
Turbulent Fluids

Tobias Pfaff, UC Berkeley

Theodore Kim, UC Santa Barbara

Nils Thuerey

Contents

1 Introduction 5
1.1 About the Authors . 6
1.2 Structure of the Course Notes . 7

2 Turbulent Flows 8
2.1 The Reynolds Average . 8
2.2 Turbulence Modeling . 10

2.2.1 Energy Transport Models . 10
2.2.2 Extending Energy Transport Models 11

2.3 The Energy spectrum . 13
2.4 Turbulence synthesis . 15

2.4.1 Curl Noise Synthesis . 16
2.4.2 Composition . 17

2.5 Discussion . 19

3 Literature 21
3.1 History . 21
3.2 Fluid Simulation in Computer Graphics 22

3.2.1 Low-dissipative Methods . 22
3.2.2 Sub-grid Methods . 22

3.3 Lagrangian Vortex Methods . 23
3.4 Turbulence Methods . 25

3.4.1 Turbulence Modeling . 25
3.4.2 Turbulence Synthesis . 26

3.5 Recent works . 26

4 Adding Turbulent Detail 28
4.1 Wavelet Turbulence . 28

4.1.1 Procedural Wavelet Turbulence 29
4.1.2 High-Resolution Fluid Synthesis 31
4.1.3 Results . 34
4.1.4 Conclusions . 35

4.2 Anisotropic Turbulence Modeling . 37
4.2.1 Overview . 38
4.2.2 Turbulence Model . 39

2

CONTENTS 3

4.2.3 Implementation . 44
4.2.4 Results and Discussion . 47
4.2.5 Conclusions . 50

4.3 Obstacle-Induced Turbulence . 52
4.3.1 Overview . 53
4.3.2 Vorticity Formulation . 54
4.3.3 Wall-Induced Turbulence . 56
4.3.4 Turbulence Synthesis . 60
4.3.5 Implementation . 64
4.3.6 Results and Discussion . 67
4.3.7 Conclusions . 69

4.4 Buoyant Turbulence . 73
4.4.1 Vortex primitives . 74
4.4.2 Vortex Sheet Methods . 78
4.4.3 Wall-based Turbulence Model . 81
4.4.4 Implementation . 84
4.4.5 Results . 87
4.4.6 Conclusion . 89

4.5 Conclusions . 91
4.6 Application Guidelines . 91

5 Liquid Turbulence 93
5.1 Wave Models . 94

5.1.1 The Classic Wave Equation . 94
5.1.2 The Korteweg-de Vries Equation 94
5.1.3 The Non-Linear Schrödinger Equation 94

5.2 The iWave Algorithm . 95
5.2.1 The iWave Equation . 95
5.2.2 Spatial Discretization . 96
5.2.3 Time Discretization . 98
5.2.4 A Preview of the 3D iWave Kernel 99

5.3 Closest Point Turbulence . 99
5.4 Previous Work . 101
5.5 A Free Surface Turbulence Algorithm . 102

5.5.1 The Closest Point Method . 102
5.5.2 The iWave Algorithm . 103
5.5.3 Building a 3D Vertical Derivative 104
5.5.4 Reducing Projection Error . 106
5.5.5 A Fast Closest Point Transform 107
5.5.6 Building and Advecting the Extension Field 108
5.5.7 Turbulence Seeding . 112
5.5.8 The Complete Algorithm . 113

5.6 Discussion and Results . 113
5.7 Conclusions and Future Work . 117

4 Turbulent Fluids

Chapter 1

Introduction

Over the last decade, the special effects industry has embraced physics simulations as a
highly useful addition to its tool-set for creating realistic scenes ranging from a small camp
fire to the large scale destruction of whole cities. The simulation methods used to create
these effects are largely based on techniques originally developed to replace scientific ex-
periments with computer simulations. In a direct application of this paradigm to movie
making, we can now replace a real effects set, such as the staging an exploding house, with
the simulated explosion of a virtual model of the house. This has some obvious advantages:
it is more cost-effective, enables a wider variety of effects and of course it is far less danger-
ous for the people involved. However, the desire to fine-tune and control effects in general is
arguably the primary reason why movie makers prefer the use of virtual tools over their tra-
ditional counterparts. Unfortunately, controlling the details of a violent phenomenon such
as an explosion remains problematic even using numerical simulations. Due to the chaotic
nature of turbulent fluids, such simulations tend be both computationally expensive and
unpredictable. Small changes in initial conditions or a change of resolution will produce
unexpected changes in the final motion, and make it hard for animators to obtain the desired
behavior for the effect. For this reason, the following course notes will focus on tools for
augmenting existing coarse simulations with turbulent detail. This enables rich detail and
visually interesting small-scale motion, but also allows for a practical multi stage work flow
that gives artists control over large scale motion and small scale details separately.

Overall, this course aims at providing an overview and practical guidelines to employ-
ing turbulence modeling techniques for fluid simulations. Turbulence has been a topic of
research in classical fluid dynamics for a long time, and is discussed in a vast body of pub-
lications. This course will give a condensed overview of the central concepts, and introduce
modeling techniques that are relevant for applications in Computer Graphics. More specifi-
cally, control and art direction of simulations are enabled with a two stage work flow - first,
a rough initial simulation is conducted. In a second stage, turbulent effects are computed
and applied to the simulation to increase its detail level. Motivated by these concepts, sev-
eral approaches for increasing the visual detail of fluid simulations will be introduced. In
addition to discussing single phase simulations, e.g. smoke and fire, we will also discuss the
difficulties surrounding multi-phase liquid turbulence, and present a practical new algorithm
for its simulation.

As a central aim of this course is to provide information on how to use turbulence theory

5

6 Turbulent Fluids

for practical applications, source code examples for the methods covered will be made
available. Additionally, the implementations will be discussed to provide starting points for
navigating the source code.

The goal is to give developers interested in implementing powerful fluid solvers the
knowledge to apply turbulence models, and to give artists who are curious about the tech-
nology a better understanding of when and how to make use of the different methods. This
naturally also includes knowledge of the limitations of the various approaches; this course
therefore also provides guidelines and a discussion of the important pros and cons for each
of the introduced methods. While the course notes are structured based on papers in the
field, most of the presented methods are modular. We encourage mixing and matching pre-
dictor and synthesis components from the various methods to find the best solution to a
given problem.

1.1 About the Authors

The three lecturers of this course have worked in the field of physically-based animation and
especially turbulence methods for fluid simulations over the course of many years. They
have made central contributions to the field, several of which are now used in professional
tools and feature film productions.

• Theodore Kim has been an Assistant Professor in the Media Arts and Technology
Program at the University of California, Santa Barbara since 2011. He received his
PhD in Computer Science from the University of North Carolina, Chapel Hill in
2006, and subsequently held Post-Doctoral positions at IBM TJ Watson Research
Center and Cornell University. He was an Assistant Professor in Computer Science
at the University of Saskatchewan from 2009 to 2011. His research investigates the
aesthetic and engineering possibilities of simulated physics, such as fluid dynamics,
virtual humans, snowflake growth, and lightning formation. He received a Scientific
and Technical Academy Award in 2012, and an NSF CAREER Award in 2013.

• Tobias Pfaff is a Post-Doctoral researcher in the Computer Graphics Lab at the Uni-
versity of California, Berkeley. In 2012, he received his PhD from ETH Zurich for
his dissertation on turbulence methods in Computer Graphics. He also has a back-
ground in Physics, and obtained a MSc in Physics from the University of Constance
in 2007. His main research interest is physical simulation, with a focus on turbu-
lent fluid systems and thin shell dynamics. He is the author of the open-source fluid
simulation framework Mantaflow, which implements his published methods.

• Nils Thuerey currently has a position as research & development lead at Scan-
lineVFX, working on the design and implementation of large-scale physics simu-
lators for visual effects. His research focuses on physically-based animation, with
a particular emphasis on detailed fluids and turbulence. He received his Ph.D (with
honors) in 2007 from the University of Erlangen-Nuremberg, and worked as a post-
doctoral researcher with Ageia/Nvidia and the Computer Graphics Laboratory of
ETH Zurich until 2010. Several of his algorithms are now available in software
packages such as Houdini or Blender, and his work can be seen in movies such as
Avengers, Iron Man 3 and Man of Steel.

CHAPTER 1. INTRODUCTION 7

1.2 Structure of the Course Notes

This document is divided into three main parts. The first part focuses on a comprehensive
overview of the theory of turbulence and turbulence modeling from the field of computa-
tional fluid dynamics. In the second part we will review commonly used solvers for fluid
simulations in graphics, and discuss the popular wavelet turbulence approach for increasing
the resolution of simulations. Equipped with these tools, more powerful turbulence models
will be introduced, which enable modeling of nontrivial turbulent flows, e.g. turbulence
with strong directional preferences, or turbulence triggered by temperature differences in
the flow. In the third and last part, we will discuss the difficulties that are encountered when
dealing with liquids, and we will describe how to apply the ideas of scale separation and
controllable detail to liquid simulations.

Chapter 2

Turbulent Flows

Many complex flows, ranging from chimney smoke and explosions to the wake of a ship
in the ocean, show chaotic and irregular vortical flow disturbances. These flows are called
turbulent flows. Compared to laminar flows, such as slow-moving rivers, or the air flow field
over a candle, turbulent flows show an abundance of detail on many length scales. While this
detail constitutes the appealing look of many flow phenomena, representing it directly in the
simulation requires enormous storage and computing capabilities. It is however possible to
describe turbulence in terms of their statistical properties. Turbulence modeling theory aims
exactly at that. In this section, established turbulence theory is introduced which forms the
basis for the methods described in this course. A detailed overview of turbulence modeling
theory can also be found in the books by Pope [Pop00] and Wilcox [Wil93].

2.1 The Reynolds Average

To provide a measure of the overall strength of turbulence in the flow, the Reynolds number

Re =
vL
ν

(2.1)

is used. Flows with a Reynold number below 1500 are typically laminar, while a Reynolds
numbers over 5000 are a strong indicator for a turbulent flow [Pop00]. The quantities used
here are the flow velocity v, the fluid viscosity ν and the characteristic lengthscale L. The
definition of L depends on the problem at hand, for pipe flow it would e.g. correspond to
the pipe diameter.

While the Reynolds number provides a general estimate on turbulence behavior, most
flows are not completely turbulent or laminar. A river with an immersed obstacle, for ex-
ample, may be laminar in most regions, but show transition to turbulence in the wake of the
obstacle. To study the behavior of turbulence, it is therefore beneficial to decompose the
flow field in a turbulent and mean flow component. The Reynolds decomposition achieves
this by introducing a mean velocity field by the average Ū = 〈u〉. The remaining component
u′ = u−〈u〉 then describes the turbulent fluctuation. It can be shown that both components
remain divergence-free [Pop00].

The averaging operator 〈·〉 introduced above is interpreted in the sense of an expectation
value of a random field. Its concrete realization, and therefore the concrete classification of

8

CHAPTER 2. TURBULENT FLOWS 9

turbulence and mean component depends on the type of problem investigated. For most
applications, an average over ensembles, time or lengthscale is used. The equivalence of
these interpretations for large sample numbers is given by the ergodicity theorem.

RANS The motion equations for Newtonian fluids in its continuum formulation are called
the Navier-Stokes (NS) equations. They are a set of partial differential equations in the
velocity field u(x, t). For the case of incompressible fluids, they are written as

∇ ·u = 0 (2.2)
Du
dt

= − 1
ρ

∇p+ν∇
2u+

1
ρ

g , (2.3)

with the fluid viscosity ν , density ρ , and the gravity g. The pressure field is denoted by p.
Using the mean flow definition, it is possible to derive properties for the mean and the

fluctuating component separately. If we apply the ensemble average operator to the Navier-
Stokes equation, we obtain the motion equation for the mean component, the Reynolds-
averaged Navier-Stokes equation (RANS)

DŪ
dt

= ν∇
2Ū−ρ(∇ · τττ)− 1

ρ
∇〈p〉 . (2.4)

This equation is identical to the Navier-Stokes momentum equation, except for the addi-
tional stress term ρ(∇ · τττ). The symmetric tensor τi j = 〈u′i u′j〉 is called the Reynolds stress
tensor, and describes the influence of turbulent fluctuations on the mean flow field.

The RANS equation is used in many engineering applications, as it allows to predict
the impact of small-scale turbulent detail on e.g. the mean flux in an pipe or engine, with-
out directly simulating it. Unfortunately, the Reynolds stress tensor still depends on the
fluctuating components, and cannot be expressed in terms of averaged properties. This clo-
sure problem in CFD is solved by additional assumptions and models of the behavior of
turbulence, and has given rise to an area of research, namely turbulence modeling.

Turbulent Viscosity Hypothesis To investigate the effect of the Reynolds stress ten-
sor in (2.4), it is helpful to split the Reynolds tensor into a isotropic and and anisotropic
part. The isotropic component can be expressed in terms of the turbulent kinetic energy,
that is the energy contained in turbulent fluctuations. It is defined as

k =
1
2
〈u′ ·u′〉 . (2.5)

The isotropic component now becomes a diagonal tensor 2
3 kδi j and can therefore be ex-

pressed as a scalar. This means its effect in (2.4) is that of a pressure, and it can easily be
absorbed in an effective pressure 〈p〉E = 〈p〉+ 2

3 k. The anisotropic component, on the other
hand, is defined as ai j = τi j− 2

3 kδi j and still needs to be modeled. The turbulent viscosity
hypothesis assumes that its effects is purely viscous. This is a reasonable approximation,
as the superposed small-scale movements act as a diffusion on larger scales. The turbulent
viscosity hypothesis is therefore expressed in analogy to viscous stress by

ai j = 2ρ νT Si j (2.6)

10 Turbulent Fluids

with the scalar turbulent viscosity νT and the mean strain-rate tensor Si j =
1
2(

∂Ūi
∂x j

+
∂Ū j
∂xi

). If
we substitue the Reynolds tensor and the effective pressure and turbulent viscosity in (2.4),
we obtain

Du
dt

=− 1
ρ

∇〈p〉E +∇((ν +νT)∇u) (2.7)

which has the form of the NS equation (2.3) with modified pressure and the increased vis-
cosity term ν +νT . We have to note, though, that νT is in general a function of space and
time, while the molecular viscosity ν is a constant.

If the turbulent viscosity hypothesis is used, the problem of modeling the Reynolds
stress tensor reduces to modeling the scalar turbulent viscosity νT . Most classic turbulence
models are based on this assumption. However, it has to be noted that turbulent viscosity
is only an approximation, and cannot describe certain effects, such as anisotropic turbu-
lence generation. Turbulence models based on turbulent viscosity are discussed in the next
chapter. A short outlook on including anisotropic effects will also be provided.

2.2 Turbulence Modeling

Turbulence modeling tries to predict properties of the fluctuating turbulence based on the
mean velocity field. For averaged simulations such as RANS, the important variable to
model is the Reynolds stress tensor, and therefore a big part of existing research in turbu-
lence focuses on predicting the Reynolds stress as accurate and general as possible. In this
section, classical turbulence modeling based on turbulent viscosity is introduced. This is
what is used in most CFD simulation packages for engineering, and it also forms a basis for
many of the methods presented in this course. There are also other, fundamentally differ-
ent approaches for describing turbulence, most notably stochastic pdf methods [Pop83] and
Large Eddy Simulations (LES) which are used heavily in e.g. meteorology. An overview of
LES methods can be found in [GO93] and [Joh06].

2.2.1 Energy Transport Models

There are different approaches for modeling turbulent viscosity, most of which are based on
empirical assumptions. These methods can be classified by the number of model variables
and in terms of their completeness, that is whether they require scene-dependent constants
or fields. The simplest conceivable model is assuming νT to be constant across the flow.
This model is limited to very simple flows, and does not provide much insight over directly
specifying turbulence energy. It is thus not useful for any practical application.

A better approach is to model νT in terms of a mixing length. These models can be
accurate if the mixing length of the respective problem is known, and have successfully been
used in aerospace engineering [BL78]. Other models use the fact that turbulence properties
are well described by advection-diffusion processes, and model these processes using one or
more partial differential equations. Due to their generality, these models are among the most
common turbulence models. Below, a mixing-length model and one common two-equation
model are presented.

CHAPTER 2. TURBULENT FLOWS 11

Mixing length model The mixing length model is based on a generalization of the ex-
plicit turbulent viscosity term from boundary layer flows. Baldwin et al. [BL78] suggest the
definition

νT = l2
m‖ΩΩΩ‖ (2.8)

where lm is the characteristic mixing lengthscale, and Ωi j =
1
2(

∂Ūi
∂x j
− ∂Ū j

∂xi
) the rotation tensor

of the mean flow field. The mixing length encodes the geometry of the problem, and the
accuracy of the model largely depends on the correct specification of this length. Analytic
expressions for lm are known for a certain type of problems, such as its linearity in wall
distance in the log-law region of boundary layers. On the other hand, for the general case
far from boundary layers, the mixing length behavior is largely unknown. Therefore, this
model is considered incomplete. This is model used in [PTSG09, NSCL08].

k–ε model The k–ε model uses a similar definition of turbulent viscosity as mixing
length models, but expresses it in terms of turbulent kinetic energy k and turbulence dis-
sipation ε as

νT =Cµ

k2

ε
. (2.9)

The modeling constant Cµ is defined as 0.09 from empirical observation [LS74]. An evo-
lution equation for the variables k, ε could theoretically be obtained by a Reynolds-average
of the Navier-Stokes equation in the same way as (2.4). As this equation contains mainly
terms that cannot be derived from mean flow properties, however, the implication of the
individual terms is studied and modeled. The complete PDE system in this model is defined
as

Dk
dt

= ∇(
νT

σk
∇k)+P− ε (2.10)

Dε

dt
= ∇(

νT

σε

∇ε)+
ε

k
(C1P−C2ε) .

