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Abstract

We investigate the use of deep neural networks to control
complex nonlinear dynamical systems, specifically the move-
ment of a rigid body immersed in a fluid. We solve the Navier
Stokes equations with two way coupling, which gives rise to
nonlinear perturbations that make the control task very chal-
lenging. Neural networks are trained in an unsupervised way
to act as controllers with desired characteristics through a pro-
cess of learning from a differentiable simulator. Here we in-
troduce a set of physically interpretable loss terms to let the
networks learn robust and stable interactions. We demonstrate
that controllers trained in a canonical setting with quiescent
initial conditions reliably generalize to varied and challeng-
ing environments such as previously unseen inflow conditions
and forcing, although they do not have any fluid information
as input. Further, we show that controllers trained with our
approach outperform a variety of classical and learned alter-
natives in terms of evaluation metrics and generalization ca-
pabilities.

https://github.com/tum-pbs/two-way-coupled-control

1 Introduction
Control of tasks of physical systems are a ubiquitous chal-
lenge in science. In particular, fluids create very difficult
environments which manifest themselves in simulations via
the nonlinearities arising from the Navier Stokes (NS) equa-
tions. However, advancements in this field are important for
society, and impact areas such as energy, transportation and
biology (Barlas and Kuik 2007; Ho et al. 2003; Lord, Mac-
martin, and Tillman 2000).

Traditionally, open and closed loop control techniques
have been investigated (Collis et al. 2004). The latter have
clear advantages thanks to their conditioning on state mea-
surements. We investigate and analyze a novel way to train
closed loop controllers, namely via deep neural networks re-
currently trained in a differentiable simulation environment
with physics-based losses. This approach is motivated by
the classical challenges of closed loop control for Navier-
Stokes environments: fluid flows are complex and chaotic.
Moreover, the number of degrees of freedom in numerical
solvers is often very large, in turn requiring heavily reduced
representations (Sipp and Schmid 2016; Noack, Tadmor,
and Morzynski 2004; Bergmann and Cordier 2008; Proctor,
Brunton, and Kutz 2016). Instead, training with a differen-

tiable simulator provides access to the full, unmodified phys-
ical environment, and provides reliable and diverse training
feedback in the form of gradients.

More specifically, we investigate steering an actuated
rigid body immersed in fluid systems with two way cou-
pling, i.e. the rigid body influences the fluid around it and
vice-versa. We focus on objectives that require the rigid
body to reach specific target configurations, i.e. center of
mass location and orientation. In this context, the differ-
entiable simulations make it possible to learn controllers
without providing ground truth control signals. Many works
tackle fluids problems with reinforcement learning (Ma et al.
2018; Ren, Rabault, and Tang 2021; Paris, Beneddine, and
Dandois 2021), which requires substantially longer training
times and exhibit a high variance in performance when com-
pared to our method.

An ubiquitous challenge for neural network approaches
is generalization to conditions beyond the training distribu-
tion (Goodfellow, Bengio, and Courville 2016). We show
that although training takes place in a quiescent flow con-
dition, i.e. a fluid initially at rest, the networks trained via
differentiable simulators are able to find control strategies
that reliably handle more complex setups than those seen at
training time. Their control characteristics are dictated by a
set of physically interpretable loss terms, making it possible
to favor desired aspects of the control, e.g., the amount of
overshoot, tracking speed or maximum control effort. Our
networks only receive relative directions in the form of dis-
placement errors, rigid body velocities and previous control
efforts. Therefore the neural networks act as a low-to-low di-
mensional mapping that uses easily accessible sensor data,
which mimics potential real world applications. The perfor-
mance of our networks is assessed in four different test sce-
narios with increasing levels of complexity. We show their
advantages over a range of baseline algorithms, from lin-
ear controllers such as PID and loop shaping (McFarlane
and Glover 1990; Kwakernaak 2002), to supervised and re-
inforcement learning algorithms (Haarnoja et al. 2018a).

2 Related Work
Many recent works have been investigating different ways
of coupling control and deep learning. Since neural net-
works are good universal approximators (Hornik, Stinch-
combe, and White 1989), many have investigated using them
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as a reduced order model of a complex dynamical system
(Eivazi et al. 2020; Hasegawa et al. 2020; Nair and Goza
2020), which can then be used as an inexpensive solver
for known closed loop control techniques such as model
predictive control (Bieker et al. 2020; Morton et al. 2018;
Chen et al. 2021). Achieving linear-to-nonlinear mappings
through learned Koopman operators has also been studied
in recent works (Yeung, Kundu, and Hodas 2019; Li et al.
2020).

Another way of using deep learning for control pur-
poses is through reinforcement learning (Verma, Novati,
and Koumoutsakos 2018; Paris, Beneddine, and Dandois
2021; Ren, Rabault, and Tang 2021; Novati, Mahadevan,
and Koumoutsakos 2019; Ma et al. 2018). In this case a neu-
ral network typically receives a representation of the multi
dimensional state describing the system at a given time, e.g.
velocity probes and scalar variables, and outputs the control
efforts. This is achieved by training the network to maximize
a reward function that describes a control objective. In recent
years, a variety of refined reinforcement learning variants
were proposed (Schulman et al. 2015; Ho and Ermon 2016;
Schulman et al. 2017; Haarnoja et al. 2018b). These kind
of algorithms traditionally require large amounts of data and
training times, which is undesirable especially when consid-
ering computationally demanding simulation environments
such as fluid simulations.

