. (2)

10: ∆ut = reconVelMS(ũt , Φ̃t , Φt−1, it );
11: ut = ũt + ∆ut ; ◃ finalize velocity

12: Φt
I
= estimInfl(it , Φt−1, ut ); ◃ estimate density inflow

13: Φt = A(Φt−1 + Φt
I
, ut ); ◃ finalize density

Algorithm 4 Tomography, solve Eq. (11), (12), or (13)

1: function reconDen(it , Φt
IN
) ◃ reconstr. density, Φt

IN
can be 0

2: ∆it = it − PΦt
IN
; ◃ calculate residual image

3: for k ← 1, 10 do ◃ Prima-Dual iterations

4: ◃ solve least-squares problem, e.g., with CGLS (Alg. 1)

5: xk = xk−1 + σyk−1

6: −σ solveLSE(A = PT P, b = −PT ∆it + xk−1 + σyk−1);
7: zk = ΠNonNeg(Φ

t
IN
+ zk−1 − τ xk ); ◃ cut off neg. values

8: yk = zk + θ (zk − zk−1);
9: return zk ;

B DETAILS OF RECONSTRUCTION ALGORITHM
In this appendix, we outline our reconstruction algorithm with pseudocode

where Alg. 3 is the main routine. Based on an initial density estimate, it

iteratively predicts the quantities’ states and computes density inflow as

well as a physics-constrained update to the velocities. The tomography

solve in Alg. 4 is used for initialization and as a building block within the

residual velocity calculation step of Alg. 5. Lastly, Alg. 6 details our recursive

multi-scale version of the residual velocity computation, which makes use

of Alg. 5.

We add our smoothness and kinetic energy regularizers described in

Eq. (3) to matrix A for each linear system of equations (LSE) referred to in

solveLSE(A, b), i.e., for density and velocity in

reconDen(it , Φ̃t ), reconVel(ũt , Φ̃t , it ), and estimInfl(it , Φt−1, ut ). Fur-
thermore, in order to apply PD, a weighted identity matrix σ I is added as

well.

B.1 Visual Hull and Inflow Estimation
For the density estimation (both tomography and inflow), we incorporate a

visual hull to achieve higher accuracy and reduce computational complexity.

Inflow source cells from ΓRI are set to zero and excluded from the solve

in order to prevent density in cells that should be empty. We only mark

them as outside if the contributing weight is above 1e-2, while voxels are

included in the system if their weight is above 1e-4. These thresholds were

determined experimentally for our hardware setup and were used for all of

our reconstructions.

Regarding the density discrepancy d for the inflow solve, we could dis-

tribute the total missing residual density from ∆Φt
tar
|Γ\(ΓR∪ΓI ) (positive or

negative) equally to each target cell, i.e.,

d =

∑
Γ\(ΓR∪ΓI )

∆Φt
tar

|ΓR |
.

Algorithm 5 Residual Velocity, solve Eq. (2)

1: ◃ calculate residual velocity on single scale

2: function reconVel(ũt , Φ̃t , it )
3: for k ← 1, 10 do ◃ Prima-Dual iterations

4: ◃ shared part: advection equation, xk = xku ∪ xkΦ
5: xk = xk−1 + σyk−1 − σ solveLSE(A, b);

6: ◃ A =
[
(∇Φ̃t )(∇Φ̃t )T (∇Φ̃t )

(∇Φ̃t )T I

]
, b = xk−1 + σyk−1

7: ◃ velocity part: inflow and divergence-free on zku
8: ∆ut

tmp
= zk−1u − τ xku ; ◃ create temporary velocity

9: ∆ut
tmp
|I = c − ũt |I ; ◃ set velocity inflow

10: zku = ΠDIV(∆uttmp
); ◃ make div-free

11: ◃ density part: tomo. and non-neg. (Eq. (13)) on zkΦ
12: zkΦ = zk−1Φ − τ xkΦ + reconDen(i

t , Φ̃t + zk−1Φ − τ xkΦ );
13: ◃ shared variable update, yk = yku ∪ ykΦ
14: yk = zk + θ (zk − zk−1);
15: return zku ;

Algorithm 6 MS Residual Velocity, solve Eq. (2)

1: ◃ calculate residual velocity on multiple scales

2: function reconVelMS(ũt , Φ̃t , Φt−1, it )
3: if grid size large enough then
4: ∆ut

C
= ΠDIV(up(reconVelMS(down(ũt ), down(Φ̃t ), it )));

5: ũt
new
= ũt + ∆ut

C
; ◃ add coarse residual to prediction

6: Φ̃t
I,new

= estimInfl(it , Φt−1, ũt
new
); ◃ den. inflow

7: Φ̃t
new
= A(Φt−1 + Φ̃t

I,new
, ũt

new
); ◃ adapt prediction

8: ◃ sum up residual velocities on different scales

9: ∆ut = ∆ut
C
+ reconVel(ũt

new
, Φ̃t

new
, it );

10: else
11: ∆ut = reconVel(ũt , Φ̃t , it );
12: return ∆ut ;

However, we instead choose to scale the value d with the value in ∆Φt
tar
|ΓR

such that a cell e ∈ ΓR with truly higher values gets a larger fraction of the

missing densities assigned, i.e.,

de =

∑
Γ\(ΓR∪ΓI )

∆Φt
tar∑

ΓR

(∆Φt
tar
+ o)