The terms P and ε denote production and dissipation of turbulent kinetic energy respec-
tively, while the modeling constants are specified as σk = 1, σε = 1.3, C1 = 1.44 and
C2 = 1.92. It can be observed that both equations consist of a turbulent diffusion term
in analogy to the RANS equation (2.4) as well as advection and production and dissipation
terms. The implicit advection contained in the substantial derivative on the left-hand side
refers to advection in the mean flow field Ū. The production term depends on the strain rate
of the mean flow field and is deduced as

P = 2νT‖S‖2 . (2.11)

The equation system is now fully specified and only depends on properties of the averaged
flow field, and is therefore considered complete. It is due to this generality that the k–ε

model is among the most commonly used turbulence models in CFD.

2.2.2 Extending Energy Transport Models

Turbulence models are, due to their semi-empirical nature, only accurate under certain con-
ditions. A multitude of turbulence models exist, and is used depending on the scenario.

12 Turbulent Fluids

For example, the k–ε model performs well for shear flows with small pressure gradient
– for strong pressure gradients, the k-ω model is superior, but has other drawbacks. In
general, RANS turbulence modeling is considered much less accurate than using Reynolds
stress transport models, pdf methods or LES. On the other hand, it is by far the best un-
derstood approach, easy to implement and most importantly, computationally inexpensive.
For the detail level desired in typical Graphics applications, LES for example does not gain
much over direct simulation in terms of performance. Therefore, RANS is still the most
commonly employed method, even in CFD where accuracy is of more importance than in
Graphics.

Stability To address some of the shortcomings of RANS-based turbulence methods,
model extensions have been proposed. For our purposes, the most vital issues is to address
to instability of the k–ε model for low values of k and ε . This model therefore requires
a minimal turbulence intensity to be present. But even a simulation with high turbulence
level may become instable in wall regions, as the viscous sublayer very close to the wall
drives the effective Reynolds number to zero. The k–ε model is therefore often extended by
Low-Reynolds models, which consist of additional dampening terms that are active in near-
wall regions. For e.g. real-time simulations with large timesteps, however, even this may
however not be sufficient as the simulation can still easily become instable. An alternative
is a clamping system that restricts the parameters to a meaningful range. Such a system is
described in Section 4.2.

Reynolds Stress Transport Models A further limitation of all RANS-based turbu-
lence models is their reliance of the turbulent viscosity hypothesis. The assumption implies
that the Reynolds tensor is aligned to the mean flow strain-rate field, which is not the case
for e.g. flows with fast varying mean flow. It also provides few information on the tur-
bulence anisotropy, which would prove useful for turbulence synthesis. Reynolds stress
transport models avoid this limitation by solving a partial differential equation system for
the complete Reynolds stress tensor, instead of the energy k. The model is written as

D〈uiu j〉
dt

+∑
k

∂

∂ sk
(T ν

ki j +T p
ki j +T u

ki j) = Pi j +Ri j− εi j . (2.12)

The transfer tensors T ν
ki j,T

p
ki j,T

u
ki j describe viscous diffusion, pressure transport and turbulent

convection, respectively. Pi j and εi j are the production and dissipation tensors, in analogy
to the scalar terms introduced in Section 2.2.1. The most interesting difference compared
to energy transfer models is the appearance of the redistribution term Ri j. Redistribution
characterizes the transfer of energy between between isotropic and anisotropic components
of turbulence. The major effect in this process is isotropization: Turbulence generated from
the mean flow is usually highly anisotropic, and over time driven towards isotropy by energy
exchange. The most commonly used realization of Ri j is the LRR-IP model [LRR75]

Ri j =−CR
ε

k
(〈uiu j〉−

2
3

kδi j)−CI(Pi j−
2
3
Pδi j) (2.13)

with the model constants CR = 1.8 and CI = 0.6. Pfaff et al. [PTC+10] make use part of
this model to augment an energy transfer model for anisotropy awareness. This will be
explained in Section 4.2.

CHAPTER 2. TURBULENT FLOWS 13

log(wave number)

lo
g(

en
er

gy
)

model
range

inertial
range

dissipative
range

energy is
introduced

energy cascade

energy is
removed

Figure 2.1: This graph shows the typical evolution of the energy per vortex wavenumber.
Energy is introduced into the system at large scales in the model range. The energy is
subsequently transferred into smaller scales by scattering of vortices, and finally dissipates
due to viscosity in the dissipative range.

2.3 The Energy spectrum

In the previous sections the spatial distribution of turbulent kinetic energy was described.
We will now investigate turbulence in terms of its spectral distribution. One way to approach
this is the solution of the NS equation in the frequency domain, e.g. [dFN01]. These
spectral methods have some desirable properties, such as fast convergence, and drawbacks
such as difficulties in boundary geometry handling. In terms of turbulence, however, they
do not provide more insight than their time domain counterparts. Instead, in this chapter the
spectral distribution of turbulent kinetic energy as defined in Section 2.1 is studied.

Turbulent length scales We can think of turbulent length-scales as the size of the
eddies that compose the turbulence. From experiments we can observe that while turbulent
fluctuations occur on many length scales, its behavior is very different on these scales. For
high-Reynolds number flows, it is observed that turbulent energy is generated mainly on
large scales and dissipated on small scales. The Richardson interpretation of this states
that large eddies are instable, and break up to form smaller eddies until they are eventually
dissipated to heat by viscous processes1. This results in an energy cascade, that is the
transfer of turbulent kinetic energy from large to small scales. Following this notion, the
energy spectrum can be divided into three regimes. This is also illustrated in Fig. 2.1.

• Model range. In this region, large-scale structures are dominant and most of the spec-
trum’s energy is contained. Its behavior is strongly dependent on the flow geometry,
and is therefore not easily described by statistical models. The production of turbu-
lence mainly occurs in the model-dependent range by strain processes acting on the
mean flow.

1”Big whorls have little whorls, which feed on their velocity, and little whorls have lesser whorls, and so on
to viscosity.” – Lewis Richardson

14 Turbulent Fluids

• Inertial subrange. This range shows very little production and dissipation. The main
active process being forward scattering, that is the transfer of energy from small to
high wave numbers.

• Dissipation range. The main energy dissipation occurs in the range of large wave
numbers. This is driven by molecular viscosity, which is active for very small struc-
tures typically below the millimeter range.

Kolmogorov’s law In his famous work, Kolmogorov [Kol41] proposed that for high-
Reynolds number flows, fully-developed turbulence can be described very easily in a sta-
tistical sense. While large eddies are in general anisotropic and strongly influenced by
boundary conditions, this behavior is lost by the energy exchange in forward scattering.
Turbulence in the inertial subrange and the viscous range can thus be assumed to be locally
isotropic and the statistical turbulent behavior in this regime is fully determined by the dis-
sipation ε and viscosity ν . Kolmogorovs hypothesis further states that energy spectrum in
the inertial subrange can be described as

E(κ) =Cε
2
3 κ
− 5

3 (2.14)

with the wavenumber κ and constant C. This is referred to as Kolmogorovs five-thirds law
or K41 theory.

Beyond Kolmogorov While Kolmogorovs law is a useful tool to describe fully-developed
turbulence, transition to turbulence and larger scale turbulence are not covered by K41 the-
ory. There are, however, extensions to this model. Most notably, the energy spectrum can
be extended to cover the dissipation range as well without losing too much of its general-
ity [Pao65]. This regime is not very interesting for Graphics though, as it is situated on a
length scale well below the desired resolution for most Graphics simulations. The model-
dependent range, on the other hand, is very hard to describe statistically in a general way.
Even if such an averaged energy spectrum existed, its expressiveness would be limited, as
the dynamics in the model range are dominated by anisotropic, coherent structures and their
interplay with boundary conditions. An accurate description of this regime will therefore
necessarily have to track individual structures.

Another possibility of obtaining more generality is to model the energy evolution of the
energy spectrum, instead of considering an stationary spectrum. This can describe some
of the effects of turbulent transition. Spectral energy transfer models approach this in the
same manner as the spatial transfer models introduced in Section 2.2.1. In contrast to spa-
tial transfer models, the individual terms are however not as easy to model, and result in
complex and instable systems. Therefore, these models are mainly used to derive stationary
spectra instead of transient modeling [Pop00]. A review on spectral energy transfer methods
can be found in [Pan71].

This being said, it is possible to describe the behavior outside K41 using additional data.
One possibility to do this is modeling a subset of anisotropic production [PTC+10].

CHAPTER 2. TURBULENT FLOWS 15

2.4 Turbulence synthesis

For CFD applications, the interest in turbulence is mainly focused on averaged properties:
its influence of turbulence on the mean velocity, turbulent mixing or the induced forces. In
Computer Graphics, however, the transient behavior of turbulent detail itself is important,
as it makes out the desired visual appearance. Based on the observations in Section 2.3 that
fully-developed turbulence has a rather uniform behavior, it is possible to generate detail
without a costly full simulation. This turbulence synthesis generates detail that obeys cer-
tain statistical properties predicted by CFD turbulence models, such as the ones described
in the previous sections. Detail generated this way will therefore correspond to detail actu-
ally observed in high-resolution reference simulations or real-world experiments only in a
statistical sense.

The most common approach is to synthesize a high-resolution velocity field to represent
the additional detail. There are however different statistics that can be used for synthesis,
and different ways to generate detail with given statistical properties. This does not mean
all of these realizations will produce realistic output, though. Since turbulence generation
does not imply the fulfillment of the NS equations, there is no guarantee that a given re-
alization of a statistical representation will behave like a fluid. This means that to obtain
believable results, additional information beyond the spatial distribution and the frequency
spectrum are necessary. The goal of turbulence synthesis is therefore to find a combina-
tion of conditions that produces turbulent detail in a believable manner. In this section, we
will introduce the commonly used curl noise synthesis. Other synthesis approaches include
random forcing [ZYC10] or synthesis using Lagrangian vorticity primitives [PTSG09].

Believable detail To our knowledge, there is no direct comparative study on which
properties are exactly required for realistic appeal of turbulence. In our experience, the
qualities listed below are vital in order achieve realism.

1. Solenoidality. The most distinguished property of fluid flows is their solenoidal
behavior (2.2). It is responsible for the swirly look of fluids, especially on the small
scales. Thus, it is vital that the generated detail velocity field remains divergence-
free in order to produce realistic results.

2. Temporal coherence. The temporal continuity is of equal importance as discontinu-
ities between timesteps will cause visible artifacts in the flow field. Particular care
has to be taken that coherent turbulent features such as eddies are preserved over
time, otherwise turbulence appears as discoherent noise.

3. Spectral distribution. To obtain the characteristic look of turbulence, the distribution
of vortex sizes is important. Such distribution can be for example obtained from the
Kolmogorov law for the inertial subrange.

4. Spatial distribution. In most flows, the turbulence intensity is not homogeneous in
whole domain, but areas with strong turbulence and areas with negligible turbulence
will exist. This is especially true for flows with high turbulence production, such
as flows around obstacles and buoyant plumes, in which turbulence intensity varies
strongly. Traditionally, information about spatial distribution of turbulence is ex-
tracted from the flow field. This is however only viable for resolutions high enough
to resolve turbulence generation. This thesis will introduce an approach that uses

16 Turbulent Fluids

log κ

lo
g

E

noise texture velocity �eldfrequency spectrum

-5/3

Figure 2.2: Curl noise synthesis for the Kolmogorov spectrum. The energy spectrum is
transformed into a noise field using a Fourier transform. Applying the curl operator yields
a divergence-free velocity field with the desired frequency behavior.

energy transfer models to predict spatial distribution, therefore allowing lower base
resolutions (Section 4.2).

2.4.1 Curl Noise Synthesis

The most straightforward approach to satisfy both solenoidality and a prescribed spectral
distribution is curl noise synthesis. In curl noise synthesis, a three-dimensional noise field
N f is synthesized from an energy spectrum. First, the desired spectrum E(κ) is overlaid
with a random phase ϕ ∈ [0 . . .1] and transfered to a spatial noise field using the Fourier
transform

N f (x) =
∫

E(κ) · e−iκ x+i2π ϕ(κ)dκ . (2.15)

The same effect can be achieved by dividing the energy spectrum into octaves, and stacking
multiple octaves of a narrow-band noise field Ni, for example Wavelet Noise [CD05], with
the respective energy coefficients Ei

N f (x) = ∑
i

Ei Ni(x) . (2.16)

This noise field can now be used to generate a detail velocity field. First, three noise fields
Nx, Ny, Nz are generated using the same energy spectrum but different phases. These fields
can now be interpreted as a vector potential. The detail velocity is then generated by apply-
ing the curl operator

uD(r) = ∇×
√

αS

 Nx(r)
Ny(r)
Nz(r)

 (2.17)

with a detail strength coefficient αS. This process is illustrated in Fig. 2.2 for the Kol-
mogorov spectrum (2.14). The curl operator guarantees the solenoidality of the resulting
velocity field. As the curl operator is linear, the frequency characteristic of the noise field
also remains intact. A detailed account on accurately computing this velocity on discrete
grids can be found in Kim et al. [KTJG08].

CHAPTER 2. TURBULENT FLOWS 17

generated detail combined �eldlarge-scale �ow

+ =

Figure 2.3: A large-scale flow field from a simulation is combined with detail generated by
curl noise synthesis.

2.4.2 Composition

After synthesizing a velocity field with the desired frequency spectrum, this field has to be
combined with the large-scale simulation to form a coherent flow. First, a separation of the
scales for model-dependent large-scale flow and uniform turbulent behavior has to be intro-
duced. In LES, this is realized by applying frequency filters while for RANS simulations,
the mean flow field Ū represents the large-scale simulation. Methods employed in Graph-
ics use a notion similar to RANS. As base simulations with low resolution and a diffusive
semi-Lagrangrian advection typically have an inherent diffusion higher than the turbulent
diffusion in RANS, the simulation is used directly as the large-scale flow. For synthesis
methods based on K41, this assumes the grid resolution marks the division between the
model-dependent range and the inertial subrange. The former is then represented by the
large-scale flow, while later is obtained by synthesized sub-grid detail.

The most common solution to store sub-grid detail is using a grid of higher resolution
than the base simulation. Some methods also operate on the same grid resolution as the
base simulation – this makes sense as the frequency cutoff induced by numerical dissipation
happens on the scale of the multiple grid cells. However, the improvement in detail obtained
this way is obviously limited.

To combine large-scale flow and synthetic detail, these two fields are composed. As
a first step, this requires upsampling the large-scale velocity field to the resolution of the
detail field. If the frequency spectra of the two fields can be assumed to be disjunct in the
sense of RANS, they can be simply added (Fig. 2.3). If, on the other hand, the spectra
overlap, care has to be taken that features are not duplicated. This is especially the case if
detail field and large-scale flow fields are of the same resolution. In this case, reinforcement
techniques are applied: The turbulence intensity is measured on the large-scale field, and
compared to the detail field. Only the difference between these fields is then added to
form the resulting field. This approach is used e.g. in vorticity reinforcement [SRF05] and
vorticity confinement [FSJ01].

Spatial distribution Combining a simulation with a synthesized detail field as above
results in uniform, homogeneous turbulence over the complete field. For most scenarios,
this is not sufficient, as turbulence intensity will vary over the domain. Here, turbulence

18 Turbulent Fluids

β=1β=0.5initial

Figure 2.4: The texture coordinate field t2 is depicted. Initially, the coordinates correspond
to position in space. Over time, the field deforms due to mean flow velocity, drawn in red
here. The field t2 is reset on β = 1, when its coefficient in (2.19) is zero.

predictors are employed to estimate the spatial distribution of turbulence strength. Simple
turbulence predictors measure small-scale whirls present in the base simulation by vorticity
[FSJ01] or wavelet decomposition [KTJG08] and assume they form the upper level of the
turbulent energy cascade. Based on their energy, the lower levels of turbulence can then
be reconstructed. This however requires a simulation resolution high enough that turbu-
lence is formed at all. In our methods, we employ energy transfer models as described in
Section 2.2.1 to estimate the spatial turbulence intensity.

To incorporate spatially varying fields of turbulence intensity obtained either way into
curl noise synthesis, the detail strength coefficient in (2.17) can be modified. Based on
(2.14), this can be achieved either via the turbulent kinetic energy or dissipation

αS(r) ∝ k ∝ ε
2
3 . (2.18)

Strictly speaking, this violates solenoidality, as the modulation may introduce divergence.
In practice, this is not a problem as long as the gradient of αS is not too steep, as these
divergences do not accumulate over time. For steep gradients, such as interfaces of buoy-
ant plumes, this will however lead to visual artifacts. A more correct synthesis could be
achieved by incorporating the spatial intensity distribution directly into the synthesis, for
example using wavelets. To our knowledge, this approach has not been used in any syn-
thesis method so far, which is largely due to the numerical complexity of performing a full
spectral transfer in each simulation frame.