Recently, differentiable solvers were employed in numer-
ous fields, such as robotics (Toussaint et al. 2019) and bi-
ology (Ingraham et al. 2019), were constructed to take ad-
vantage of deep learning tools via automatic differentiation.
Since the gradients regarding a cost function are available,
it is possible to directly solve for approporiate control ef-
forts of a given task. This task could be placing a piece of
cloth into a target container (Liang, Lin, and Koltun 2019),
pouring liquids (Schenck and Fox 2018), moving a fluid to a
specified region (Holl, Thuerey, and Koltun 2020) or gen-
erating a specified velocity field from an immersed body
(Takahashi et al. 2021). To accomplish the control task, a
full optimization needs to be performed for every timestep of
a simulation to compute a suitable control signal. However,
this is typically much too slow for practical applications with
real time requirements. In this work we only use the gradi-
ents from the differentiable solver to train a network to act
as a controller, which relies only on a sparse set of mea-
surements from the environment. The resulting trained con-
troller can then be evaluated very efficiently. Recent works
also investigated using differentiable simulators to acceler-
ate policy learning of various tasks, although generalization
capabilities or robustness against disturbances were not as-
sessed (Xu et al. 2022).

3 Methodology

3.1 Governing Equations

In physics and engineering the evolution of a physical sys-
tem η(x, t) is often described by a partial differential equa-
tion (PDE) as
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where F models the physical behavior of the system and
ω(t, η) represents variables that influence it such as bound-
ary conditions. If the system depends only on time as ξ(t)
then (1) reduces to an ordinary differential equation (ODE)
as
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Given a generic control policy P̂(t | θ) parametrized by θ,
an external actuation can be inserted into a system described
by (2) according to
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)
+ P̂(t | θ) (3)

In this work, we target a coupled PDE-ODE system, in-
teracting via boundary conditions ω and the control policy
P̂ . Integrating (3) over time yields a state modified by the
policy, ξ(t, P̂), and the control task to reach ξobj is given by
the minimization problem

arg min
θ
‖ξobj − ξ(t, P̂(t | θ))‖. (4)

More specifically, we use the incompressible Navier
Stokes equations, which is a form of (1) with n = 1, that de-
scribes how a velocity field evolves given specified boundary
conditions as the following

∂u

∂t
= −u · ∇u− ∇p

ρ
+ ν∇2u (5)

where u is the velocity field, p is the pressure, ρ is the den-
sity and ν = û L̂

Re is the kinematic viscosity, where Re is
the Reynolds number and û and L̂ are a reference velocity
and length, respectively. A Poisson equation is also solved
for the pressure in order to enforce the velocity field to be
divergence free.

We additionally target rigid objects immersed in the fluid.
Their linear and angular movement can be described by (2)
with n = 2 as

∂2xr
∂t2
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m

∑
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∑
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where xr is the body position, m the body mass, α the body
angle and I its moment of inertia. The terms

∑
F and

∑
T

denote the forces and torques that are acting upon the body,
respectively. When using both (6) and (7) the system has 3
degrees of freedom (DOF). In a few cases below we will
omit (7), yielding a simplified 2 DOF scenario. When deal-
ing with a rigid body immersed in a fluid, these terms reduce
to ∑

F = −
∮
S

p~n(s) ds (8)∑
T = −

∮
S

~r(s)× p~n(s) ds (9)



Figure 1: A schematic of the differentiable solver training:
Blue arrows represent the forward pass while red ones il-
lustrate the flow of gradients. Importantly, the loss signal is
backpropagated through l simulation steps to provide policy
P with long-term feedback about the flow environment.

where S is the body surface, ~n is the surface normal, ~r maps
the surface location to the local coordinate system of the
body, with the origin being the center of mass. Dirichlet
boundary conditions for the NS simulation are imposed on
the velocity field via uΩ = ∂xr/∂t+∂α/∂t rΩ at rigid body
surface cells defined by contour Ω.

Together, (6) and (7) represent a coupled dynamical sys-
tem subjected to nonlinear perturbations derived from the
interaction between rigid body and fluid. Control efforts af-
ter exerted via forces:∑

F = −
∮
S

p~n(s) ds+ Fc (10)∑
T = −

∮
S

~r(s)× p~n(s) ds+ Tc (11)

The specific control problem can then be formulated by
finding the control efforts through [Fc, Tc]

T = P(t | θ) so
that

arg min
θ
‖exy‖+ ‖eα‖ (12)

exy = xobj − xr(t,P(t | θ)) (13)
eα = αobj − α(t,P(t | θ)) (14)

where xobj and αobj are an objective position and angle,
respectively. Therefore the control task investigated can be
summarized as controlling an ODE (rigid body movement
equations) with highly nonlinear disturbances that emerge
from a PDE (NS equations), which is also influenced by the
ODE solution.

3.2 Differentiable Solver
Our differentiable fluid solver is based on Chorin-
projections with a second-order advection operator. Signed
distance functions of the moving obstacles are rasterized to
the Eulerian simulation grid to flag cells as being either a
fluid or an obstacle. Dirichlet BCs as well as isolating the
rigid body surface are set in accordance to this cell classifica-
tion in order to maintain differentiability. We implement our
solver via the PhiFlow framework (https://github.com/tum-
pbs/PhiFlow) using PyTorch as backend.

Each time step of the solver requires solving a Pois-
son’s problem for the pressure considering the rigid body
as boundary conditions. In order to avoid noisy gradients
during backpropagation, the solver uses a custom PyTorch
autograd function that solves a linear system in both back-
ward and forward pass. The solid-fluid coupling is realized
via a two-way coupling where NS and rigid body equations
are solved in an alternating fashion. The body influences
the fluid by changing the fluid’s BCs, and the fluid acts on
the rigid body by exerting force and torque calculated with
(8) and (9). In this way, the control efforts gathered from
the neural networks are propagated through the simulation
graph, allowing gradients to flow from the loss function to
the network weights.