(∆Φt
tar
|e + o),

where the offset o ensures that each ∆Φt
tar
|e ≥ 0 for scaling. We additionally

require cells with negative values to contain less density than the positive

ones. Accordingly, the offset is 0 or the absolute value of the largest negative

entry in ∆Φt
tar
|ΓR , i.e., o = |min(0, ∆Φt

tar
|ΓR ) |.
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C DERIVATION OF OPTIMIZATION PROBLEM
In this section, we derive our optimization problem for the residual velocity step-by-step:

minimize

ut ,Φt

 ∂Φt∂t
+ ∇Φt · ut

2���� Φt = A(Φt−1 + Φt
I
, ut ),

ut = ũt + ∆ut

≡ minimize

∆ut ,Φt
I

 ∂A(Φt−1 + ΦtI , ũt + ∆ut )∂t
+ ∇A(Φt−1 + Φt

I
, ũt + ∆ut ) · (ũt + ∆ut )

2���� linearize advection :

A(A(Φt−1 + Φt
I
, ũt ), ∆ut ) ≈ A(Φt−1 + Φt

I
, ũt + ∆ut )

≡ minimize

∆ut ,Φt
I

 ∂A(A(Φt−1 + ΦtI , ũt ), ∆ut )∂t
+ ∇A(A(Φt−1 + Φt

I
, ũt ), ∆ut ) · (ũt + ∆ut )

2���� Φ̃t
I
= Φt

I
,

∇Φ̃t ≈ ∇Φt

≡ minimize

∆ut ,Φt

 ∂A(A(Φt−1 + Φ̃tI , ũt ), ∆ut )∂t
+ ∇A(Φt−1 + Φ̃t

I
, ũt ) · (ũt + ∆ut )

2���� Φ̃t = A(Φt−1 + Φ̃t
I
, ũt ),

remove constant terms

≡ minimize

∆ut ,Φt

 ∂A(Φ̃t , ∆ut )∂t
+ ∇Φ̃t · ∆ut

2��� ∆Φt = ∂A(Φ̃t ,∆ut )
∂t = Φ̃t +∆Φt − Φ̃t

∆t , ∆t = 1

≡ minimize

∆ut ,∆Φt

∆Φt + ∇Φ̃t · ∆ut 2 (6)

subject to ut |I = c
�� ut = ũt + ∆ut , where c is inflow speed

≡ ũt |I + ∆ut |I = c
�� ũt is div-free

≡ ∆ut |I = c − ũt |I , (7)

∇ · ut = 0

�� ut = ũt + ∆ut

≡ ∇ · (ũt + ∆ut ) = 0

�� ũt is div-free
≡ ∇ · ∆ut = 0, (8)

PΦt − it = 0

�� Φt = A(Φt−1 + Φt
I
, ut )

≡ PA(Φt−1 + Φt
I
, ut ) − it = 0

�� ut = ũt + ∆ut , Φ̃t
I
≈ Φt

I
, lin. adv.

≡ PA(A(Φt−1 + Φ̃t
I
, ũt ), ∆ut ) − it = 0

�� Φ̃t = A(Φt−1 + Φ̃t
I
, ũt )

≡ PA(Φ̃t , ∆ut ) − it = 0

�� A(Φ̃t , ∆ut ) = Φ̃t + ∆Φt ⇒ Φt ≈ Φ̃t + ∆Φt

≡ PΦ̃t + P∆Φt − it = 0,
�� ĩt = PΦ̃t

≡ P∆Φt − (it − ĩt ) = 0,
�� ∆it = it − ĩt

≡ P∆Φt − ∆it = 0, (9)

Φt ≥ 0

�� Φt ≈ Φ̃t + ∆Φt

≡ Φ̃t + ∆Φt ≥ 0

≡ ∆Φt ≥ −Φ̃t . (10)

2019-09-02 14:35. Page 15 of 1–16. ACM Trans. Graph., Vol. 38, No. 6, Article 239. Publication date: November 2019.



239:16 • Marie-Lena Eckert, Kiwon Um, and Nils Thuerey

The problem formulations for calculating density, residual density, or density correction are

minimize

Φt

PΦt − it 2 , subject to Φt ≥ 0, (11)

minimize

∆Φt

P∆Φt − (it − PΦ̃t )2 , subject to ∆Φt ≥ −Φ̃t , (12)

minimize

∆Φtc

P∆Φtc − (it − ĩt − P∆Φt )2 , subject to ∆Φtc ≥ −∆Φ
t − Φ̃t . (13)

The problem formulation for the density inflow estimation is described as following :∑
e∈Γ\ΓI

Φt
!

=
∑

e∈Γ\ΓI

Φt
tar∑

e∈Γ\ΓI

A(Φt−1 + Φt
I
, ut ) !

=
∑

e∈Γ\ΓI

Φt
tar

| ◃ assume linear advection∑
e∈Γ\ΓI

A(Φt−1, ut ) +
∑

e∈Γ\ΓI

A(Φt
I
, ut ) !

=
∑

e∈Γ\ΓI

Φt
tar

| ◃ move to other side∑
e∈Γ\ΓI

A(Φt
I
, ut ) !

=
∑

e∈Γ\ΓI

(
Φt
tar
− A(Φt−1, ut )

)
| ◃ define ∆Φt

tar
= Φt

tar
− A(Φt−1, ut )∑

e∈ΓR

A(Φt
I
, ut ) !

=
∑

e∈Γ\ΓI

∆Φt
tar
. (14)

With A(Φt
I
, ut ), we only influence ΓR , but not the full visible domain Γ \ ΓI . Therefore, each cell e ∈ ΓR is the sum of the residual target density plus an offset

d that accounts for further discrepancies in Γ \ ΓR \ ΓI , which is used as right-hand side b in Alg. 2.

A(Φt
I
, ut ) |e = max

(
∆Φt

tar
|e + d , −A(Φt−1, ut ) |e

)
, (15)
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