Temporal coherence One of the most intricate issues in turbulence synthesis is ensur-
ing temporal coherence. This is due to the fact that the two main goals in temporal coherence
are incompatible. First, the generated velocity field should deform in accordance with the
flow. As the turbulent energy cascade mainly involves forward scattering, it is assumed that
the detail field remains passive, and moves within the large-scale flow. It should however
also not strongly deform, as this will distort the frequency behavior, and destroy the charac-
teristic turbulent shapes. By advecting the detail field in the large-scale flow, deformations
accumulate and will inevitably induce strong deformation. This is also a common problem
in texture synthesis, and the solutions are similar in both fields.

CHAPTER 2. TURBULENT FLOWS 19

The advection in the large-scale flow can be realized using texture coordinates which
index positions in the detail field. At the start of the simulation, the texture coordinates will
correspond to their position in space. Over the course of the simulation, they are advected
in the velocity field which leads to distortion of the field. The most commonly used tech-
nique in preventing strong distortions is coordinate resetting. After a number of steps, all
coordinates are reset to their position in space. As this will naturally induce jumps in the
velocity field, two sets of texture coordinates are used, and reset alternately. The generated
velocity at a point is then the linear combination based on its two texture coordinates t1, t2.

u′ = βuD(t1)+(1−β)uD(t2) (2.19)

with β ∈ [0,1] being a sawtooth function in time. The texture coordinate sets can be reset
when its respective coefficient is zero. This process is illustrated in Fig. 2.4. There are
also alternative approaches, such as local resetting based on deformation strength as will be
presented in Section 4.1.4.

2.5 Discussion

When applying turbulence methods, it is important to realize the limits of the used model
and statistic methods in general. This is a point often neglected in turbulence methods for
Graphics. Some violations of the limits will not be visible and may be tolerable, due to the
fact that the human perception system is not trained to spot inaccuracies in fluid dynamics.
Others might severely affect the perceived realism of the scene. This will also heavily
depend on scene setup and rendering – for example, the anisotropic turbulent transition
region is directly visible for dense smoke, while its effect is less visible for diffuse smoke.
Therefore, statistical, isotropic turbulence models as the ones described in the previous
chapters are likely to produce artifacts for dense smoke clouds, while results may perceived
realistically for a similar setup with diffuse smoke. In absence of solid perceptional studies,
it is therefore best to be clear about the limits and its violations of the model used. Below,
some common pitfalls and limits of turbulence methods are listed.

The Scales of Turbulence Turbulence modeling and synthesis base on the fact that
turbulence can be separated from the mean flow, and has a uniform dynamic that is well-
described by statistical properties. This is true only under certain conditions. Most impor-
tantly, turbulence should only be generated for the inertial subrange. Larger scales show
nontrivial interaction with flow obstacles, and both forward and backward scattering. This
means not only is the K41 energy distribution not valid in this regime, but the dynamics are
dominated by coherent structures that can hardly be captured by a statistical model. Here, a
simulation is essential as synthesized turbulence will inevitably introduce an unnatural look.
This means that the division between simulation resolution and generated subgrid detail has
to be carefully chosen. Another aspect of this is that turbulence models base their prediction
on the mean flow. This means the predicted turbulence intensity will change depending on
the base simulation resolution. This is especially critical if many turbulent details are al-
ready resolved by the base solver, as the details will act as turbulence sources, resulting in a
strong overprediction of turbulence. In these cases, a full RANS simulation, or an averaged
flow field should be used instead of the base simulation.

20 Turbulent Fluids

Isotropy Both the turbulence models and synthesis algorithms presented in this chapter
only take into account isotropic turbulence. This is a good assumption for fully developed
turbulent flows, but not for areas of turbulence generation or transition. This is due to
the fact that turbulence generated from shear will create whirls with a preferred direction,
which will only become isotropic over time (see Section 2.2.2). In flows where these areas
are clearly visible, such as open channels and turbulent dense smoke, isotropic models
should not be used – isotropic turbulence will be perceived as noise disturbing the flow.
To include the effects of anisotropy, extensions to both turbulence prediction and synthesis
have to be made. Such a model is presented in Section 4.2. However, even with anisotropic
methods, such as Reynolds stress transport models, there is no guarantee that turbulence
transition is well represented. Turbulence induced by breakdown for example from large
coherent structures can hardly be represented using a statistical approach – for this, the
breakdown has to be modeled explicitly with methods such as [PTG12], which we present
in Section 4.4.

Accuracy of Synthesis Synthesis methods have to fulfill several constraints, which
are often incompatible, as discussed in Section 2.4.1. Therefore inevitably compromise
solutions have to be implemented, whose effectiveness will depend on a good choice of
parameters. Synthesis based on curl noise is especially problematic at steep interfaces of
turbulence intensity, e.g. buoyant smoke with a sharp density gradient, and flows with strong
strain effects. The latter will induce either strong deformations of the turbulence field, or
interpolation artifacts associated with frequent resets. Either way, coherent whirls may be
reduced to structure-less noise.

Chapter 3

Literature

Methods for modeling and simulating fluid system have a long tradition in the fields of
engineering and physics, and have become vital tools in Computer Graphics, too. The
requirements for applications in Computer Graphics are however very different from their
counterparts in CFD. Therefore, while similar in theoretical background, methods in Graph-
ics often approach the problems at hand from a different angle, and much is to be learned
from studying both sides. In this chapter we will summarize the history and recent works
from both Computer Graphics and CFD, focusing on methods for simulating turbulent fluid
systems. A good overview can also be found in the textbooks by Wilcox [Wil93] and Pope
[Pop00] for turbulence theory, and the recapitulation of fluid simulation methods in Com-
puter Graphics by Bridson [Bri08].

3.1 History

Fluid dynamics are described by the Navier-Stokes equations, a set of partial differential
equations. To solve these equations numerically, several discretization schemes have been
proposed. Most applications in Engineering base on either finite elements (FEM) [OW72]
or finite difference (FDM) / finite volume (FVM) [Hsu81] discretizations. Finite difference
methods operate on structured grids, while finite element methods evaluate base functions
on irregular meshes. The latter allows to focus resolution on critical regions if known in
advance, but require a separate meshing step and have a larger computational overhead.
Marker-and-Cell (MAC) discretizations [HW66] extend the FDM approach by placing ve-
locity information on the cell faces instead of centers, which increases precision when cal-
culating derivatives.

Although most methods for numerical simulation of fluid systems use a direct dis-
cretization of the Navier-Stokes equations, different principles have been proposed in lit-
erature. The fully Lagrangian Smoothed Particle Hydrodynamics (SPH) models fluid dy-
namics by the interaction of particles with a compressible kernel [GM77]. This method has
become popular in Computer Graphics for free-surface problems [MSKG05]. It does how-
ever require small timesteps for stability in complex scenarios. Lattice Boltzmann methods
on the other hand base on Boltzmann gas dynamics [HPP76], and directly model the flux
and collision of fluxes on a regular mesh. While not common in Graphics, they have suc-
cessfully been used for the simulation of liquids [TIR06].

21

22 Turbulent Fluids

3.2 Fluid Simulation in Computer Graphics

Fluid simulation in Computer Graphics was popularized by Stam [Sta99], who introduced
the combination of semi-Lagrangian advection with first order pressure projection using a
MAC discretization. This unconditionally stable, albeit very dissipative type of solver is
the most commonly used simulation technique in Computer Graphics and it will serve as
reference and base solver in this thesis as well.

Over the years, many extensions of this basic solver have been made. This includes
for example methods to simulate liquids [EFFM02], bubble flows [HK03], viscoelastic flu-
ids [GBO04], or interactions with rigid bodies [CMT04]. Possibly the biggest challenge
for fluid simulation for Computer Graphics, however, is to represent highly detailed flows
efficiently. This problem is two-fold, and due to the dissipative nature of stable semi-
Lagrangian advection, and the more fundamental issue of the memory and computation
costs involved in high-resolution simulations. Below, recent methods to alleviate issues
concerning dissipation, grid resolution and efficiency are summarized.

3.2.1 Low-dissipative Methods

The first part of the problem in preserving detail is the inherent damping of turbulence de-
tail due to numerical dissipation. A popular approach to alleviate this problem is the use of
higher order advection schemes. Back and Forth Error Correction [KLLR05], MacCormack
advection [SFK+08], QUICK [MCPN08] and CIP methods [KySK08] improve the accu-
racy of the semi-Lagrangian advection to obtain second- or third order accurateness. The
PIC/FLIP approach [ZB05] which is popular in industry productions uses an additional par-
ticle set for a more accurate advection. Mullen et al. [MCP+09], on the other hand, propose
an implicitly energy-preserving velocity integration scheme for tetrahedral meshes.

Alternatively, Fedkiw et al. [FSJ01] advocate detecting and amplifying existing vortices
to combat dissipation. This is extended to multilevel confinement by Jang et al. [JKB+10].
Similarly, manually seeded vortex particles can be used to reinforce turbulence vortices and
combat dissipation [SRF05].

While these methods help to reduce the numerical dampening, the detail that can be
represented is still inherently limited by the underlying grid resolution.

3.2.2 Sub-grid Methods

Another way to combat numerical dissipation is to adaptively refine the simulation grid in
critical areas. Losasso et al. [LGF04] use an adaptive octree structure to discretize the simu-
lation grid, while the method by Feldmann [FOK05] operates on unstructured meshes. The
combination of two-dimensional and three-dimensional simulations [IGLF06], [CM11] has
also successfully been used to represent large bodies of fluids. The computational overhead
introduced by the adaptivity however only pays off if the detailed motion is confined to only
a small part of the simulation space, or for very high resolutions.

A different approach to obtain sub-grid accurate results is to track the visible quantity,
e.g. smoke or liquid using Lagrangian markers. Traditionally, these fields are represented
using Volume-of-Fluid [HN81] methods in Engineering and density fields or level-sets in
Graphics. For liquids, particle level-sets [EFFM02] increase the resolution of a level-set

CHAPTER 3. LITERATURE 23

using Lagrangian markers. Bargteil et al. [BGOS06a] and Wojtan et al.[WTGT10] use a tri-
angle mesh to represent and track liquid-air interfaces. Brochu et al. [BBB10] use Voronoi
diagrams to generate a surface sub-grid accurate meshes for liquids. A triangle mesh repre-
sentation to represent the smoke/air surface for plumes has been proposed by Brochu et al.
[BB09]. Particle representations are another popular choice, but large numbers are usually
necessary to represent dense surfaces without noise. While the Lagrangian markers in these
methods allow for the detailed representation below grid scale, the dynamics are still lim-
ited by the grid resolution of velocity field. Similar in spirit to the approaches presented in
this thesis, Thuerey et al. [TWGT10b] take advantage of the Lagrangian representation and
compute sub-grid surface tension dynamics directly on a air/liquid interface mesh.

A major source of turbulent detail is the interaction of fluids with solids. By improving
the accuracy of boundary dynamics or modeling the interaction, higher detail levels can be
achieved for the fluid system. Two-way coupling of fluids has been addressed by Carlson
et al. [CMT04], Guendelmann et al. [GBF03] and Klingner [KFCO06]. More recently
researchers have modeled subgrid interactions with objects more accurately through the use
of apertures [BBB07, RMSG+08]. Nevertheless, very little previous work in graphics ad-
dresses the problem that the thin turbulent boundary layer is not resolved in the simulation,
resulting in turbulence not being shed.

3.3 Lagrangian Vortex Methods

Instead of solving the Navier-Stokes equations in the velocity space, they can also be solved
in vorticity space. Vorticity describes flow rotation, and is an equivalent description of
fluid motion. The vorticity equation can be evaluated on regular meshes and grid using
FDM or FEM formulations with similar accuracy and performance as the Navier-Stokes
equation. Boundary conditions, obstacle interaction and free surfaces are however more
efficiently treated in a velocity representation. Purely Eulerian vortex methods are therefore
rarely used in practice. On the other hand, vortex methods have the desirable property
that rotational flow features such as eddies are more compactly represented than in the
velocity formulation. This makes Lagrangian or hybrid vortex methods an attractive choice
for strongly rotational flows, especially those with strong turbulence generation. In this
section, an overview of Lagrangian vortex methods in CFD is given.

Lagrangian Primitives The most general and commonly used primitive for vortex
methods is the Vorton, a point representation of vorticity. Vorton methods in two dimen-
sions have been discussed as early as 1931 [Ros31]. In three dimensions, vortex dynamics
are much more involved as a vortex stretching term appears, which is hard to stabilize in
a Lagrangian setting. The first three-dimensional methods appeared therefore much later
[BM82] with the convergence being proven by Hald [Hal79]. A stable treatment of the
vortex stretching term still remains one of the main challenges of vorton methods. To this
end, hybrid methods employing an additional grid representation [MG96] have been suc-
cessfully used to stabilize this term. Vortex filament methods [Leo75, Leo80], which dis-
cretize vorticity using one-dimensional space curves, do not share this problem as the vortex
stretching term vanishes in their motion equations. However, this comes at the price of ever-
increasing geometry due to re-meshing of the connected elements [Cho81]. Although global

24 Turbulent Fluids

re-meshing using vorticity transfer has been proposed to partly reduce geometric complex-
ity [LK01] this is still a largely unsolved problem which restricts simulation run-length
and complexity. Finally, vortex sheets, a representation of vorticity on two-dimensional
surface, have successfully been used to simulate vorticity dynamics at interfaces. While
early methods used points or filaments to discretize the vortex sheet surface [AM89], more
recent methods employ a mesh of triangular [BLP98] or quadrangular surface elements
[LGOD98, SDT08]. Vortex sheets share the advantages and drawbacks of filaments, but
their two-dimensional connectivity makes them very suitable for interface transition mod-
eling, while filaments are often employed for problems including vortex ring breakup.

Extensions A common problem of all Lagrangian vortex methods is the handling of dif-
fusion. Two types of solutions have been proposed, firstly core-spreading [Leo80], in which
the primitives kernel is widened, and second vorticity redistribution between neighboring
primitives [Gha03]. While these methods have been used successfully for densely sampled
vorton simulations, they are largely unsuitable for sparse simulations and the higher dimen-
sional filaments and vortex sheets. Therefore, Lagrangian vortex methods are often applied
to problems where diffusion is not relevant and can be omitted, e.g. turbulent flows.

Another big issue is the complexity of the velocity evaluation. Classically, the velocity
is obtained by applying the Biot-Savart law between primitives, resulting in a complexity of
O(n2). Treecodes [PWS+02, Wan04] employ spatial acceleration structures to increase per-
formance, while fast multi-pole methods [WSW+96, Deh02] use far-field approximations
of the Biot-Savart law to compute distant interactions more efficiently. Another approach is
the Vortex-in-Cell (VIC) method [CK99, CP03, SDT08], which projects vorticity to a grid,
and solves a Poisson problem to obtain velocity. This however induces a strong regulariza-
tion for moderate grid resolutions, which may not be desired.

Finally, extensions to vorticity generation have been proposed. While vorticity genera-
tion at obstacles may be represented using boundary conditions, baroclinic generation has
to be included as a source term. This theory was proposed by Meng [Men78] and studied
by Tryggvason et al. [TA83].

Sparse Sampling In Computer Graphics, vortex methods are mainly used as a sparse
representation. Instead of completely discretizing the motion field, vortex primitives are
often used to reinforce eddies, and augment a base simulation. Selle et al. [SRF05] uses
vortons to reinforce bulk turbulence on a Eulerian base simulation. Filament methods, on
the other hand, have been used to control a fluid simulation by manually adding vortex
rings [AN05, ANSN06]. Vortex sheet theory is used by Kim et al. [KSK09a] to reinforce
the breakup of liquid sheets. However, they discretize the vortex sheet on the grid, and syn-
thesize motion using Eulerian vorticity confinement. While vortex methods are increasingly
being used in Graphics, the research base is still very weak, compared to both velocity meth-
ods and vortex methods in CFD. Most application in Graphics simply add vortons manually
to obtain a more turbulent look and feel.

CHAPTER 3. LITERATURE 25

3.4 Turbulence Methods

The high numerical cost involved in the simulation of small-scale turbulence has given rise
to turbulence modeling approaches. These models separate turbulent fluctuations from the
mean flow, and aim to describe these fluctuations in a statistical manner, based on properties
obtained from the large-scale mean flow. Turbulence modeling methods have a long tradi-
tion in Engineering. They are usually employed to estimate the influence of turbulence on
the mean flow, e.g. the forces exerted on airplane wings, or the flux reduction in pipe flow.
In Computer Graphics, on the other hand, the main interest is not obtaining corrected mean
flows, but to obtain the transient turbulent detail itself to enhance visual detail. Therefore,
turbulence synthesis methods are employed to generate artificial detail. Advanced synthesis
methods use turbulence modeling methods as an estimator to predict the turbulence distri-
bution to synthesize. Below, an overview of turbulence modeling and turbulence synthesis
models is given.

3.4.1 Turbulence Modeling

Classical turbulence models in CFD model turbulent viscosity, that is the virtual diffusion
turbulence induces on the mean flow [Pra45]. The simplest classical turbulence models
which are able to describe non-trivial flows are mixing length models [Sma63], [BL78].
Mixing length models have been used successfully to describe boundary layer flow in e.g.
the aerospace industry. However, they rely on manual specification of the mixing length,
which is scene-dependent and only known for certain types of flows. To alleviate this is-
sue, complete convective-diffuse models have been proposed, which model the dynamic of
turbulence using a set of differential equations without the need for a scene-dependent spec-
ification. The Spalart-Almaras models [SA94], which is used in aeronautic applications, di-
rectly models turbulent viscosity using one PDE. Two-equation models, on the other hand,
model the evolution of parameters such as turbulent kinetic energy and dissipation using
two PDEs. The k–ε model [LS74] and the k–ω model [Wil93] are still the most commonly
used turbulence models in Engineering today, and included in most CFD applications due
to their generality and simplicity. However, the prediction quality and stability of these
models strongly depends on the type of flow. Therefore, extensions have been proposed for
e.g. better stability in wall-regions [JC94], to cite one example.