4 Neural Networks as Control Policies
We investigate how to use neural networks to represent a
policy P(z(t) | θ) for the control task described by (12),
where z(t) is a set of discrete low dimensional state vari-
ables, which we denote with z for brevity. The network with
weights θ acts as a policy, which receives the current and
previous np states as input. It has the task to infer appro-
priate control efforts for a given learning objective. Each
state is a low-dimensional array that consists of the spa-
tial error exy , angular error eα, rigid body linear velocity
∂xr

∂t , rigid body angular velocity ∂α
∂t and control forces Fc

and torques Tc. Also ∂xr

∂t and ∂α
∂t will be referred to as ẋ

and α̇, respectively. exy , ẋ and Fc are expressed in the lo-
cal reference frame of the rigid body. Therefore no global
information describing the state of the fluid is transmitted
to the control policy. We denote states at a discrete time t
with a superscript t. In this way, the input for the networks
at a time t can be expressed as z = [wt, wt−1, . . . , wt−np ],
where wt = [etxy, ẋ

t, F tc , e
t
α, α̇

t, T tc ]T . In the following, a
range of different learning procedures are investigated: train-
ing with differentiable physics simulators, a fully supervised
approach, and a reinforcement learning variant.

4.1 Learning via a Differentiable Solver
Our method employs a fully differentiable solver which al-
lows gradients to be provided to the neural network policy
Pdiff(z | θ) about reactions of the physical system regard-
ing previous policy actions and its temporal evolution. This
policy can be trained without the need to pre-compute poten-
tially sub-optimal training data. Rather, the network is left to
discover the best possible policy over the course of the train-
ing in an unsupervised way. Our loss formulation includes a
time horizon of l time steps as a central parameter (details on
how we choose its value can be found in the appendix). The
evaluations across this time interval leads to training signals
that take into account how outputs of the policy network in-
fluence the future states of the environment. Via the differen-
tiable solver, the loss signals are recurrently backpropagated
to the policy, making it more “aware” of the consequences of
previous actions. This process is illustrated in Figure 1. We
make use of a loss function that combines three objectives.
The objective term, O, typically dominates, and ensures that
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the body reaches the target state:

O =
βxy
l

l−1∑
n=0

‖enxy‖2 +
βα
l

l−1∑
n=0

‖enα‖2, (15)

where the β are hyperparameters that weigh the different
terms. However, a loss function with this term alone results
in a controller with tendencies of overshoot since it does not
account for the rigid body velocity. Hence we introduce a
velocity term V :

V =
βẋ
l

l−1∑
n=0

‖ẋn‖2
βprox‖enxy‖2 + 1

+
βα̇
l

l−1∑
n=0

‖α̇n‖2
βprox‖enα‖2 + 1

(16)
Far away from the target, larger spatial and angular errors
in the denominators lead to smaller values of V . Closer to
the target objective these errors approach zero, and hence
V becomes an L2 norm of the linear and angular veloci-
ties. As a consequence the optimization guides the policy to
slow down the body only when near the target, thus reducing
overshooting effects. Following previous work (Bieker et al.
2020), we additionally include a term to avoid large control
efforts as well as abrupt changes

E =
βF
l

l−1∑
n=0

‖Fnc ‖2 +
βT
l

l−1∑
n=0

‖Tnc ‖2+

β∆F

l

l−1∑
n=0

‖Fnc − Fn−1
c ‖2 +

β∆T

l

l−1∑
n=0

‖Tnc − Tn−1
c ‖2

(17)
Finally the combined loss function for the differentiable

solver training can be written as
L = O + V + E (18)

Because of the direct physical impact of each hyperparame-
ter, adjusting them is straight forward. For example, spatial
tracking can be made more precise by increasing βxy or the
angular tracking can be accelerated by decreasing βα̇. How-
ever, overly large values can result in overshooting. An abla-
tion study can be found in Section 6.3. The hyperparameters
for this work were chosen aiming for an overall balance of
the objectives .

4.2 Supervised Learning
As a baseline for learning, we include a fully supervised
learning approach. Due to a lack of optimal, ground-truth
control policies, we construct a dataset in the following man-
ner: we manually prescribe velocities to the rigid body so
that it reaches an arbitrary target. We then compute the fluid
forces acting upon the body and calculate the control ef-
forts to cancel them and yield the acceleration of the pre-
scribed trajectory. In this way, we obtain a set of states z
with paired, expected control efforts [F̂c(z), T̂c(z)]

T . Train-
ing with these precomputed forces can be performed in a
fully supervised way with the loss

L = ‖[F̂c(z), T̂c(z)]T − Psup(z | θ)‖2 (19)
We also investigated acquiring data by directly optimiz-

ing control efforts but this proved to be sub optimal. More
details can be found in the appendix.

Table 1: Main parameters of experimental setups.

ID Inflow Buoy. Forcing DOF Re

BaseNR − − − 2 1000
BuoyNR − √ − 2 1000

Base − − − 3 1000
Inflow

√ − − 3 3000
InBuoy

√ √ − 3 3000
Hold

√ √ √
3 3000

4.3 Reinforcement Learning
Additionally, we include a reinforcement learning algo-
rithm, Soft Actor Critic (SAC) (Haarnoja et al. 2018b), that
works without making use of the solver gradients. SAC is
a model-free variant that has the added benefit of being
off-policy. Thus, past experiences can be stored in a replay
buffer and are not invalidated by policy updates. As the sim-
ulation process is computationally very expensive, this in-
crease in sample efficiency is highly beneficial. In our set-
ting, the actor represents a control policy, and hence we refer
to it as PRL(z | θ). The reward function uses the same for-
mulation as the differentiable physics case, and is computed
by multiplying equation (18) by -1. Other reward functions
similar to the one from the original SAC algorithm were in-
vestigated but did not improve performance.

5 Experiments
We perform a series of experiments with increasing degrees
of complexity to assess the generalization and stability ca-
pabilities and stability of the considered approaches. Below
we explain the default parameters which are applicable un-
less noted otherwise. Details and deviating parameters for
all experiments are provided in the appendix.

Datasets and Test Scenarios The training data consists
of simulations with only one objective in the form of a tar-
get configuration, and uses the standard sets of parameters
provided in Table 1. The two baseline versions are denoted
by BaseNR , indicating ”no rotation”, for systems with 2
DOF, and Base for 3 DOF. All training samples use a qui-
escent flow (u = 0) as initial condition. Since the fluid is
initially at rest, all perturbations are created from the rigid
body movement. Validation datasets consist of 20 simula-
tions with the same parameters as training, i.e. BaseNR and
Base , but different objectives. To evaluate generalization of
2 DOF networks, simulations with parameters BuoyNR are
performed, which increase the control task difficulty by in-
troducing a lighter fluid source that disrupts the flow through
buoyancy. For 3 DOF networks trained on Base , we use
the environments Inflow , InBuoy and Hold . For Inflow , an
inflow is present, the fluid is less viscous (higher Re) and
∆t is smaller. Correspondingly, the controllers are sampled
once every two timesteps. The environment InBuoy adds a
lighter fluid source at the bottom of the domain that dis-
rupts the flow through buoyancy. Finally, simulations with
Hold parameters have additional prescribed forcing at cer-
tain moments. These test environments were designed to



Figure 2: Average spatial steady state errors top-left), trajec-
tories of one of the test simulations (bottom) and their er-
ror norms (top-right) with parameters BuoyNR . When com-
pared to the other approaches Pdiff exhibit less oscillations
and a lower average steady state error.

deviate more and more strongly from the quiescent train-
ing conditions, making the control task progressively harder.
These changes in environments are not directly transmit-
ted to the controllers, rather, they should adapt to the new
conditions based on their training. Unless stated otherwise,
the test datasets are comprised of 5 simulations with dif-
ferent trajectories created by changing the objectives after
∆t = 100 when considering BuoyNR , Inflow and InBuoy
. Tests in the Hold environment are comprised of a single
simulation which, in contrast to the other cases, has the goal
to keep and stabilize the rigid body in the initial position.
This is made more difficult by exerting additional forcing
on the body. The supervised learning approach uses a sepa-
rate, pre-computed dataset for training, which is comprised
of 100 simulations from which 80 are used for training and
20 for validation and each one has 500 time steps.

Neural Network Representation and Training The un-
derlying network architecture for all approaches is kept con-
stant: two dense layers with ReLU activation, followed by
a third dense layer. For the latter, the networks trained via
differentiable physics and reinforcement learning have a hy-
perbolic tangent activation to ensure that the control efforts
are bounded. As we achieved a better performance for the
supervised case without the activation of the last layer, it
was omitted there. Training the differentiable physics net-
works starts with a simulation with quiescent initial con-
dition, gathering objectives from an uniform random dis-
tribution. After advancing the simulation so that np past
states exist, the network training is activated and its out-
puts are used as control efforts. Once l = 16 time steps
are available, we compute a loss and update θ. A discus-
sion about how we choose l can be found in the appendix.
After 1000 simulation steps we restart the simulation with
new targets until ni training iterations are performed. We
choose ni = 1000 and ni = 5000 when training a network
for 2 and 3 DOF systems, respectively. The reinforcement
learning approach uses the same simulation environment as

the differentiable training but without making use of vari-
ables’ gradients. After each simulated time step a batch of
128 samples is drawn from the replay buffer and used for
training. In total, ni = 500,000 iterations are performed and
the validation error of intermediate models are computed.
Furthermore, the model with the lowest validation error was
chosen for further testing.

Evaluation Metrics As error metrics for comparing re-
sults we primarily use absolute errors in position and orien-
tation, ||exy|| and ||eα||. We also compute an average steady
state error ‖e‖ss that can assess the steady-state performance
of the controllers without their initial transient phases as well
as its standard deviation. It is calculated using the last 3/4
of the time interval in which an objective was being tracked.
However, since the rigid body starts in a null error position
when considering tests in the Hold environment, the steady
state error for these cases is the whole time average of posi-
tion and orientation errors.

6 Results
6.1 Algorithmic Comparison
Baseline Algorithms Two types of linear controllers are
tested as a reference to help assess the performance of the
learned versions: a classic PID controller PPID and a loop
shaping controller PLS designed through a blend of mixed-
sensitivity design and the Glover-McFarlane method (Mc-
Farlane and Glover (1990); Kwakernaak (2002)).

2 DOF Validation First, we consider a validation with
the setup BaseNR (same simulation parameters as training
but with different targets). The goal is to make sure all the
controllers are functioning correctly for the conditions seen
at training time. All the approaches considered are able to
achieve a low error given sufficient time, which confirms
they work as intended in conditions they were designed to
operate in. Details and numerical values for all error mea-
surements are given in the appendix.