The class of classical turbulence models has however two fundamental limits. First, it
relies on Reynolds averaging to separate mean flow and turbulence, which might not be suf-
ficient, especially to describe turbulence transition and coherent eddies. To this end, Large
Eddy Simulations (LES) have been introduced [Sma63]. LES models use more accurate
frequency filters for separation, and directly simulate coherent eddies. Originally, LES was
used to describe internal flows in meteorology, but has been adapted for more general appli-
cations in CFD as well [HJ00]. A recent extension to LES are Detached Eddy Simulations
(DES) [Spa09] which are even more suitable to represent coherent eddies. The second limit
concerns the information provided by classical models. While turbulent viscosity is suffi-
cient to describe the virtual diffusion of the mean flow, is does not provide information on
flow anisotropy and energy exchange. Reynold stress transport models solve this by model-
ing not only turbulent viscosity, but the complete turbulent stress tensor [LRR75], [CK95].
Even further, probability density functions such as the General Langevin Equation [Pop83]

26 Turbulent Fluids

directly describe higher-order statistical properties of turbulence using a particle method,
while Elliptic Relaxation methods [Dur93] replace the local convection-diffusion processes
in turbulence models by global optimization. While all these methods have higher predic-
tion power than classical turbulence models in theory, they also come at the price of higher
complexity, numerical cost and tuning effort. Therefore, they are mainly used in the context
of CFD research and high fidelity simulation in e.g. meteorology. With the increasing com-
putation power in the recent years, especially LES and Reynolds stress transport models are
however slowly becoming more popular for standard applications.

While the fundamentals of CFD turbulence modeling were developed in the 1970s and
80s, this does not imply no progress has been made in recent years. The topics have how-
ever shifted from general purpose turbulence modeling towards more specific topics, as it is
common in mature fields. Recent topics include the modeling of turbulence in compressive
flows [Aup04] or turbulence transition modeling [LMLS06], [DGS07], to cite a few exam-
ples. A very interesting recent trend is the development of multi-scale turbulence modeling
techniques using LES [CS07] or scale adaptive simulation (SAS) [MK05].

3.4.2 Turbulence Synthesis

Early turbulence methods in Computer Graphics used uniform fields of synthetic turbu-
lence to augmented or replaced basic fluid simulation with synthetic turbulence. Stam
[SF93] introduced a method that used a Kolmogorov spectrum to produce procedural di-
vergence free turbulence. This approach was used to model nuclear explosions and flames
[RNGF03, LF02]. Bridson et al. [BHN07] suggest taking the curl of vector noise fields
to produce divergence free velocity fields. They explicitly address computing flows around
objects efficiently by modulating the potential field. These methods however do not take
into account the spatial and temporal distribution and dynamics of turbulence, and may lead
to unrealistic results for complex flows.

Recent methods use a more complex estimation of flow statistics to better capture the
characteristics of turbulence. Kim et al. [KTJG08] use wavelet decomposition to determine
local turbulence intensities, and synthesize turbulence using frequency-matched curl noise.
This approach assumes that the base solver can resolve the turbulence dynamics. Schechter
[SB08b], Narain [NSCL08], Pfaff [PTSG09] use transport models to derive turbulence pa-
rameters. This improves the turbulence dynamics, but they need to significantly simplify
the energy transport or make assumptions on the flow regime, such as mixing-length models
to close their one-equation energy model. Often, complete two-equation models [PTC+10]
are more general and easier to deal with (Section 4.2).

3.5 Recent works

Turbulence methods and vorticity representations for fluid simulations are an active area
of research in Computer Graphics. It is therefore not surprising that a number of works
on these topics has been published concurrent to or as a follow-up work to the methods
presented in this thesis. These approaches will be discussed below.

CHAPTER 3. LITERATURE 27

Turbulence Synthesis While this thesis focusses on synthesis based on curl-noise tex-
tures and vorticity, alternative methods for synthesis have been presented in recent years.
Chen et al. [CZY11] present a hybrid turbulence method, which synthesizes turbulence on
a particle system, based on Section 4.2. Instead of using a RANS-based turbulence model,
however, they follow a pdf approach and solve the Langevin equation [Pop00] on the parti-
cle system. The resulting velocity update is directly used as detail motion of the particles.
This avoids both the coherence problem of curl-noise synthesis and the stability issues of
two-equation turbulence models employed in Section 4.2. On the other hand, by interpret-
ing the stochastical Langevin velocities as actual particle motion, the synthesized motion
will not be divergence-free and spatially coherent.

Zhao et al. [ZYC10], on the other hand, propose the use of random forcing on an up-
sampled grid as a synthesis method. The divergence-free force fields are precalculated
and follow a given energy spectrum. This representation does not require a separate set
of markers such as vortex primitives or texture coordinates for curl-noise synthesis. The
synthesized forces can not directly be animated; instead, alternating pre-computed fields are
applied. While this temporal inconsistency may lead to artifacts and flow disturbance if the
method is used beyond small scales, this method might provide a very attractive alternative
for synthesis, if extended such that force fields can be updated at runtime.

Vorticity methods The original vortex particles paper [SRF05] was extended by Yoon
et al. [YKH+09] and [PTSG09]. Both methods apply the vortex particles onto an up-
sampled higher resolution grid. The later method also includes a turbulence preditor for
wall turbulence as described in Section 4.2. Kim et al. [KLySK12] extended the vortex
particle approach for buoyant sources. The source terms are calculated on the grid and then
mapped to the vortex particle system.

Weissmann et al. [WP10] proposed a simulation driven entirely by vortex filaments,
with source terms for obstacle-induced shedding. They are able to represent flows with
a medium level of turbulence in a very compact fashion, which makes the method very
efficient in this regime. This approach was recently extended by an improved re-sampling
scheme for filaments, which limits the geometry growth [BP12]. An introduction to the
vortex primitives of particles, filaments and sheets and a comparison of their strengths and
weaknesses can be found in Section 4.4.1.

Vortex sheets [PTG12, BKB12] as described in Section 4.4 are a good choice to repre-
sent turbulence from buoyant plumes. The main difference between the two methods is the
acceleration of vorticity integration. Pfaff et al. use a local evaluation scheme while Brocho
make use of a fast multipole method (FMM). The later has the advantage that no Eulerian
base simulation is necessary, which obviates the need to tune the grid’s buoyancy terms to
the mesh-based buoyancy and avoids artifacts induced by the scale separation. On the other
hand, it is hard to represent inflows, source terms, obstacle interaction and the coupling to
e.g. turbulence methods in this pure vorticity formulation, which are better handled using
the first method. It therefore depends on the application scenario which of the methods is
best suited.

Chapter 4

Adding Turbulent Detail

In the following sections we will outline several approaches for modeling turbulent effects.
Wavelet Turbulence is a very practical approach that outlines a practical way to apply small
scale detail for coarse fluid simulations. Afterwards, we will explain several approaches to
increase physical accuracy, for anisotropic effects, near obstacles and for buoyancy effects.

4.1 Wavelet Turbulence

For visual simulation of fluids scalability and user interaction are significant problems. Most
recent methods directly solve the Navier-Stokes or incompressible Euler equations over a
mesh. However, if features smaller than a mesh element are required, as is common when
simulating large-scale phenomena such as explosions or volcanic eruptions, the mesh must
be refined in some way. This results in a linear increase in memory use and a greater than
linear increase in the running time. elements. Adaptive methods [KFCO06] [LGF04] have
been developed that only add elements near regions of interest, but the overall asymptotic
complexity remains the same, and the implementation complexity increases.

We instead propose an algorithm that generates small-scale fluid detail procedurally.
We use a wavelet decomposition to detect where small-scale detail is being lost, and apply
a novel incompressible turbulence function to reintroduce these details. Instead of enforc-
ing the Navier-Stokes equations over all spatial scales, we enforce Navier-Stokes over low
frequencies and Kolmogorov’s turbulence spectrum over high frequencies. We have elimi-
nated the global dependencies of a linear solver over the grid, so the high-resolution portion
of the algorithm parallelizes trivially. The derivation of our method additionally provides
insight into the popular Perlin turbulence() function [Per85] and suggests a physical
basis for its success. The algorithm requires only the velocity field of an existing fluid sim-
ulation as input, and can be run as a fully decoupled post-processing step. This allows users
to rapidly iterate on fluid simulation designs until the desired overall behavior is achieved,
then later add small-scale details prior to rendering. The fluid solvers commonly used in
graphics do not allow this. Increasing the resolution changes the effective viscosity of the
fluid, produces significantly different motions at a higher resolution, and invalidates much
of the design work done on lower resolutions. In contrast, our method introduces new ener-
gies in a band-limited manner that guarantees existing structures are preserved.

Our contributions are as follows:

28

CHAPTER 4. ADDING TURBULENT DETAIL 29

Velocity Field u of
Coarse Simulation
with Resolution n

Wavelet
Decomposition

Advect Texture
Coordinates

Evaluate Turbulence Bands

Detailed Advection
with Resolution N

. . .

Compute
Energy

Regenerate
Coordinates

2
5
6

2
5 2
6

2
5 k
6

Figure 4.1: Overview: A low-resolution n3 velocity field u is used to synthesize a high-
resolution N3 density field. Procedural turbulence is added according to the wavelet decom-
position of the energy, and the resulting eddies are advected via texture coordinates until
they scatter.

• An incompressible turbulence function that can generate arbitrary energy spectra.
• A method for estimating the small-scale turbulence that is lost by a simulation, and

re-synthesizing it in a way consistent with Kolmogorov theory.
• A method of preserving the temporal coherence of the synthesized turbulence.
• A large- and small-scale fluid detail decoupling that allows the latter to be edited

independently.

4.1.1 Procedural Wavelet Turbulence

In this section we describe how to efficiently construct an incompressible turbulence func-
tion. We adopt the following notation for the remainder of this paper. Bold denotes a vector,
and non-bold denotes a scalar. The special variable x denotes a spatial position, k denotes a
spectral band, and u denotes a velocity field. A carat denotes a wavelet transform, so û(x,k)
denotes the spectral component of velocity field u at position x in spectral band k. Addi-
tionally, n always refers to the grid resolution, n3, of u, and vx, vy, vz refer to the Cartesian
unit vectors, ie vx =

[
1 0 0

]T .

Incompressible, Band-Limited Noise: Wavelet Noise [CD05] was developed as a
replacement for Perlin Noise [Per85]. The noise is guaranteed to exist only over a narrow
spectral band, which makes more sophisticated filtering possible. We will use this band-
limited property as a first step in constructing an incompressible turbulence function.

The Wavelet Noise function ω is a scalar function, whereas we are interested in vector
fields. As was recently demonstrated for graphics [BHN07], a calculus identity can be
used to construct a divergence-free vector field by taking the curl of a scalar field. We can
respectively construct 2D and 3D vector fields using ω:

w2D(x) =

(
∂ω

∂y
,−∂ω

∂x

)
(4.1)

w(x) =

(
∂ω1

∂y
− ∂ω2

∂ z
,
∂ω3

∂ z
− ∂ω1

∂x
,
∂ω2

∂x
− ∂ω3

∂y

)
(4.2)

30 Turbulent Fluids

We primarily use the 3D case (Eqn. 4.2) unless otherwise stated. The 3D case requires three
different noise tiles, which we have denoted ω1,ω2 and ω3, but in practice we use offsets
into the same noise tile. The derivatives can be evaluated directly because ω uses B-spline
interpolation. Instead of the usual quadratic B-spline weights,

[
t2

2 ,
1
2 + t(1− t), (1−t)2

2

]
, we

apply the derivative weights, [−t,2t−1,1− t], in the desired directions. The resultant vec-
tor field is guaranteed to be incompressible. The field retains the same band-limited proper-
ties of the original signal because differentiation is a linear high-pass filter in the frequency
domain, which does not add new frequencies by definition. This is sufficient to ensure
that the 2D vector field is band limited. Additionally, we observe that adding two signals
together is also linear, so the 3D case is also band limited.

From a visual perspective, w generates a vector field of randomly distributed, tightly
packed eddies of fixed size. Two bands of the function can be seen in Figure 4.1. Next, we
will use w to generate a vector field according to Kolmogorov’s theory of turbulence.

Kolmogorov Wavelet Turbulence: Kolmogorov famously showed that, for a homo-
geneous inviscid fluid, while the local structure of its velocity field may be perpetually
chaotic, the global energy spectrum approaches an equilibrium state that can be described
in very simple terms [Fri95]. The energy density e of some grid cell x is its kinetic energy,

e(x) =
1
2
|u(x)|2. (4.3)

The total energy et of a grid is then the sum over all grid cells. Kolmogorov’s theory deals
with the frequency spectrum of et . While the original theory used the Fourier transform, we
use a wavelet transform because it provides both spatial and frequency information. If we
compute et for each band k of û(x,k) we obtain an energy spectrum et(k). One of the key
results of Kolmogorov theory is that the energy spectrum of a turbulent fluid approaches a
five-thirds power distribution:

et(k) =Cε
2
3 k−

5
3 . (4.4)

Where C and ε are the Kolmogorov constant and the mean energy dissipation rate per unit
mass. The −5

3 scaling exponent holds for both Fourier and wavelet spectra [PPB95], and
the substitution is common in fluid dynamics [FKPG96].

Using our noise function w, we can procedurally construct a velocity field that pro-
duces this power distribution. We first observe that (4.4) can be rewritten as the recurrence
relation:

et(2k) = et(k)2−
5
3 , et(1) =Cε

2
3 .

The velocities can then be stated analogously using (4.3):

|û(x,2k)|= |û(x,k)|2− 5
6 , |û(x,1)|= 2

1
2 C

1
2 ε

2
6 . (4.5)

Since w(x) is band limited, it can be substituted in for û(x,k). Our final wavelet turbulence
function is then a series version of (4.5):

y(x) =
imax

∑
i=imin

w(2ix)2−
5
6 (i−imin). (4.6)

The variables [imin, imax] can be used to control the spectral bands that y(x) applies to.

CHAPTER 4. ADDING TURBULENT DETAIL 31

Discussion: Eqn. 4.6 shares much of the appeal of Perlin’s widely used turbulence()
function [Per85]. Perlin’s turbulence() also sums successive bands of a noise function
p(x) to obtain a “visually turbulent” scalar function. It can be stated in terms very similar
to ours:

turbulence(x) =
imax

∑
i=imin

p(2ix)
1
2

i−imin

. (4.7)

Our function is essentially a vector version of (4.7) that is also band-limited, guarantees
incompressibility, and produces the Kolmogorov power distribution. Interestingly, 2−

5
6 ≈

0.56, which is close to the heuristic 1
2 value used by Perlin. If scalar wavelet noise w were

used instead of p, and 2−
5
6 instead of 1

2 , a Kolmogorov-Obukhov-Corrsin scalar turbulence
spectrum would be obtained [SS00], which suggests a physical reason for Perlin’s success
at generating visually turbulent textures.

4.1.2 High-Resolution Fluid Synthesis

We now show how to use the turbulence function y(x) to add new high-frequency com-
ponents to u. First, we motivate our approach by discussing the intuition that underlies
Kolmogorov’s theory.

Background: Physically, the five-thirds distribution occurs because of scattering [Fri95].
As an eddy is advected by an incompressible field, it is stretched in one direction and com-
pressed in another. Eventually these deformations break the eddy into two eddies of half the
size. This process is called forward scattering. The opposite phenomena, back scattering,
occurs when smaller eddies combine to form larger ones, but forward scattering usually
dominates. Kolmogorov’s five-thirds spectrum describes the energy distribution after suffi-
cient time has passed that eddies injected at a fixed scale (the integral scale) have forward
scattered into higher frequencies. At much higher frequencies, viscosity becomes dominant,
so at a second scale (the ultraviolet cutoff) the energies start to dissipate at a much faster
rate than the five-thirds exponent. In graphics, dissipation damps out interesting fluid detail,
so the viscous term is usually dropped from the Navier-Stokes equations. Theoretically this
places the ultraviolet cutoff at the Nyquist limit, n

2 for an n3 mesh. As mentioned previously,
significant dissipation still occurs before the Nyquist limit, and many techniques have been
developed to address this issue. We instead focus on the separate problem of placing the
ultraviolet cutoff beyond the Nyquist limit.

Injecting Turbulence: Our goal is to synthesize a high-resolution N3 density field D
from a low-resolution n3 velocity field u. We use lowercase to denote variables at the lower
n3 resolution and uppercase for fields at the higher N3 resolution. We define an interpolation
function I (u,X) that interpolates u at the high-resolution location X, and A (U,D) as the
advection of D by U.