Increased Difficulty Next we perform a test with the setup
BuoyNR , which includes perturbations from a lighter fluid,
different Re and a longer time window. The interaction
between buoyancy and rigid body creates oscillatory flow
structures and the control task becomes much more chal-
lenging. As a consequence, ‖exy‖ss is much larger for all
approaches except for PRL and Pdiff. The latter however has
a more stable trajectory, as shown in Figure 2, and has a
‖exy‖ss of 0.19 ± 0.18 while the RL approach can achieve
an error of 0.76 ± 0.26. A large amount of undesirable os-
cillations and overshooting is present when using all other
controllers. It is worth noticing that PRL requires many more
iterations when compared to the other learned approaches.
Additionally, PRL training is inherently unstable and ex-
hibits a high variance in performance, making it necessary
to assess the performance of many intermediate models in
order to find a well-performing candidate. Those factors re-
sult in PRL taking 35 times longer to train than Pdiff. It can
also be seen that the largest errors occur with PLS. For these
reasons we will omit PRL and PLS for further tests.
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Figure 3: Average steady state errors (left), trajectories of
one of the test simulations (right) with parameters Inflow .
Trajectories are colored by vorticity (t = 295). Psup and
PPID exhibit an offset when trying to reach target positions
as well as mild oscillatory trajectories. Those behaviors are
not observed when deploying Pdiff.

6.2 Increased Complexity and Generalization
We now evaluate the performance of the remaining methods
for a rectangular body with rotation (3 DOF). The additional
degree of freedom adds a significant amount of complexity
to the control task, and we use a set of more complex test
cases to evaluate generalization. In line with the 2 DOF case,
we first perform an evaluation with validation cases with the
same simulation parameters as training (Base ). All three re-
maining methods fare well for these environments, and yield
stable controllers. Additional details are provided in the ap-
pendix.

Generalization Tests First, tests with the Inflow setup are
performed to assess the generalization capabilities of the
considered controllers. Here the environments are changed
substantially by introducing an inflow from the left side of
the domain and utilizing a smaller viscosity (higher Re).
The inflow together with the rigid body movement creates
unsteady flow structures that vary depending on the box an-
gle. Pdiff is able to maintain a smaller ‖exy‖ss compared to
the other controllers as can be seen in Figure 3. Very notice-
able oscillations around the objective locations are present in
the trajectory of Psup and PPID. Instead, Pdiff produces a sta-
ble orientation, showing that this policy successfully coun-
teracts the perturbations caused by the strongly varying flow.

Inflow and Buoyancy: To increase difficulty, we introduce
a source of lighter fluid that rises due to buoyancy at the bot-
tom of the domain with parameters InBuoy . This test has
the goal of assessing the robustness of the controllers fur-
ther, since the fluid source tends to create higher frequency
oscillations, which makes the control task harder. Psup and
PPID show a considerable worsening of their performance
with higher steady state errors and undesirable oscillations.
On the other hand, Pdiff maintains low values for ‖exy‖ss
and ‖eα‖ss while successfully suppressing most of the per-
turbations as shown in Figure 4.

Hold: The last test introduces additional forcing to the
rigid body in addition to the disturbances from the fluid.
Since the simulation starts with the rigid body at the tar-
get position and orientation, the controllers primarily need
to counter the external forces. Pdiff is able to counteract the
additional forcing, with the exception of a brief lapse at
t = 390 as shown in Figure 5. This is caused by the fact
that the fluid forces combined with additional forcing are

Figure 4: Average steady state errors (top-left), trajectories
of one of the test simulations (bottom) and their error norms
(top-right) with parameters InBuoy . Trajectories are colored
by lighter fluid (t = 195). Performance of controllers are
worsened but Pdiff still maintains low steady state errors.

Sup PID Diff

Forcing Direction

↑
→
Rotating

Figure 5: Average steady state errors (top-left), center-of-
mass trajectories of simulations colored by forcing type
(bottom) and their error norms (top-right) for the Hold envi-
ronment. Additional forcing in x and y axes are represented
by dashed and dotted-dashed black lines, respectively. Con-
trollers must maintain the rigid body at the target location
despite perturbations. Pdiff is able handle vertical and hor-
izontal forcing (red and orange) more efficiently than Psup
and PPID. Tracking briefly worsens when rotational forcing
is applied (purple), due to maximum control efforts being
smaller than the fluid forces combined with forcing.

momentarily larger than the maximum control forces. How-
ever Pdiff is able to recover and lock into the target position
again afterwards. Although Psup and PPID have unbounded
maximum control efforts, they are not able to stabilize the
rigid body at the target position. All steady state errors are
summarized in Table 6 and Table 7 in the appendix.

6.3 Ablation Studies
We present an evaluation study with simulations performed
with InBuoy parameters in order to assess the influence of
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Figure 6: Errors norm (top) and control forces norm (bot-
tom) on test with InBuoy parameters (bottom). All loss terms
are necessary in order to accomplish steady error decay and
maintain small and smooth control efforts.

the terms introduced in Section 4.1. One simulation is per-
formed for each combination of loss terms. When using only
the O term, the training is severely under constrained, and
as a consequence the network learns to exert overly large
forces. This destabilizes the simulations preventing a suc-
cessful training. Therefore we compare the performance of
networks trained with the combinations: OVE (all terms),
OV (objective and velocity terms) and OE (objective and ef-
fort terms). Networks trained with OVE and OV exhibit sim-
ilar error curves and trajectories as shown in Figure 6. The
network trained with OE is also able to achieve low error
values but it exhibits an uneven decay, which is an undesir-
able behavior. When analyzing the control efforts it can be
seen that OE provides a network that produces maximum
control efforts more often, which means it uses more en-
ergy. When considering OV, there are no constraints on con-
trol efforts and consequently it learns a control policy that
modulates the control efforts with a high frequency - an un-
desirable behavior in practice.

6.4 Discussion
Taken together, the previous set of tests show the advan-
tages of the proposed training via differentiable simulations.
It is able to provide a neural network with feedback to con-
trol a dynamical system subjected to nonlinear perturbations
for long periods of time, even though training is performed
in a different, simplified environment. By backpropagating
through l steps, the gradient of the time evolution of the sys-
tem greatly helps the optimization process to find useful re-
lations between the input measurements in order to generate
appropriate controls while not relying on inputs containing
global information. Our results show that complex control
strategies can be learned in an unsupervised manner as long
as the control objective and controller characteristics can be
expressed in a mathematically meaningful way.

Another interesting characteristic is the robustness against
the disturbances seen in the tests. Although some tracking
performance is lost the more complex the tests become, Pdiff
is able to handle new situations without the strongly dete-
riorated tracking performance of the other controllers. Our
tests indicate that this is a consequence of the differentiable
solver, which provides a varied learning signal and results
in a neural network that robustly handles a large variety of
conditions.

It is also conceptually very appealing for control algo-
rithms to be able to use the original set of equations of a
system, even if they are as nonlinear as the NS equations.
This is due to the fact that reduced representations often do
not portrait nonlinear and unexpected behavior well enough.
Instead, the differentiable simulation approach allows train-
ing the controller efficiently using the full set of model equa-
tions, such that it can adapt to the subtleties of the environ-
ment.

On the other hand, a drawback of the proposed approach
is the fact that differentiable simulations lead can lead to
increased training times because the simulation has to be
evaluated in the forward, as well as the backward pass. In
our experiments we found this can be up to 4 times slower
than training via a supervised policy. The latter, however,
induces an additional cost for generating the training data,
which is likely to be substantial. The differentiable solver
training shares the increased training cost with reinforce-
ment learning, but a single iteration of the former is roughly
twice as expensive due to the backwards path for calculating
the gradient of the simulator. However, the gradients typi-
cally lead to faster convergence. In our tests, the reinforce-
ment learning approach on average takes an order of mag-
nitude longer to train and exhibits high variance in terms
of models performance. Yet, the resulting neural network is
equally fast to evaluate for all three cases, since it relies on
a low-dimensional set of measurements as inputs. Hence the
increased one-time cost to train with a differentiable simula-
tor compared, e.g., to fully supervised training, can pay off
significantly over the course of a large number of evaluations
when the controller is deployed.

7 Conclusions
We have studied the use of differentiable simulations to train
neural networks acting as controllers for complex dynami-
cal systems. The considered system describes the movement
of a rigid body subjected to nonlinear perturbations derived
from the Navier Stokes equations, posing a very challeng-
ing control task. The proposed approach, which introduced
a set of physically interpretable loss terms, is able to train
robust controllers without the need to provide reference data
for training while relying on a sparse set of measurements.
It is able to produce controllers that generalizes very well to
substantially different, challenging flow conditions. Numer-
ous interesting venues for future research exist based on our
results, such as exploring the transfer of synthetically trained
controllers to real-world environments and using the pro-
posed strategy to develop controllers for other control tasks
using differentiable simulators.
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and Garnett, R., eds., Advances in Neural Information Pro-
cessing Systems 32, 8024–8035. Curran Associates, Inc.
Proctor, J. L.; Brunton, S. L.; and Kutz, J. N. 2016. Dy-
namic Mode Decomposition with Control. SIAM Journal
on Applied Dynamical Systems, 15(1): 142–161.
Raffin, A.; Hill, A.; Gleave, A.; Kanervisto, A.; Ernestus,
M.; and Dormann, N. 2021. Stable-Baselines3: Reliable Re-
inforcement Learning Implementations. Journal of Machine
Learning Research, 22(268): 1–8.

http://www.deeplearningbook.org


Ren, F.; Rabault, J.; and Tang, H. 2021. Applying deep rein-
forcement learning to active flow control in weakly turbulent
conditions. Physics of Fluids, 33(3): 037121.
Schenck, C.; and Fox, D. 2018. SPNets: Differentiable Fluid
Dynamics for Deep Neural Networks. In Proceedings of
the Second Conference on Robot Learning (CoRL). Zurich,
Switzerland.
Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; and Moritz,
P. 2015. Trust region policy optimization. In International
conference on machine learning, 1889–1897. PMLR.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal Policy Optimization Algorithms.
CoRR, abs/1707.06347.
Sipp, D.; and Schmid, P. J. 2016. Linear Closed-Loop Con-
trol of Fluid Instabilities and Noise-Induced Perturbations:
A Review of Approaches and Tools1. Applied Mechanics
Reviews, 68(2). 020801.
Takahashi, T.; Liang, J.; Qiao, Y.-L.; and Lin, M. C. 2021.
Differentiable Fluids with Solid Coupling for Learning and
Control. In AAAI.
Toussaint, M.; Allen, K. R.; Smith, K. A.; and Tenenbaum,
J. B. 2019. Differentiable Physics and Stable Modes for
Tool-Use and Manipulation Planning. In Proceedings of the
Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI-19, 6231–6235. International Joint Con-
ferences on Artificial Intelligence Organization.
Verma, S.; Novati, G.; and Koumoutsakos, P. 2018. Efficient
collective swimming by harnessing vortices through deep re-
inforcement learning. Proceedings of the National Academy
of Sciences, 115(23): 5849–5854.
Xu, J.; Macklin, M.; Makoviychuk, V.; Narang, Y.; Garg, A.;
Ramos, F.; and Matusik, W. 2022. Accelerated Policy Learn-
ing with Parallel Differentiable Simulation. In International
Conference on Learning Representations.
Yeung, E.; Kundu, S.; and Hodas, N. 2019. Learning Deep
Neural Network Representations for Koopman Operators of
Nonlinear Dynamical Systems. In 2019 American Control
Conference (ACC), 4832–4839.