We will now focus on synthesizing an N3 velocity field U. The simplest method is inter-
polation: U(X) = I (u,X). This smooths out the velocities according to the interpolation
method, but it does not generate any new eddies in the new [n, N

2] spectral bands. A more
sophisticated method is to compute the energy et(

n
2) of the smallest eddies in u, and use it

32 Turbulent Fluids

to weight our turbulence function:

U(X) = I (u,X)+2−
5
6 · et

(n
2

)
·y(X) (4.8)

We only want to inject energy into the new [n, N
2] bands, so we set imin = log2 n and imax =

log2
N
2 in y(X). Intuitively, this approach assumes that the energy spectrum of u follows the

Kolmogorov distribution, computes the last resolved value, et(
n
2), and uses it to extrapolate

energies over the new [n, N
2] bands.

This method approximates the high-frequency components of U as fully developed,
homogeneous turbulence in a manner similar to Stam and Fiume [SF93]. While this can
produce acceptable results, because y(X) is weighted globally, it can spontaneously produce
small-scale eddies in regions where there is no larger-scale precursor. The weighting should
instead vary spatially, with turbulence added only when an eddy in u forward scatters into
a previously unresolvable frequency. The resulting turbulence then needs to be advected
along with the flow.

Detecting Scattering: Forward scattering can be detected by weighting y(X) by ê(x, n
2)

instead of et(
n
2). This locally extrapolates the energy spectrum using the same intuition as

Eqn. 4.8. Like Neyret [Ney03], we then advect a set of texture coordinates c = (cu,cv,cw)
along with the flow, and evaluate y using the advected value. If we detect that the local
texture coordinates are causing y to deviate too far outside of its original spectral band, they
are regenerated to the original local values. The method in Neyret [Ney03] uses a heuristic
strain criterion to trigger regeneration because it is intended for generic texture advection.
We are specifically advecting eddies, so we can use more physically based criteria. We
quantify the amount of local deformation using the Jacobian of the texture coordinates,
which we denote J(c(x)).

For the eigenvalues λ (c(x)) of J(c(x)), if max(|λ (c(x))|)≥ 2, from the physical stand-
point, the local eddy has forward scattered into a higher spectral band. If min(|λ (c(x))|)≤
1
2 , then the eddy has back scattered to a lower band. In both cases, the eddy is no longer
physically (or visually) coherent, so the texture coordinate should be regenerated.

Texture Distortion: As the advected texture coordinates stretch and rotate, y does as
well. This potentially violates incompressibility because, as the texture coordinates deform,
the derivatives [∂ω/∂cu, ∂ω/∂cv, ∂ω/∂cw] no longer correspond to derivatives along the
Cartesian axes, [∂ω/∂x, ∂ω/∂y, ∂ω/∂ z]. The derivatives can be obtained by projecting
the Cartesian axes into texture space and taking the directional derivative:[

∂ω

∂cu

∂ω

∂cv

∂ω

∂cw

]
J(c(x))−1 [vx vy vz

]
=

[
∂ω

∂x
∂ω

∂y
∂ω

∂ z

]
The resulting Cartesian derivatives are then used in (4.2). We denote a modified turbulence
function that takes in a texture coordinate and performs this projection as z(c).

Final Algorithm: Our final equation for generating a high-resolution velocity field is:

U(X) = I (u,X)+2−
5
6 I
(

ê
(

x,
n
2

)
,X
)

z(I (c,X)). (4.9)

CHAPTER 4. ADDING TURBULENT DETAIL 33

As before, the values of imin = log2 n and imax = log2
N
2 are used to evaluate z over the ap-

propriate spectral bands. The full algorithm is described below, and illustrated in Figure
4.1:
SYNTHESIZE-FLUID(u)
1 A (u,c)
2 Compute ê(x, n

2), J(c(x)), λ = λ (c(x))
3 if max(|λ |)≥ 2 or min(|λ)|)≤ 1

2
4 then Regenerate c(x).
5 Synthesize U using (4.9)
6 A (U,D)
7 return D

Complexity: Almost all the steps occur on the smaller n3 grid, with the N3 grid only
being used for the final generation of U and advection of D. The algorithm requires six
additional arrays of size n3: c, min(|λ |), max(|λ |) and ê. The values of J can be discarded
once λ is computed. The large N3 arrays for U and D are a drawback because they increase
memory use to O(N3). However, if A (U,D) is implemented using a semi-Lagrangian
scheme, only D is instantiated explicitly because each U(X) is discarded after computing
D(X). If particles are used to track the density, even the explicit D is unnecessary and O(n3)
memory use is achieved.

Obstacles and Control: Obstacles can be incorporated with minor modifications. The
main issue is that, if velocities inside an obstacle are set to zero, the discontinuity in u can
cause a jump in ê(x, n

2). To prevent this we extrapolate energy values from the obstacle
boundary inwards using a fast marching method prior to computing ê(x, n

2). In order to give
a user control over the turbulence, y can be weighted by an arbitrary volumetric function
v(X) in addition to ê(x, n

2). A user can amplify turbulence in regions by setting v(x)>1 or
can suppress detail by specifying v(x)<1. In either case, the initial ê(x, n

2) value provides a
good default setting.

34 Turbulent Fluids

Figure 4.2: Flow around a complex obstacle with grid-based densities. Wavelet turbulence
synthesized a 720×576×576 grid from a 80×64×64 grid. Each frame took less than two
minutes on an eight core workstation.

4.1.3 Results

The I method in §4.1.2 is ideally the wavelet upsampling method. However, we compared
the results of the upsampler with simple linear interpolation and found the difference negli-
gible, and so favored the slightly faster linear interpolation. The A method we used was the
MacCormack method of Selle et al. [SFK+08]. We used a standard fluid solver [FSJ01] for
our low- resolution simulations, but added a small amount of heat diffusion to stimulate ve-
locities outside of existing low-resolution densities. We used co-located grids to minimize
the number of times (4.9) is evaluated. On a staggered grid, cell-centered averages could be
computed and then sent to (4.9) to achieve similar savings.

Figure 4.3 shows a particle simulation of smoke. We are able to achieve a very high
effective resolution because a high-resolution grid is unnecessary. In Figures 4.2 and 4.4,
we show a simulations of smoke interacting with static obstacles. Complete descriptions
are available in the figure captions. Comparisons of our algorithm to Stam and Fiume

CHAPTER 4. ADDING TURBULENT DETAIL 35

Figure 4.3: Flow around a sphere with particle-based densities. The low resolution simula-
tion is shown in the left half of the top image.

[SF93], Bridson et al. [BHN07], and an explicit full-resolution simulation are available
in the enclosed video. For the explicit comparison, we downsampled an existing high-
resolution simulation and then re-synthesized the discarded bands. Our algorithm appears
to resolve more high-frequency detail, as it does not suffer from dissipation near the Nyquist
limit. Preliminary timings suggest our method is significantly faster than an equivalent full-
resolution simulation. For a 2503 simulation, the single-threaded version of our method ran
roughly seven times faster than the full solver.

All the steps of the complete algorithm only require local support, so the computa-
tion parallelizes trivially. We successfully achieved significant speedups by adding a single
OpenMP directive to the outermost loop. The main computation, the evaluation of z, runs
3.7 times faster on a four core workstation. This also suggests that the algorithm will per-
form very well on GPUs.

4.1.4 Conclusions

We have demonstrated a wavelet method that is suitable for adding detail to existing fluid
simulations as a user-controlled post-process. While we have demonstrated results using
Eulerian grids, all our method requires is the ability to point-sample a velocity field, so it
applies to Lagrangian simulations as well.

36 Turbulent Fluids

Figure 4.4: Flow around a sphere with grid-based densities. The low resolution simulation
is shown in the left half of the top image. Wavelet turbulence synthesized a 4003 grid from
a 503 grid. Each frame took an of average 30 seconds on a four core workstation.

CHAPTER 4. ADDING TURBULENT DETAIL 37

The method has several limitations. By design, it does not reproduce the results of ex-
plicit high-resolution simulations. This is partly because back scatter from higher bands into
the low-resolution simulation has been explicitly suppressed. A physically based method of
estimating back scatter could be developed to address this. Also, the quality of obstacle in-
teraction is totally dependant on the interaction quality at low-resolution. As low-resolution
results improve, our results will improve correspondingly. It is also possible for the wavelet
transform to introduce very small coefficients into the high-frequency bands, resulting in
non-zero turbulence breaking up an otherwise laminar flow. While clamping is a coarse
solution, the issue is worth further study.

Several issues were found to be visually unimportant. First, the coordinates c should be
regenerated on a per-band basis, as higher frequency bands deform faster. Per-band coor-
dinates were implemented and did not make an appreciable visual difference, so they were
discarded for simplicity. The more relevant guarantee that the bands of y do not impinge
on those of u remains intact. Second, a direct visualization of c shows significant popping
because we do not perform any blending during regeneration. However, the popping does
not introduce noticeable artifacts in the vector fields because it only occurs after the eddy
is no longer visually relevant. Finally, the non-uniform weighting of z by ê(x, n

2) intro-
duces some compressibility. The solution is to project all the energies into texture space
and weight the noise tile by ê(x, n

2). We found these extra computations unnecessary, as the
error introduced is small compared to the error of the advection method.

The per-band weights of our method can be modified arbitrarily, allowing for ‘spectral
shaping’ in the same way as Perlin noise, and allows many of the procedural texturing tricks
used for scalar textures to be applied to the vector regime. The Kolmogorov theory does not
account for chemical effects such as those in explosions, but since these effects primarily
introduce perturbations to the energy spectrum, they could potentially be captured through
shaping. Automatic methods of coupling the weights to existing methods [MTPS04] also
have the potential to generate very specific, fine-grained fluid detail.

4.2 Anisotropic Turbulence Modeling

In this chapter, we will have a look at turbulence synthesis and prediction techniques which
are able to represent complex features of turbulence without strong reliance on the base
solver, and which are suitable for GPGPU computation, based on the paper [PTC+10].
Such approaches are able to generate detailed turbulent simulations with millions of parti-
cles at high frame-rates. This makes them good candidates to enhance the realism of fluid
simulations in interactive applications, such as Computer Games.

It is generally very difficult to resolve the fine details of turbulent flows in a simula-
tion, and real-time systems impose even stricter limits on the simulation resolution used.
Real-time simulations would therefore be a prime field of application for turbulence syn-
thesis methods – as synthesizing turbulent detail is more efficient and scales better than the
direct simulation of this detail. However, turbulence prediction using real-time solvers is
non-trivial. The low resolution available to the base simulation will result in a coarse and
diffusive velocity field which dampens out flow instabilities. This means many types of
turbulence will not even be generated in this base simulation. Methods such as Wavelet
Turbulence Section 4.1.4 which directly rely on the base grid as a turbulence predictor will

38 Turbulent Fluids

Figure 4.5: Here, the simulation of the wake of a moving car is shown. The base simulation
in the top left pictures uses a resolution of only 32×8×32. This simulation is augmented
with the turbulence method presented in this section, with a varying number of particles
from 250k to 1M and 4M from left to right. For the simulation with 1M particles we
achieve 15 frames per second on average, including rendering. While the amount of detail
directly depends on the number of particles used, the overall flow remains consistent.

therefore fail in this scenario. In addition, the real-time constraint precludes the use of
high-resolution grids to store and render the generated turbulence.

Therefore, a synthesis method is chosen which uses an energy transfer model to predict
turbulence intensity even on low resolution grids. In particular, anisotropy is explicitly
modeled, which allows us to represent the anisotropic turbulence formation process using
turbulence synthesis, instead of relying on the simulation, which lowers the requirement
for base solver resolution. The method is designed to operate directly on the Lagrangian
markers used for rendering, and therefore allows us to perform synthesis where needed,
without relying on a high-res grid. The key element in this method is the offloading of
complexity from the fluid solver to the particle system and turbulence model, so the detail
of the simulation can easily by adjusting the number of particles, without changing the large
scale behavior.

4.2.1 Overview

To efficiently simulate small scale turbulence it is not feasible to directly represent the tur-
bulent motion using a high resolution velocity grid, as the computational effort increases
strongly with grid resolution. Instead, we describe the turbulence field by its statistical
properties, and synthesize turbulence only where needed. Our approach is based on a sep-
aration of the large scale dynamics from the small scale turbulence: large scales are com-
puted using a low resolution fluid solver, while the turbulent detail with anisotropic effects

CHAPTER 4. ADDING TURBULENT DETAIL 39

+

Grid Particle System
k

u’

U

S u

 Eulerian !uid
 solver

Energy transport
model

Turbulence
synthesis

Particle
advection

Iso

AnIso

q

Guiding
particles

U

Figure 4.6: An overview of the algorithm. A low resolution grid-based solver provides
a base velocity and strain field. For each particle, a turbulence model is computed, which
drives the turbulence synthesis with isotropic and anisotropic turbulence. The particles
velocity is given by the large scale velocity from the grid and the small scale turbulent
velocity.

is computed on the particle system. The particles coincide with the smoke particles used
for rendering, while the grid-based solver is used to obtain the large scale characteristics
of the flow. The turbulence is computed and synthesized directly on the particles, each of
which is influenced by a texture based turbulence representation, and stores a preferred axis
of rotation for anisotropic effects. An overview of our model is given in Fig. 4.6.

In Section 4.2.2 we describe the modified energy transport model used for prediction of
the spatial distribution of turbulence. This drives the synthesis model Section 4.2.2, which
is extended for anisotropy in Section 4.2.2. Section 4.2.3 discusses implementation details.
Finally, the complete model is tested in reference scenarios and compared to other methods
in Section 4.2.4.

4.2.2 Turbulence Model

Turbulence is described using an energy representation, as this allows us to adapt powerful
and proven transport models for our simulations. The spatial and temporal energy distribu-
tions driving the turbulence synthesis are obtained using a modified k–ε turbulence model
that we will explain in the following sections.

Energy transport

To simulate the energy dynamics, we use a modified version of the k–ε model by Launder
and Sharma [LS74]), which is one of the most widely used turbulence models in CFD. It
is a complete two-equation model, which means that unlike one-equation models requires
no additional problem-dependent assumptions such as mixing length, which are hard to
estimate for the general case. On the basis of a large scale flow field Ū, it models the two
variables k and ε on an averaged large scale. While k represents the turbulent kinetic energy
contained in the smaller scales, ε stands for the dissipation of the turbulence structures. The
k–ε model and other turbulence models are discussed in the theory section Section 2.2.1.

40 Turbulent Fluids

We start with the partial differential modeling equations of the k–ε model

∂k
∂ t

+ Ū∇k = ∇

(
νT

σ1
∇k
)
+P− ε (4.10)

∂ε

∂ t
+ Ū∇ε = ∇

(
νT

σ2
∇ε

)
+

ε

k
(C1P−C2ε) . (4.11)

Both equations share the same structure: the left-hand side contains an advection in the
mean flow field. The right-hand side of both equations consist of a viscous diffusion term,
a production and a dissipation term, in that order. The equations are coupled to the mean
flow field via the velocity field Ū and the mean flow strain Si j in the production term

P = 2νT ∑
i j

Si j
2 . (4.12)

Instead of discretizing and solving these PDEs on a Eulerian grid, we compute them
directly on the particle system. This means each particle stores a value of k and ε , while the
coupling parameters of mean flow velocity and mean flow strain are interpolated from the
base flow field. In this Lagrangian setting, (4.10) and (4.11) simplify, as the advection is
inherently handled by the motion of the particles with the flow. Next, let us reconsider the
role of the diffusion term. The turbulent viscosity νT is a virtual diffusion, which models
the averaged effect of the small-scale turbulent motion as a viscous diffusive effect on the
larger scale of the model. In contrast to CFD however, we solve the model equations and
track the turbulence properties on the particle set. The particle set is not only advected by
the averaged large-scale flow, but also contains a secondary advection by the synthesized
detail motion. This small-scale advection term causes turbulent mixing of the particles and
thus implicitly describes the behavior which is modeled by turbulent diffusion term for the
large scales in the standard k–ε model. Therefore, the turbulent viscosity term vanishes
in our representation. Avoiding these terms also allows us to track k and ε independently
for all particles and skip a costly communication step, which is important for GPGPU par-
allelization. So far, the isotropic version of our model therefore consists of the following
equations

Dk
Dt

= P− ε (4.13)

Dε

Dt
=

ε

k
(C1P−C2ε). (4.14)

Turbulence Synthesis

To obtain the detailed motion for the particle system, in addition to the base flow velocity,
a detail velocity component is evaluated directly on the particles. Instead of using the base
solver to predict the turbulence distribution (as in the previous chapter), we will now use
the energy transfer model described above to estimate the spatial distribution of turbulence.
First, let us discuss the energy model spectrum, and the new approach to compute isotropic
turbulence. Extensions for anisotropic effects will be presented in the following chapter.

CHAPTER 4. ADDING TURBULENT DETAIL 41

Figure 4.7: We apply the method to an accelerating train that, in the end, comes to an
abrupt halt. Due to the energy transport model, turbulence intensities correctly adapt to the
direction of the flow and the train’s velocity.

Model Spectrum Turbulent energy is usually studied with respect to the spatial scales
of the structures in the flow field. The production of turbulent energy is typically concen-
trated in the energy-containing range of a fluid, its large scales, while dissipation to heat is
growing stronger for the small scales. In between these two extrema lies the so called iner-
tial subrange, in which the predominant energy transport mechanism is forward-scattering,
transporting the energy from large to small scales. This transfer process can be modeled
with time dependence, e.g. using the transient model of Obukhov [Obu41]. However, the
model is often not practical, as the exponential nature of the transfer terms requires a high
spectral and temporal resolution for a stable solution [Pan71]. Fortunately the transfer phe-
nomena in a flow quickly drive the distribution to a stationary solution for fully-developed
turbulence. Therefore, practical approaches typically focus on the stationary solution only.
Our method concentrates on scales mostly within the inertial subrange for which the well
known Kolmogorov K41 law, as in [Fri95], is a reasonable approximation.