A Appendix
A.1 PID
The P gain was adjusted so that the maximum control ef-
fort from the PID controller is in the same order of magni-
tude as the one from the network controllers. The D gain is
then tuned to be as low as possible while still avoiding over-
shoot and the same is done for the I gain. The gains for the
controllers for each setup are displayed in Table 2 and the
control effort U is obtained by

U t = Pet +D
et − ei−1

0.1
+ 0.1

i∑
n=0

enI (20)

Table 2: Gains of PID controller.

P D I

Cylinder - Forces 1 8 0.001
Box - Forces 2 15 0.001
Box - Torque 100 1000 0.01

A.2 Loop Shaping
Loop Shaping design consists of finding a controller K so
that the open loop response K ∗ P , where P is the system
plant, behaves as close as possible to the open loop response
of a transfer function P ′, which is chosen by the user.

A common choice for P ′ is P ′(s) = ωb

s where ωb is the
control bandwidth and s is a complex frequency. This func-
tion has the property of having high gains for low frequen-
cies and low gains for high frequencies. In other words, an
input signal with frequency higher than wb (noise) will be
dampened and an input signal with frequency lower than wb
(perturbations) will be amplified.

We use a combination of two loop-shaping methods:
mixed-sensitivity-design, which favors performance, and the
Glover-McFarlane method, which favors robustness to plant
uncertainty, as implemented by the Matlab loopsyn() func-
tion. It features a parameter α: For α = 0 the controller
has the best performance and while α = 1 favors robust-
ness. From a range of experiments with our physical envi-
ronment, we choose α = 0.95 and wb = 0.2. After con-
verting the found controller from the Laplace domain to the
discrete one, we obtain the coefficients shown in Table 3 and
the control effort U is calculated according to

U t =

2∑
p=0

ei−pnp −
2∑
p=1

U i−pdp (21)

where i is the index of the current time step, e is the error
and n and d are the controller coefficients.

Table 3: Loop shaping coefficients.

p np dp

0 1.1700924033918623e00 -
1 −1.4694211940919182e00 −1.2306775904257603e00
2 3.0598060140064326e−01 2.6726488821832250e−01

A.3 Networks Architecture Details
The dimensions of the considered neural network layers are
given in Table 4, and its architecture is visualized in Figure
7. The network of the 2 DOF setup has a total of 2206 train-
able parameters while the one used in the 3 DOF setup has
2243 trainable parameters.

Table 4: Input/output sizes of neural network layers.

Layer 2 DOF 3 DOF

0 [16, 38] [32, 32]
1 [38, 38] [32, 32]
2 [38, 2] [32, 3]

DL ReLU DL DLReLU tanh
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Figure 7: Visualization of the neural network architecture.

A.4 Training Details
Differentiable Physics The network training parameters
for all setups investigated with differentiable physics can be
found in Table 5. A learning rate of 0.01 was used in our
tests. Additionally, learning rate decay is used so that the
learning rate drops to half of its initial value every 200 and
1000 training iterations for the 2 DOF and 3 DOF setups, re-
spectively. The networks inputs and outputs are normalized
based on a set of measured simulation statistics.

Effect of Time Horizon l The effect of training with dif-
ferent time horizons l is also investigated. A test consisting
of one simulation with parameters InBuoy and a N shaped
trajectory is conducted and the performance of networks
trained with different values of l can be seen in Figure 8.
Small values of l mean that loss and backpropagation are
performed for short physical timespans during training, i.e.
a small temporal lookahead, which produces a controller
with a deteriorated performance. In addition, performance
does not change significantly beyond l = 16. Since the
same number of iterations were conducted for all runs, using
larger time horizons only increases training time. Therefore,



Table 5: Parameters of network trained with differentiable
physics.

Hyperparameter 2 DOF 3 DOF

βxy 15 5
βẋ 5 5
βF 0.1 0.1
β∆F 2 1
βprox 0.1 0.1
βα - 30
βα̇ - 0.05
β∆T - 1
ni 1000 5000
l 16 16

we choose l = 16 since it provides a good balance between
performance and training time.

Figure 8: Steady state errors (left) and errors norms (right)
for a test with InBuoy parameters. Training with small time
horizons l produces poor performant controllers. When us-
ing a very large time horizon, such as l = 32, the gains are
not worth the increased training times.

Sensitivity to Weights Initialization In order to evaluate
how the performance from the network trained with differ-
entiable physics is influenced by the networks weights initial
values, we perform three training runs with different initial
seeds. We run a test simulation with parameters from InBuoy
and objectives that describe a N shape trajectory. Despite
minor differences the error norms for all seeds have a sim-
ilar tracking performance. This is especially apparent when
comparing it to other controllers, as shown in Figure 9.

Supervised Learning In total ni = 150,000 iterations are
performed. A learning rate of 0.01 is used with learning rate
decay so that every 15,000 iterations it drops to half of its
size. Training with more data is examined for assessing if
the performance of the controller acquired via supervised

Figure 9: Steady state errors (left) and errors norms (right)
for a test with InBuoy parameters. The networks have the
same parameters but different initialization seeds. Similar
tracking performance is achieved for all of them, with Seed
2 having a slightly worse angular tracking.

learning could be improved. A dataset with 200 simulations
(double the size of the original one) is generated with 180
simulations being used for training and 20 for validation.
Then a test simulation with parameters from InBuoy and ob-
jectives describing a N shaped trajectory is conducted. It can
be seen that adding more data did not result in clear improve-
ments, as shown in Figure 10.

Figure 10: Steady state errors (left) and errors norms (right)
for a test with InBuoy parameters. A larger dataset does not
improve model performance.

Reinforcement Learning We use the SAC implementa-
tion from stable-baselines3 (Raffin et al. (2021)). A fixed
learning rate of 0.0003 and a reward discount factor γ of
0.99 were chosen. The parameter τ controlling the Polyak
Averaging of the two Q-Functions within the critic is set to
0.05. The training takes place until ni = 500,000 iterations
are performed.



Hardware and Software All optimization procedures
were conducted utilizing the PyTorch framework (Paszke
et al. (2019)) on a GeForce RTX 2080 Ti. Approximate
training times are displayed in Table 6.

Table 6: Training times.

Algorithm 2 DOF 3 DOF

Reinforcement 21h -
Supervised 0.5h 1h

Diff. Physics 0.6h 4h

Directly Optimizing Control Efforts Since we have ac-
cess to a differentiable solver, we investigated directly op-
timizing the control efforts to assess if this could be a way
of acquiring “ground truth” data. This works by running an
entire simulation, updating the control efforts based on the
gradients, restart the simulation with the modified control
efforts and repeat until convergence. We utilized the same
loss function used for training the network with differen-
tiable physics but without the E term for better convergence
and also with tuned hyperparameters. An objective 4 spatial
units away from the initial position was chosen and simula-
tions with 2 DOF and different amount of time steps were
performed.

Optimizations performed in simulations with more time
steps in total result into different (slower) error decays, as it
can be seen in Figure 11, although the loss function for all
of them is the same. Therefore it can not be stated that these
are the most optimal solutions, especially when dealing with
larger unrolls. We believe the optimizations are getting stuck
in a local minima, a common problem when directly opti-
mizing long trajectories.

It is worth pointing that a considerable amount of ef-
fort needs to be put in tuning the hyperparameters, espe-
cially learning rate. We were not able to achieve conver-
gence for simulations with 1000 time steps likely due to the
long computation graph in conjunction with nonlinear oper-
ations. Tuning hyperparameters in this setting is extremely
cumbersome since it takes 10 hours on the current hardware
for each optimization run. Due to likelihood of local minima
and convergence problems, we opted for not directly using
optimized control efforts as ground truth data.

A.5 Additional Results
In the following we present a collection of additional results
that were not shown in the main body of the paper displayed
on Table 7 and 8 as well as Figure 12, 13, 14, 15, 16, 17, 18
and 19. For all simulations, the cylinder has m = 11.78 and
radius r̂ = 5 while the box has m = 36, I = 4000, width
w = 20 and height h = 6.
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Figure 11: Error norms of simulations with different amount
of time steps directly optimized control efforts. Although all
runs have the same loss, different decays are obtained.
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Figure 12: Targets of 2 DOF validation (top-left) and 3 DOF
validation (top-right) tests as well as angle targets of 3 DOF
validation test (bottom) . The rigid body initial position is
located at (x, y) = (40, 40).



Table 7: Spatial steady state error and standard deviation of the considered tests.

Test RL LS Sup PID Diff

Validation 2 DOF 0.6673± 0.0007 0.5797± 0.7233 0.0563± 0.0203 0.1386± 0.0227 0.08247± 0.0924
Validation 3 DOF - - 0.2115± 0.2138 0.2206± 0.2124 0.7762± 0.6004
Test with BuoyNR 0.7634± 0.2587 9.6079± 2.1461 2.9695± 0.6410 2.2122± 0.4086 0.1943± 0.1800
Test with Inflow - - 3.6632± 0.6446 3.7965± 0.7141 1.4081± 1.3670
Test with InBuoy - - 7.1705± 0.9169 8.0952± 1.2625 1.5611± 1.3261
Test with Hold - - 16.2431± 7.1467 15.0201± 6.2401 4.4825± 5.7908

Table 8: Angular steady state error and standard deviation of tests.

Test Sup PID Diff

Validation 3 DOF 0.0142± 0.0218 0.0163± 0.0271 0.0183± 0.0239
Test with Inflow 0.0545± 0.0218 0.0596± 0.0187 0.0399± 0.0369
Test with InBuoy 0.1198± 0.0318 0.1662± 0.0343 0.0775± 0.0348
Test with Hold 0.1430± 0.0962 0.1592± 0.0999 0.2269± 0.2302

Figure 13: Average spatial error norm of validation simula-
tions with BaseNR parameters (top-left) and average steady
state error (top-right). All controllers achieve spatial steady
state errors smaller than one. Vorticity contours of one sim-
ulation from 2 DOF validation test (bottom).
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Figure 14: Average angular steady state errors of tests per-
formed with Inflow , InBuoy and Hold parameters (from left
to right, respectively).



Figure 15: Average steady state errors (top-left, middle-left),
trajectories of one of the simulations (bottom) and their error
norms (top-right, middle-right) with parameters Base . All
controllers are able to achieve low steady state errors. The
increased spatial steady state error from Pdiff is caused by its
slower spatial tracking.
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Figure 16: Density contours of lighter fluid (top) of one sim-
ulation from test with BuoyNR . Fluid and control forces
(bottom) from Pdiff run.



Figure 17: Vorticity contours (top) of one simulation from
test with Inflow . Fluid and control forces (middle) and
torques (bottom) from Pdiff run.

Figure 18: Density contours of lighter fluid (top) of one
simulation from test with InBuoy . Fluid and control forces
(middle) and torques (bottom) from Pdiff run.



Figure 19: Vorticity contours (top) from test with Hold .
External (fluid + forcing) and control forces (middle) and
torques (bottom) from Pdiff run.
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