Synthesis To synthesize isotropic turbulence, frequency-matched curl noise (Section 2.4.1)
is used. Similar to [KTJG08] the spectrum is divided into N octaves and each band is syn-
thesized using the curl of band-limited wavelet noise [CD05] with band coefficients deter-
mined using the K41 law. In all our demos, we uses three octaves. The total velocity u of a
particle is then given by the large scale flow velocity Ū, interpolated from the low resolution
Eulerian solver, and the turbulence velocity:

u = Ū+2(αSk)
1
2

N

∑
i

ci(q)2−
5
6 i (4.15)

42 Turbulent Fluids

q u

Figure 4.8: Each particle owns a lookup coordinate into the turbulence velocity texture.
Both the particle position and the texture coordinate are advected by this velocity, allowing
coherent eddies to form.

Here, ci(q) = ∇×Ni(q) are the curl noise textures as described in Section 2.4.1. q rep-
resents a texture coordinate, and k denotes the energy of the largest-scale turbulence band.
Instead of storing the texture coordinate on a grid as in Kim et al. [KTJG08], in our case the
coordinate is stored directly on the particle system. As we only model forward scattering,
we can assume the turbulent detail map is passively advected in the large-scale flow. This
means that both particles position and the texture coordinate are updated using the turbulent
detail velocity, but only the particle position is advected using the large-scale flow velocity
Ū. This allows the formation of coherent turbulent whirls over multiple particles, as shown
in Fig. 4.8.

The scaling of the wavelet turbulence is chosen such that the largest synthesized vor-
tices cover 2–4 grid cells, as vortices on these scales are usually dampened out by numerical
viscosity of the Eulerian simulation which is better able to represent larger vortices. The
energy for the synthetic turbulence is directly given by the k− ε model with k = kiso + kan

for each particle, where kiso denotes the isotropic energy, and kan the anisotropic energy.
Assuming kan = 0 for now, the energy for the largest band is given by α kiso. The scaling
parameter α encodes the shape of the assumed energy spectrum, and can be used to artifi-
cially increase or decrease the strength of the turbulence. This is one of the two main tuning
parameters of this model.

Anisotropy

So far we have only considered isotropic turbulence. Some important effects, however, most
notably the production of turbulence, are highly anisotropic. Neglecting anisotropy would
therefore result in turbulence structures that are not fully connected to the motion of the
underlying base flow. Capturing anisotropy requires both a way to synthesize anisotropic
noise, as well as an energy transport model capable of providing the anisotropic energy
distribution. For the latter, Reynolds stress transport models as mentioned in Section 2.2.2
can be used. These models describe the evolution of tensor quantities, most notably the
Reynolds stress tensor. While the complete model is far too complex to be applied in real-
time applications, we will use selected elements of this theory to augment our model. Ac-

CHAPTER 4. ADDING TURBULENT DETAIL 43

cording to [Pop00], the most relevant case of anisotropy is the production of elongated
vortex structures due to shear effects. This happens, e.g., at boundaries and leads to rota-
tional velocities perpendicular to the shear plane, reducing the dimensionality of the effect
from three to two dimensions. Therefore, we consider the case of turbulence consisting
of an isotropic component with energy kiso that is handled as described above, and a com-
pletely anisotropic two-dimensional component with the energy vector kA. The direction
of kA defines the normal of a plane to which the anisotropic turbulence is confined. This is
equivalent to a preferred rotation axis, and the magnitude of kA defines the energy contained
in the anisotropic vortices.

Energy Dynamics While the k–ε equations (4.13),(4.14) still hold for the total energy
k = kiso + kan = kiso + |kA|, we need to determine the evolution equation of the anisotropic
component kA. The mechanisms here are similar to transport of total energy: there is a
production, a dissipation and additionally, a redistribution term. Analogous to (4.12), the
production vector is given by the turbulent viscosity νT and the strain. We use an eigen-
decomposition to divide the strain tensor into an anisotropic component, represented with
two-dimensional turbulence, and an isotropic component. In the following, λi denote the
eigenvalues and vi the eigenvectors of Si j, where λ1 has the biggest and λ3 the smallest
absolute value. Now consider the production ellipsoid defined by the vectors pi = 2νT λ 2

i vi.
The plane of two-dimensional shear stress is spanned by its two longest vectors p1, p2, while
the plane normal is given by v3. The isotropic component, on the other hand, is the sphere
spanned by the smallest common component of all vectors, that is |p3|. Therefore, we can
define the anisotropic production vector to be

PA = 2νT (λ
2
1 +λ

2
2 −2λ

2
3)v3 . (4.16)

While in areas of high production, e.g. near obstacle boundaries, anisotropic effects can be
observed, the turbulence further away from these regions is largely isotropic. This is due
to the fact that transport processes lead to a quick isotropization of the turbulent flow. This
is true for spatial turbulent transport as well for transport through the energy cascade. The
LRR-IP model mentioned in Section 2.2.2 models this isotropization. If we transfer this
model to our turbulence setting, it yields an energy transfer rate of

DkA

Dt
= (1−CA)PA−CR

ε

k
kA . (4.17)

from |kA| to kiso. The standard model constants are defined as CA = 0.6, CR = 1.8. Here, the
dissipation ε is generally assumed to be isotropic, as it occurs on very small scales, while
the anisotropic vortices are initiated primarily on the larger scales. This means that it is
sufficient to solve the isotropic (4.14) for dissipation.

Synthesis We now extend the synthesis algorithm from Section 4.2.2 for anisotropy by
including additional turbulence bands. As the turbulent kinetic energy k is composed of an
isotropic component kiso and an anisotropic component kA, we will compose the synthesis
term using an isotropic and an anisotropic part. The isotropic part is equivalent to (4.15)
with kiso instead of the total energy k. For the anisotropic component, on the other hand, the

44 Turbulent Fluids

2D curl noise field

c2D(q,kA) = ∇×N(q)
kA

|kA|
(4.18)

is used. It is aligned to kA, and thus generates turbulent eddies in the plane normal to
the anisotropy vector. For easier precomputation, we effectively use the field c2D(q) =
c2D(q,ez) and then apply the rotation operator R(kA) = Rot(ez ← kA) during the lookup.
The total velocity u of a particle can therefore be determined by the equation

u = Ū+2(α kiso)
1
2

N

∑
i

ci(q)2−
5
6 i+

2 |α kA|
1
2

M

∑
j

R(kA)c2D
j (q)2−

5
6 j (4.19)

with kiso = k−|kA|. As anisotropy decays quickly in the spectral cascade, we have found
that it is sufficient to use one band of anisotropic turbulence for the largest scale.

4.2.3 Implementation

For real-time performance, both the Eulerian fluid simulation and the particle based turbu-
lence model run on the GPU. Even if the base simulation can be lightweight and quickly
calculated on the CPU, the memory transfer overhead is too big for interactive scenarios.

For the underlying Eulerian solver, we use a typical MAC discretization with second
order semi-Lagrangian advection, as described in [Bri08] and [SFK+08]. As PCG, the
standard technique for solving the pressure projection on the CPU does not scale well on
GPU hardware, the following examples makes use of a GPU multi-grid solver for comput-
ing the pressure correction, as described in [CTG10]. For the Lagrangian turbulence model,
each particle stores its position and velocity as well as the turbulence parameters k,ε,kA and
q. The evolution of these variables is given by integrating (4.13), (4.14), (4.17), and evalu-
ating (4.19), respectively, on the particle system. We use a simple forward Euler integrator
for all of these equations. The strain eigen-decomposition required for (4.16) is calculated
on each grid cell. As the 3× 3 strain tensor is symmetric, eigenvalues can be found effi-
ciently using the analytic formulation [Smi61]. Our model is designed to work without any
particle-particle interactions, and only a few linear interpolations of data from simulation
grid for velocity and strain are necessary to compute the particle dynamics. This makes
it very efficient to compute even in massively parallel settings. In our setup, the smoke is
rendered online using half-angle volumetric shadowing by Ikits et al. [IKLH04], enabling
the complete framework to run at interactive frame-rates and therefore providing immediate
results. Below, we will discuss important details concerning stability and initialization.

Stability The k–ε model, being a coupled system of two PDEs in its original form, has
inherent stability problems. Especially k in the denominator of (4.14) causes instabilities for
flows with low turbulence. Therefore, the model is usually modified to guarantee stability.
A commonly used approach is a low-Reynolds number treatment, as described in [Pop00].
We use a simplified version of this approach to ensure that a minimal turbulent energy is
always present in the simulation.

CHAPTER 4. ADDING TURBULENT DETAIL 45

A meaningful range for the turbulent energy k is given by k = 3
2U0

2I2 , with the turbulent
intensity I ∈ [0 . . .1]. Here, U0 is the characteristic velocity scale, which can be determined
from the simulation parameters, e.g., the maximal speed of the car in Fig. 4.5. As suggested
in the field of aerodynamics research [SR07], we use a value of Imin = 10−3 as a minimal
turbulent intensity, while, naturally, the maximal intensity is given by Imax = 1. By restrict-
ing the simulation to this meaningful range of values, the system quickly recovers from
overshoots and is stable for arbitrary time steps.

Similarly, we can define a corresponding range for the values of ε . We obtain a mini-
mum dissipation by specifying a minimal turbulent viscosity equal to the molecular viscos-
ity of air νair, which represents a natural lower bound for the viscosity of smoke simulations.
Using the definition of turbulent viscosity (2.9) for the k–ε model, we obtain εmin =Cµ

kmin
2

νair
.

The maximal dissipation, on the other hand, can be derived on the basis of a minimal turbu-
lent length scale Lmin, and is given by εmax =Cµ

3
4 kmax

3
2 1

Lmin
. We use a minimal length scale

of 1
10 of a grid cell in our simulations.
Note that these ranges for turbulent energy and dissipation are useful when allowing

users to interact with the simulation. They can, e.g., provide artists with intuitive parameter
ranges for setting up turbulence sources in a scene.

Initial state We seed the particles at the smoke inflow of the scene. As this will usually
not coincide with the fluid inflow region, we need to specify sensible initial values for the
turbulence parameters of these particles. In cases where the inlet is in a low-turbulence area,
we can use the lower boundaries k0 and ε0 as initial values. If, on the other hand, the smoke
should be generated in a turbulent region, we need to specify initial energy levels, as we
have no information about the history of the particles. This can be achieved with different
approaches. We estimate typical turbulent intensities for k and ε similar to the estimation of
maximal bounds described in the previous paragraph, and use these values for initializing
the particles. Here, the minimal length scale Linlet is another important parameter of our
model, and can be used to tune the amount of turbulence injected into the scene. Another
possibility is to initialize particles with the lower bounds k0 and ε0, and then perform a small
number of iterations of the turbulence model on the newly seeded particles.

Texture Advection Naturally, the structure of the turbulence should deform as given by
the motion of the flow. However, using a naive approach, e.g., updating the local texture
coordinate q of each particle using only the large scale motion with Dq

Dt = u− Ū quickly
destroys coherence of the turbulent structures. By compression and mixing in flow, adjacent
particles will eventually own strongly divergent texture coordinates. This destroys coherent
structures as in Fig. 4.8 and will inevitably lead to uniform noise instead of recognizable
swirling motions. This loss of coherence is closely related to the problem of texture field
deformation in methods such as Wavelet Turbulence (Section 4.1.4). We however do not
want to rely on local resetting, as by construction, our aim is to update each particle without
having to know about its neighbors. It is therefore undesirable to perform any kind of spatial
interpolation on the particles.

There are two viable approaches to combat this problem. The first are guiding particles,
as presented in the original paper [PTC+10]. They to preserve the local coherence of the

46 Turbulent Fluids

1: // Grid-based Fluid solver
2: Semi-Lagrangian advection of Ū
3: Pressure projection
4: Calculate strain field Si j

5:

6: Seed and initialize new particles
7:

8: for each particle do
9: Sample U , Si j at particle position x

10:

11: // Energy dynamics
12: Compute turbulent viscosity: νT ←Cµ

k2

ε

13: Compute production: P←(4.16)
14: Integrate k← k+∆t (|P|− ε)
15: Integrate ε ← ε +∆t ε

k (C1P−C2ε)
16: Energy transfer: kA← kA +∆t (1−C2)P−∆t CR

ε

k kA
17: Stabilize k,ε using kmin,max and εmin,max

18:

19: // Motion equations
20: Synthesize velocity: u← (4.19)
21: Integrate x← x+∆t u
22: Integrate q← q+∆t (qG +x−xG)
23: end for
24: Advect guiding particles in flow field Ū
25:

26: Render simulation data

Figure 4.9: Pseudo-code for the simulation loop.

turbulence. Guiding particles are seeded together with the actual smoke particles, and as-
signed to a small group of smoke particles based on local neighborhood. On seeding, each
guiding particle is assigned a fixed texture coordinate qG based on its world coordinate,
which acts as a local frame of reference for the texture coordinates of the attached smoke
particles (Fig. 4.10).

As the guiding particles represent the motion of the turbulence textures, they are ad-
vected using only the large scale flow from the underlying simulation. The local texture
coordinate of each smoke particle can now be computed using the local position x with
respect to the assigned guiding particle as q = x− xG + qG. This approach allows us to
efficiently preserve locality while adhering the turbulence motion to the large scale flow.
While coherence and incompressibility are exactly preserved within the particle cloud of
a guiding particle, coherence loss and small-scale deviations from incompressibility may
appear between these clouds. Therefore, guiding particles should be seeded such that the
associated clouds are compact, sized above turbulence length scale, and cover all flow paths.
In the following example scenes, we seed between 1 and 10 guiding particles per timestep,

CHAPTER 4. ADDING TURBULENT DETAIL 47

qG

qG

Figure 4.10: Two groups of particles (blue, green) with an associated guiding particle are
shown. The texture coordinate lookup of the individual particles is performed by taking the
geometric distance to the guiding particle, and the associated guiding texture coordinate qG,
which is the same for the cluster. This way, texture coordinates will stay coherent within
the cluster.

randomly distributed across the seeding area.
For complex flows, it can be hard to find a good compromise on guiding particle den-

sity. In our experience, the approach of alternating global coordinate resetting as described
in Section 2.4.2 using two sets of texture coordinates is often the better choice; While it
introduces some artificial diffusion, it provides coherence even under strong deformations
and is easier to tune. If both methods prove unsufficient, it might also be worthwhile to
investigate more sophisticated models for texture advection, e.g., [YNBH09].

The complete simulation loop is specified in the pseudo-code in Fig. 4.9.

4.2.4 Results and Discussion

In the following, we will discuss several simulations to highlight the features of this model
and differences to previous work.

Comparison with reference simulation In order to evaluate realism, we simulate the
flow in the wake of a car (Fig. 4.11). The simulation uses 1M particles, and a base solver
resolution of 32× 8× 32. We compare our model to a 256× 64× 256 high-resolution
reference solver. While the exact form of the turbulence is different between our method
and the reference solver, we observe that both show a similar level of small-scale detail.

Energy model The energy model is tested by simulating a flow over a ramp shown in
Fig. 4.13. This setup uses a resolution of the base solver of 64×16×16 grid cells. When
using low grid resolutions such as this, flow instabilities induced by obstacles are dampened
out, and no turbulence is induced. This effect can be seen in the top image of Fig. 4.13. In
this example, turbulence should develop to the left of the ramp as the flow travels from right
to left. Our method tracks causality in the production of turbulence, resulting in a correct
swirling motion perpendicular to the edge of the step, purely behind the sharp edge. Turbu-
lence synthesis methods such as Wavelet Turbulence that amplify or derive turbulent energy
directly from the computed velocity field do not track the causality in the production of

48 Turbulent Fluids

Figure 4.11: The wake behind a car is simulated with 1M particles. Our method (top) and
the reference high-resolution solver (bottom) show similar small-scale details.

turbulence. In this case, Wavelet turbulence incorrectly produces turbulence in the laminar
region right of the edge.

In a more complex example shown in Fig. 4.7, we simulate a train accelerating and
braking. Here, the source of turbulence is not induced by obstacles, as in the ramp example,
but is due to the pulsed emission of smoke from the chimney. This is also inherently handled
by the production term of our energy model. Also, correct adaptation of turbulence intensity
to the train’s velocity can be observed.

Anisotropy The effect of anisotropic turbulence is demonstrated in a simulation of a
strongly turbulent flow past a cylinder. We seed a thin horizontal sheet of smoke to the
right, visualizing only a slice of the 3D problem. The side-view of the simulation, with
anisotropy handling disabled (top) and enabled (bottom) is shown in Fig. 4.12. If anisotropy
is not handled, isotropic turbulence is injected immediately downstream of the obstacle.
This leads to strong disturbances normal to the plane of motion, as can be seen in the top
image of Fig. 4.12. Our model predicts a zone of high anisotropy behind the cylinder. Here,
the turbulence is expected to be confined within the smoke sheet, therefore integrating with
the large scale Karman vortices, before becoming more and more isotropic, towards the left
side of the lower image.

CHAPTER 4. ADDING TURBULENT DETAIL 49

isotropic

anisotropic

Figure 4.12: In this example, a thin sheet of smoke flows around a cylinder. Here, the side
view is depicted. Using only the isotropic turbulence model (top), the induced turbulence
disturbs the flow, as can be seen by the unrealistic spikes left of the cylinder. Using our
anisotropy extensions (bottom), the turbulence integrates into the overall flow, and a smooth
transition to full isotropic turbulence can be observed.

Scalability To demonstrate the scalability of our model, we simulate a smoke wake
behind a car with varying particle numbers, while keeping the grid resolution fixed at
32×8×32. As can be seen in Fig. 4.5, the large scale flow remains consistent in all cases,
while the amount detail is controlled by the number of particles. As it is sufficient to use
a very low grid resolution for the Eulerian solver in all examples, the performance scales
approximately linearly in the number of particles. With one million particles, our model
achieves 15 frame per second on average (including rendering). Increasing the number of
particles to four millions, we still achieve 4.7 frames per second. The exact numbers can
be found in Table 4.1. This means this model is able to compute accurate turbulence dy-
namics efficiently. GPU-based methods relying on grids are strongly limited in detail due to
the available memory, the Eulerian solver of our implementation, e.g., is limited to a 1283

resolution using the same hardware. Using the particle based approach we are, on the other
hand, able to achieve very detailed motion in an efficient manner.

Our method also opens up the possibility to compute and synthesize turbulence outside
the grid-based solver. If no underlying grid is present, zero turbulence production and
the last encountered large-scale velocity are taken as an input for the calculation. This
allows a smoke volume to leave the domain of the Eulerian simulation, while still exhibiting
turbulent motion, as shown in Fig. 4.14. This is very useful for interactive applications

50 Turbulent Fluids

Figure 4.13: A flow over a ramp is simulated. The low-resolution solver (top) does not
represent the flow instability after the edge of the ramp. Therefore methods like Wavelet
Turbulence (middle) that depend on the solver for energy calculations also fail to catch
the correct turbulence seeding region. Our model (bottom) is able to predict turbulence
production due to a full energy transport model.

where the spatial limits of the domain should be hidden from the user.
For all of our examples, we vary only the α and Lin f low parameters. Recall that α

controls the overall amount of turbulence and Lin f low controls turbulence at an inlet. Varying
only these parameters allows for artistic control while retaining visual realism.

4.2.5 Conclusions

In this chapter, a scalable algorithm for simulating anisotropic turbulence was introduced.
By separating the system into a grid-based solver and a decoupled particle system without
particle-particle interactions, our method is highly efficient on parallel systems. The algo-
rithm is driven by an anisotropic energy transport mechanism, and handles both free stream
turbulence production and turbulence induced by walls. Turbulence is synthesized directly
on the rendered particles, which allows the simulation to handle the full detail that will
later on be displayed, while not wasting any processor cycles for regions that are not visi-
ble. This way, we achieve frame rates of more than 15 frames per second even for detailed
simulations with millions of particles.

CHAPTER 4. ADDING TURBULENT DETAIL 51

Figure 4.14: The smoke in this turbulent wake is represented using a particle system. As we
synthesize turbulence directly on the particle system, the particles may leave the simulation
domain, shown as a red box in this image.

On the other hand, the approach is restricted to single phase fluid simulations. It does
also not perform well for large, non-turbulent smoke volumes, which can have unnecessarily
large numbers of particles inside the volume that hardly move.

An interesting addition to this model could be the adaptation in a LOD sence for large
interactive scenes, as the modularity of our approach makes it highly suitable to combine
different simulation approaches. This will allow a smooth transition from a simple static
flow field, to a Eulerian fluid simulation, while finally adding detail with the anisotropic
Lagrangian turbulence model.

A limitation is that this algorithm can exhibit artifacts when the underlying simulation
is not able to resolve all features of a flow, e.g., in the presence of very thin objects.

Finally, this approach shares the limitations of all statistical turbulence synthesis meth-
ods, in that turbulence transition is not well-represented. The breakdown of coherent struc-
tures to turbulence is not easily modeled in a statistical manner. As our extension for
anisotropy guarantees that the overall shape of the turbulence distribution behaves accord-
ingly, it is able to produce convincing results for fast-developing turbulence. The statistical
approach will fail, however, for slow turbulence breakdown, which is visible e.g. in the
interface of dense buoyant smoke plumes, or in instable flows.

The methods developed in the the following chapters will address this inherent issue.
By directly modeling the turbulence transition process using vortex methods, they allow
to represent a wide range of turbulent effects that have not been accessible to turbulence
methods.

52 Turbulent Fluids

Setup Grid res. #part α Lin Base Part. Total
[ms] [ms] [fps]

Car (Fig. 4.5) 32×8×32 250k 2.5 0.04 20 7.6 34
Car 32×8×32 1M 2.5 0.04 19 27 15
Car 32×8×32 4M 2.5 0.04 20 92 4.9
Car (no turb.) 32×8×32 1M – – 19 6.4 20
Ramp (Fig. 4.13) 64×16×16 1M 2.6 0.08 19 23 17
Aniso. (Fig. 4.12) 64×16×16 1M 15.0 0.1 19 27 15
Iso. (Fig. 4.12) 64×16×16 1M 15.0 0.1 14 27 16
Smoke gun 48×48×48 1M 4.2 0.02 25 18 18
Train (Fig. 4.7) 64×32×16 6M 3.0 0.05 44 161 3.7

Table 4.1: Performance numbers for our simulation runs. Timings are given per frame.
Base refers to the grid-based solver, while Part. represents turbulence computation, syn-
thesis and particle system update. The total framerate includes both simulation and online
rendering. All simulations were run on a NVidia GTX 480 graphics card on a workstation
with an Intel Core i7 CPU and 8GB of RAM.

4.3 Obstacle-Induced Turbulence

Many interesting forms of turbulent flow originate from the complex interaction of flows
with obstacles. At the wall of these obstacles, a very thin boundary layer forms, which may
separate from the wall, become instable and form free turbulence. As these processes occur
on a lengthscale below the resolution of most simulations, the turbulence generation process
is often misrepresented or simply omitted. Even turbulence reference scenarios from CFD,
such as driven cavities or passive grids are only represented correctly using very expensive
high-resolution simulations.

In this chapter, we will introduce a method to model this process and predict turbulence
generation by flow obstacles, as presented in [PTSG09]. Instead of synthesizing turbulence
using a frequency-matched curl noise texture as in Section 4.2, we will directly represent
the turbulence eddies using vortex particles, which enables coherent anisotropic structures
in e.g. turbulence transition. Together with prediction, this will allow us to represent a wider
range of complex turbulence effects, which can not be achieved using the general-purpose
turbulence model presented in the previous chapter. As we are able to precompute the
formation process for a given obstacle geometry, we can also predict turbulence generation
from obstacles thinner than grid resolution (Fig. 4.15).

While turbulence detail enhancement using vortex particles has been previously studied
in Graphics [SRF05], these methods deal with the preservation of vortices manually injected
in the flow. We use an enhanced version of the vortex particle approach and combine it
with turbulence methods to guarantee that particles are accurately seeded and the energy
dynamic adheres to what is predicted by CFD turbulence theory. Moving the computations
for the generation of turbulence into a preprocessing step allows us to quickly set up new
simulations around a given object.

CHAPTER 4. ADDING TURBULENT DETAIL 53

Figure 4.15: This algorithm allows us to precompute detailed boundary layer data and
efficiently reuse it for new simulations. We are able to generate turbulent vortices taking
into account the relative velocity of an obstacle in the flow. Here, we apply the algorithm to
a very thin object that is barely represented on the simulation grid.

4.3.1 Overview

The algorithm presented consists of a precomputation step for the scene geometry, and a
simulation step.

The precomputation step captures the characteristics of the boundary layer around the
object, and stores it for different sets of flow directions. This allows us to purely resolve the
geometry of the object with the precomputation, instead of having to fully resolve the actual
flow velocity in the often very thin boundary layer. For this precomputation, we assume that
an object can be characterized by a relative translational and rotational velocity, allowing
for simulations of rigid body motion or static flows of arbitrary direction.

The main simulation method consists of a standard, grid-based fluid solver, e.g. ac-
cording to Stam [Sta99], augmented with a turbulence representation. The precomputed
boundary layer data is used to efficiently calculate where vortices are created around the
object in a separate simulation. We compute the evolution of boundary layer around the
object, and estimate regions where this field becomes unstable to form actual turbulent vor-
tices. The turbulent vortices are represented using an improved variant of vortex particles
[SRF05], which induce rotation in the flow around the particle position. While the vor-
tex particles are created based on boundary layer vorticity, their dynamics is based on the
vorticity equation. In an additional step, we re-mesh the particles and adjust the particle

54 Turbulent Fluids

2) Compute Flow Field 3) Re-use Boundary Layer
and Compute Separation

4) Identify Turbulent
Transition Regions

1) Pre-compute Arti�cial
Boundary Layers

5) Simulate Vortex
Dynamics

Figure 4.16: An overview of different steps of the algorithm. After precomputing the
artificial boundary layer (1), we run or not a new simulation (2) and apply the confined
vorticity from the precomputation (3). Regions transitioning into turbulence are identified
with an approximation of the Reynolds stress (4). This results in the creation of vortex
particles. Their dynamics are computed in an additional step (5).

kernel to ensure a correct turbulent energy distribution. The resulting vorticity is finally
reconstructed onto a grid with higher resolution than the base simulation.

The key point of this chapter is the turbulence estimation and vortex particle seeding
mechanism. In Section 4.3.3, we will develop a theory for this. In Section 4.3.4, the dy-
namics of the vortex particles are described, and the coupling of the vortex particles to the
flow field is explained. The actual simulation loop and implementation details are discussed
in Section 4.3.5. The simulation loop is also visualized in Fig. 4.16. Finally, we will evalu-
ate the method and present results in Section 4.3.6.

4.3.2 Vorticity Formulation

Vorticity is defined as the curl of the velocity field ωωω = ∇×u and is a description of flow ro-
tation. This representation is advantageous especially for describing turbulent flows, which
consist of small rotational whirls, as these structures have a more compact support in vor-
ticity than in velocity formulation. By applying the curl operator to the NS equations, we
obtain the vorticity equation

Dωωω

dt
= ωωω ·∇u+ν∇

2
ωωω +

1
ρ

∇ρ ×
(

g+
1
ρ

∇p
)
. (4.20)

The substantial derivative on the left-hand side includes vorticity advection, while the right-
hand side consists of the vortex stretching, diffusion and baroclinity terms. Vortex stretch-
ing describes the deformation of the vorticity field under the influence of the velocity field,
while baroclinity models its behavior across density gradients and gravity. One implication
of this baroclinity term is buoyant movement, which in the vorticity formulation is repre-
sented by a sheet of vorticity at the density gradient or interface, yielding e.g. the typical
vortex rings for rising smoke.

The continuity equation (2.2) on the other hand is implicitly satisfied, as rotational fields
are divergence-free. We also note that the pressure term vanishes for flows with constant

CHAPTER 4. ADDING TURBULENT DETAIL 55

densities. However, advection and vortex stretching require a velocity field, which has to be
obtained by integrating the vorticity field.

As the Helmholtz theorem shows, we can decompose a given velocity field u into a curl-
free component uΦ and a divergence-free component uΨ. The divergence-free component
can be related to a vector potential Ψ and the vorticity by

uΨ = ∇×Ψ , ωωω = ∇×uΨ .

Applying the continuity equation for incompressible fluids, we find that uΦ has to be con-
stant. Therefore the velocity field is completely described by vorticity or the vector potential
Ψ. This is strictly only true for the free-space case, however. With limited domains, as en-
countered in all grid-based simulations, additional terms are needed to describe the behavior
at the domain boundaries, if velocity does not vanish there. Finally, to integrate the velocity
field induced by vorticity we can use the free-space solution to the rotation operator, the
Biot-Savart law

uΨ(x) =
1

4π

∫
ωωω(x′)× x−x′

|x−x′|3
dx′ . (4.21)

Vortons The most popular and well-researched primitive to represent vorticity is the
point element Vorton [Hal79]. Each vorton i owns a position xi and its associated vorticity
ωωω i. The total vorticity field of the system is given by

ωωω(x) = ∑
i

ωωω iδ (x−xi) (4.22)

using Dirac’s delta function δ . In many methods, an additional particle radius or kernel is
used. Vortons are the most general primitive and are especially suitable for highly turbulent
flows. In these flows, coherent structures break down to small isolated vortices, and the role
of connectivity is diminished.

The motion equation for the vortons is given by (4.20). While advection is handled
implicitly, the right-hand side terms are not easily expressed in terms of a particle system.
The vortex stretching term can be evaluated by explicitly calculating the velocity gradient
tensor at the particle position. However, this has been shown to produce divergent flow
fields [CK99]. One way to regularize this problem is to use an intermediary grid [MG96].
The diffusion term can be implemented by core-spreading, that is increasing the particles
radius [Leo80] or particle strength exchange methods [DMG89]. Full vorton models re-
quire overlapping particles for convergence, therefore re-meshing is needed to ensure full
coverage. While local re-meshing methods do exist [SvD96], most vorton methods use a
form of global re-meshing [CK99].

The most direct approach to obtain a velocity field from a vorton system is the dis-
cretization of (4.21)

uΨ(x) =
1

4π
∑

i
ωωω i×

xi−x
|xi−x|3

. (4.23)

This equation is however singular for points close to vortons. Chorin et al. [CB73] therefore
introduced a regularization mechanism

ureg(x) =
1

4π
∑

i
ωωω i×

xi−x
(|xi−x|2 +α2

R)
3
2

. (4.24)

56 Turbulent Fluids

The regularization parameter αR effectively controls the minimal size of the generated vor-
tices. As an alternative to direct integration, the particles can be projected on an auxiliary
grid using a smoothing kernel. On the grid, the velocity can be obtained by solving the Pois-
son equation for the vector potential as in the Eulerian case. This hybrid method is called
Vortex-in-Cell (VIC) and can be used for all vortex primitives [CP03]. The grid and particle
projection kernel act as an implicit regularization, so no additional terms are needed.

In Graphics, Vortons are called Vortex Particles, and mostly used in a sparse setting.
Therefore, less strict re-meshing is used. Also, the diffusion term is commonly ignored, for
the same reasons as in the velocity form of the NS equations. The original approach for
vortex particles [SRF05] does not use velocity integration using the Biot-Savart law, but a
confinement force that acts on the underlying simulation, in a similar manner as vorticity
confinement [FSJ01]

F(x) = ε ∑
i

xi−x
|xi−x|

×ωωω i δ (xi−x) (4.25)

where ε is the confinement strength. This treatment ensures only vorticity not already
present in the underlying simulation is added, but suffers from instabilities if ε is chosen in-
appropriately. We therefore chose to use a modified version of this vortex particle concept,
which will be introduced in Section 4.3.4.

4.3.3 Wall-Induced Turbulence

While turbulence in flows is generated by various processes, a very common and visually
important one is turbulence generation at the flow boundaries. Therefore, our algorithms
explicitly model this important process. In this section, our turbulence estimation method
is introduced. It bases on turbulence modeling and wall flow theory, which is introduced in
Section 2.2. A more detailed account can be found in the book by Pope [Pop00].

Generation of turbulence

In wall-bounded flows, wall friction enforces a tangential flow velocity of zero at the wall.
This leads to the formation of a thin layer with reduced flow speed, called the boundary
layer. Fig. 4.17 shows a velocity profile in the boundary layer. It has been shown that this
profile is equivalent for all wall-bound flows when using normalized units. This universal
law of the wall was stated by van Driest in [Dri56].

The gradient of tangential flow velocity in the boundary layer leads to the creation of a
thin sheet of vorticity ωωω = ∇×u. For planar walls, this vorticity remains mostly confined
to the boundary layer, and we will thus refer to it as confined vorticity. At regions of high
flow instability however, vorticity may be ejected from the boundary layer and enter the
flow as turbulence. This happens e.g. at sharp edges, where the boundary layer is separated
from the wall, and likely to become unstable, or when other turbulent structures disturb the
boundary layer. This process of turbulence formation is referred to as roll-up, and is the
predominant mechanism of wall-induced turbulence generation [JO93]. There is no theory
quantitatively describing the boundary layer roll-up process. We will therefore model this
process in a statistical sense, as explained below.

CHAPTER 4. ADDING TURBULENT DETAIL 57

Turbulence modeling As in the previous chapter, we base our approach on CFD turbu-
lence modeling techniques. However, we will only model the region close to the wall (the
boundary layer) using RANS-type turbulence models – the free-space turbulence is then
handled using a vorticity model. First, we will describe how we model the boundary layer.

Boundary layer modeling In order to accurately model wall-induced turbulence for-
mation, we need to track the confined vorticity, simulate the boundary layer separation and
finally identify the transition points to turbulence.

As the boundary layer attached to an obstacle is very thin (smaller than simulation grid
resolution in most cases), it is difficult to directly measure the confined vorticity. Instead,
we leverage the universal law of the wall, and note that the confined vorticity only depends
on the velocity scale and materials constants. For each point in the wall-attached boundary
layer we therefore determine the confined vorticity as

ωωωABL = β (Us×n) . (4.26)

The velocity scale Us is the tangential component of the averaged flow velocity just outside
the boundary layer. The constant β accounts for the two material constants, skin friction
coefficient and the fluid viscosity. In our model, β is a user-defined parameter. We call the
resulting field ωωωABL the artificial boundary layer.

On the other hand, boundary layer separation is an advective transport process. If the
wall-attached part of the artificial boundary layer is known, then the separation plume can
be derived by advecting this field with the flow field during the simulation run.

The last missing part is to identify regions where the separated boundary layer becomes
unstable, and the confined vorticity ωωωABL transitions to free turbulence. The anisotropic part
of the Reynolds tensor ai j, which is responsible for the production of turbulence, is a good
indicator for such transition regions. We therefore define a transition probability density
pT , which is used to seed turbulence,

pT = cP ∆t
‖ai j‖
|U0|2

(4.27)

such that regions with high Reynolds stresses are likely transition regions. Here, ‖·‖ denotes
the Euclidean matrix norm. Reynolds stresses are normalized to a uniform scale by the
inflow velocity U0, and cP is a parameter to control the seeding granularity. If using varying
time-steps, pT has to be multiplied by ∆t to ensure consistent behavior. In the following, we
will describe how to compute the Reynolds stress tensor based on stresses in the averaged
flow field.

Reynolds models The anisotropic component ai j of the Reynolds stress tensor Ri j can
be expressed using the turbulent viscosity hypothesis

ai j =−2νT Si j , (4.28)

where νT is the turbulent viscosity and Si j denotes the strain tensor. The turbulent viscosity
can be expressed in terms of a mixing length lm. We chose the model of Baldwin [BL78]
for modeling the turbulent viscosity which states

νT ≈ lm2‖Ωi j‖ . (4.29)

58 Turbulent Fluids

tangential �ow velocity

di
st

an
ce

 to
 w

al
l

viscous
sublayer

bu�er
layer

log-law
region

Figure 4.17: The mean velocity profile near a wall (in normalized units) has the form
shown above. This has been confirmed in numerous experiments, and was formulated as a
universal law by van Driest.

with the rotation tensor Ωi j. While the mixing length is not known for the general case, we
only need to model the near-wall region, where lm is known to be linear in wall distance. We
could also have used a complete model such as k–ε – this would however mean modeling
the whole domain and tuning inflow parameters, which we can avoid here. Using these
standard methods, it is possible to predict the generation of turbulence using only the non-
turbulent mean flow velocities.

However, the presented Reynolds stress model requires a high grid resolution around
the boundaries to capture the thin boundary layer accurately. In a typical fluid simulation in
graphics, the boundary layer thickness is often smaller than a grid cell. Consequently, the
discrete S and Ω operators will fail to capture the desired effect, or even cause instabilities
due to highly discontinuous gradients, as also mentioned by, e.g. Narain [NSCL08].

We therefore propose two changes to this model. First, we know that in regimes close
to a wall, the norm of the rotation tensor equals the norm of the confined boundary layer
vorticity, ‖Ωi j‖ = |ωωωABL|. Also, we assume that ‖Si j‖ ≈ ‖Ωi j‖. This is a good approxi-
mation if the velocity gradient is dominated by the component normal to the wall [Pop00],
which, except for sharp corners, is usually the case in the near-wall region. With these as-
sumptions, we can rewrite the Reynolds stress without the problematic discrete stress and
rotation tensors as

‖ai j‖ ≈ 2lm2|ωωωABL|2. (4.30)

Combined with (4.27) this leads to the final equation for the transition probability.

pT = 2cP ∆t lm2 |ωωωABL|2

|U0|2
. (4.31)

The seeding process for vortex particles, based on pT , is explained in Section 4.3.4.

CHAPTER 4. ADDING TURBULENT DETAIL 59

Figure 4.18: The top picture show a basic simulation of a fluid flowing left to right over a
cavity. This flow produces a big vortex in the cavity, but is unable to capture any generation
of turbulence from the walls. With our method (pictures on the right) we are able to identify
the confined vorticity shedding off the two edges of the cavity, and introduce corresponding
vortex particles to represent the turbulent structures forming in the flow.

Precomputing the Artificial Boundary Layer

The artificial boundary layer together with (4.31) can be used to seed turbulence, in the
form of vortex particles, in the appropriate places of the flow. However, the expression for
the wall-attached ωωωABL depends on the averaged flow field U, which is not accessible dur-
ing the simulation. It is not possible to use the instantaneous flow field of the simulation,
as the emerging turbulence would lead to feedback loops. However, we can precompute
ωωωABL for quasi-static scenes or scenes with rigidly moving objects. This has the additional
advantage that we can choose simulation resolution and precomputation resolution indepen-
dently, allowing us to precompute fine boundary geometries, while running the simulation
on a coarse grid.

Precomputation is done by running a standard fluid solver, and time-averaging the flow
field. At all obstacle boundary voxels, (4.26) is evaluated, and ωωωABL is stored in a suitable
data structure (see pseudo-code Fig. 4.19). More details on the implementation of the pre-
computation step, and how the precomputed data is used in the simulation will be given
in Section 4.3.5. In the next section, we will explain how to compute the dynamics of our

60 Turbulent Fluids

1: Perform standard grid-based simulation
2: Obtain time-averaged flow field U
3: for each voxel x on the obstacle boundary do
4: // Get voxel outside the boundary layer
5: xe← x+ l n
6: ωωωPRE ← β (U(xe)×n)
7: Store (x,ωωωPRE) in a point set
8: end for

Figure 4.19: Pseudo-code for precomputing the Artificial Boundary Layer. n denotes the
surface normal and l is the boundary layer thickness. l is chosen to be the distance from the
wall at which the velocity gradient approaches zero, usually 1-2 grid cells.

turbulence representation.

4.3.4 Turbulence Synthesis

We chose to synthesize turbulence using vortex particles. In contrast to curl noise-texture
based turbulence methods, vortex method directly represent the turbulent structures, and
therefore automatically preserve coherence. Transition processes can directly be modeled,
as they allow more degrees of freedom in anisotropy. Sparse particles allow us to focus
on sampling the regions where turbulence is actually generated. Narain et al. [NSCL08]
use particles with curl noise textures as a turbulence representation. However, the blending
of noise textures creates diffusion, and this approach only supports isotropic turbulence.
As we want to model highly anisotropic generation processes, and extend our model into
the model-dependent range, where no uniform direction and energy distribution can be as-
sumed, we use an enhanced variant of the vortex particle method by Selle [SRF05] instead.
In contrast to the original paper, we also model energy transfer and make use of an improved
synthesis step.

Vortex particle dynamics

Turbulence dynamics can be seen from two points of view: The vorticity differential equa-
tion describes the direct evolution of the vorticity field, while the energy transport equation
describes its statistical behavior. Both consist of terms for advection, generation, dissipation
and scale transfer, but have different advantages for a Lagrangian representation. While the
vorticity equation is well suited for describing dynamics, the injection and dissipation of
energy via particle creation and dissipation is easier in an energy formulation. We will use
a combination of both representations to leverage the strengths of both models.

Motion equation The motion of vortex particles is described by the vorticity equation
(4.20). However, we will use the vortex particles not as a full representation of the velocity
field, but use it in combination with a grid-based Navier-Stokes solver. The velocity field
u therefore consists of two parts, the flow field of the grid solver Ū and the detail velocity
induced by the vortex particles. We leave external forces and baroclinity to the underlying

CHAPTER 4. ADDING TURBULENT DETAIL 61

Figure 4.20: Example of a moving object inducing turbulence in its wake. On the left, the
base simulation is shown. In the images on the right, this simulation has been augmented
with vortex particles using our method. As the car accelerates (middle and lower picture),
more turbulence is expected – this behavior is correctly predicted by our model.

solver, which will affect the vortex particles via its velocity field. With this, the evolution
for the vortex particles becomes

∂ωωω

∂ t
+(u ·∇)ωωω = (ωωω ·∇)u+ν∇

2
ωωω . (4.32)

The left side of the equation is handled by advecting the particles in the final high-res flow
field augmented with turbulence. The first term on the right-hand side is the vortex stretch-
ing term. It is computed by trilinear interpolation of the discrete gradient of the velocity
grid, and is used to adjust the particles’ vorticity magnitude by ∆t(ωωω ·∇)u. This term
is problematic as it might introduce exponential accumulation of vorticity magnitude in a
particle. Therefore, the particle is rescaled after the update to preserve the magnitude, ef-
fectively only spinning the particle, but not altering its strength. The strength, effectively
a measure of energy gain and loss, is handled by the energy dynamics, which is explained
in the next section. Similarly, the viscous diffusion term (the second term on the right hand
side of (4.32)), will be handled by energy dynamics, as it is not easily represented on a
sparse particle system.

This gives us a reduced formulation of (4.32) which conserves vorticity as well as en-
ergy. It is therefore orthogonal to the energy transfer equations, the computation of which
we will describe next.

Energy dynamics To model the transfer of energy, we will model energy transport
in the sense of a turbulence model Section 2.2. As the turbulent energy in our system is

62 Turbulent Fluids

represented using vorticity, not kinetic energy k, it is not practical to directly solve the
energy transport equation of a turbulence model. Instead, we express the individual energy
transport terms to our vorticity model and apply it directly on our particle system. In its
most general formulation, the turbulent energy transport equation states

∂k
∂ t

+(u ·∇)k =−∇ ·T+P− ε . (4.33)

The left hand side again is represented by advection of the particles. The right-hand side
consists of production P , dissipation ε and the energy transfer term ∇ ·T, which is ap-
proximated using the gradient diffusion hypothesis in classical turbulence models. Outside
the inertial subrange, this quantity is however hard to model. Its behavior will therefore be
based on the length scale, as explained below.

For the production term, we can use the information from our artificial boundary layer
(see Section 4.3.3). The dissipation ε occurs at wavenumbers that are usually well below
the resolved grid resolutions. Dissipation is therefore implemented by removing particles
whose radii are too small to be represented on the grid. We use a threshold of 2∆x for our
simulations. Finally, for handling the remaining energy transfer term for T of (4.33), we
distinguish the following two cases:

1. The particle is in the inertial subrange. We represent the energy cascade by decaying
a particle with wavenumber κa into n particles of smaller wavenumber κb. We typi-
cally use n=2 in our simulations. From Kolmogorov’s law, we can derive a timescale

of decay as ∆t = C(κ
− 2

3
a −κ

− 2
3

b), where C denotes a parameter that depends on the
rate of dissipation ε . In practice we can use a value normalized by the averaged flow
U here. We also know that for the turbulent energies ka/kb = n(κa/κb)

− 5
3 holds,

which is used to derive the vorticity magnitude of the new particles. For practi-
cal reasons, we also add a small position and angle displacement to the new vortex
particles, as they would otherwise lump together.

2. The particle is in the model-dependent range. As transfer cannot be easily described
in this regime, a heuristic is used. Typically, small vortices with aligned direction
tend to form larger vortices in this range. Therefore, we merge vortex particles in
the model-dependent range with a distance of less than the particle radius to a single
larger vortex particle. Here, the vortex magnitude is chosen so that total the energy
is conserved as knew = k1 + k2. As very small and strong vortex particles might
induce stability problems, we also conserve the energy density, i.e. knew

Vnew
= k1

V1
+ k2

V2
.

This specifies the radius and strength of the merged particle. The new direction is
obtained by a weighted average, with the respective energies as a weight.

Vorticity Synthesis

To synthesize turbulence from the vortex particles, we need to obtain a detail velocity field
from the particles system. Each vortex particle has a vorticity vector ωωωP, encoding magni-
tude and rotation axis, and a kernel over which this value is applied. The detail field can be
obtained by integrating this vorticity kernel and mapping it on a higher-resolution grid.

CHAPTER 4. ADDING TURBULENT DETAIL 63

−5 −4 −3 −2 −1 0 1 2 3 4 5

−0.5

0

0.5

1.0

x [σ]

[ω
P]

Ψ
Velocity u
Vorticity

Vector Potential

ω
y

z

z

σ

Figure 4.21: Vector potential, velocity and vorticity of the vortex particle kernel are shown
along a x-axis slice.

Kernel For the direct regulation of vorticity, a kernel with the following properties is
desired: at the vortex particle center, vorticity should be equal to ωωωP. Also, the resulting
vector field should mainly contain rotation around ωωωP, and smoothly fade out with the
particle radius without causing discontinuities. And lastly, the associated velocity field, and
its integral, which is needed for e.g. energy calculation, should be a simple analytic form.
We chose a Gaussian peak with standard deviation of σ in the vector potential to meet these
requirements. In cylindrical coordinates, it is given by

Ψ(z,ϕ,ρ) =−|ωωωP|σ2 exp
−ρ2−z2

2σ2 ez , (4.34)

where the vortex axis ez is aligned with ωωωP. We can then derive the velocity field

u = ∇×Ψ =−|ωωωP|ρ exp
−ρ2−z2

2σ2 eϕ , (4.35)

and the vorticity kernel

ωωω = ∇×u =−|ω
ωωP|
σ2

(
ρzeϕ − (ρ2−2σ

2)ez
)

exp
−ρ2−z2

2σ2 . (4.36)

A cut-off radius is used to make the kernel support finite. We use r =
√

6σ at which point
the exponential term of the kernel function has fallen to 10−3. The length scale is defined at
the kernels’ origin, so that its wavenumber is κ = 1

σ
. For the contained energy E ∝ ωωωP

2 σ5

holds.

Synthesis To combine the detail field and the velocity field from the underlying solver,
these two fields could be simply added, as in the method in Section 4.2. However, we also
want to allow vortex sizes above the grid resolution of the underlying solver, which means
turbulent detail might overlap with existing vortices from the base solver. Therefore, we
need to exclude vorticity already represented in the base solver to avoid duplication. To
achieve this, the base grid vorticity is measured, and only the difference is synthesized on
the detail field.

64 Turbulent Fluids

The synthesis is a three-step process: First, the vorticity field ωωω = ∇×u of the velocity
grid is computed by finite differences. Second, all particle vorticity kernels are summed up
to obtain a desired vorticity field ωωωD. And third, each particle adds its kernel to the velocity
field, scaled by a weight wk, computed as:

wk =
∑kernel(ωωωD−ωωω) · ω̄ωωP

∑kernel ωωωD · ω̄ωωP
, (4.37)

where ω̄ωωP is the particles’ normalized rotation axis. The dot product with ω̄ωωP ensures that
only the vortex particles’ direction is considered, and the kernel is normalized by the sum
of desired vorticity. We achieve an exact regulation of the vorticity sum under the kernel in
one timestep by this process.

Vortex particle seeding As explained in 4.3.3, particles will be seeded in regions of
high normalized Reynolds stress. Based on the probability pT (x) from (4.31), a particle is
created at position x.

All confined vorticity ωωωABL within the particle’s radius is removed from the artificial
boundary layer, and the particle’s strength and direction ωωωP are set such that the vorticity
integrated over the kernel equals the removed vorticity sum. We choose the particle radius
to be as large as possible without touching an object. We allow for radii up to a size rmax

which is fully resolved by the main simulation (we have used a value of rmax = 6∆x below).
The constant cP in (4.31) controls the granularity of the seeding process. If set to a high

value, confined vorticity is turned into free turbulence relatively quickly. This results in a
large number of weaker particles near the object, which then merge to large vortices. On
the other hand, if cP is set to a high value, the artificial boundary layer plume can grow, and
fewer, stronger particles form. With an appropriately chosen cP, numerical cost can be kept
low while avoiding popping artifacts that may occur if overly large particles are seeded. We
use a cp of ≈ 1−4 in our simulations.

4.3.5 Implementation

In this section, details on our implementation of the precomputation step and the main
simulation loop are provided.

Precomputation

For precomputing the artificial boundary layer, it is essential to resolve the mean flow around
an object. This can be done using time-averaging over a long period of time with a standard
solver, or using a RANS solver. As we are only interested in the velocities around the
boundary layer, we have used a standard solver with an artificially increased viscosity in the
form of a diffusion step for the velocities. Due to the increased viscous effect, it stabilizes
quickly and an average over fewer frames can be used. We have found that using the more
complex RANS or longtime-averaging does not pay off visually compared to this more
efficient solution. After obtaining the averaged flow field, the boundary layer is calculated
according to the pseudo-code (Fig. 4.19) and stored as a point set.

CHAPTER 4. ADDING TURBULENT DETAIL 65

Figure 4.22: In this example a static flow field is used to generate complex turbulence
around an object with our method.

Moving objects To precompute the flow for scenes with moving objects, the boundary
layer around each moving objects is precalculated. If the object can move and rotate freely,
or its movement is not known a priori, our algorithm allows us to precompute the whole
range of movement directions to later on generate arbitrary simulations of the object in a
flow. For this, we split the movement into a translational and a rotational component and
precompute artificial boundary layers for each.

To perform the precomputation, the object is placed in the center of a simulation grid.
The domain box is chosen large enough not to disturb the flow around the object. For
the translational component, we leave the object fixed and use different inflow velocities,
defined as boundary conditions on the domain box. As ωωωABL is linear in the velocity mag-
nitude, we only need to sample the velocity direction. In our simulations, we use 10× 20
samples in spherical coordinates. For the rotational component, the object is placed in a
standing fluid, and we rotate the object with normalized speed around a chosen axis. Again,
we use 10×20 samples in spherical coordinates to sample the rotation axis direction.

The simulations stabilize quickly due to the increased viscosity. We have used 50 steps
for the examples shown in our video. In the precomputations for the rotational component,
this is equivalent to one full rotation. After stabilizing, we average the velocities over an-
other 50 frames. We note that precomputations for each direction can be trivially done in
parallel.

Applying the precomputed set At simulation time, we determine the objects linear
velocity relative to the scene, and its rotation axis. We then look up the nearest values in the
precomputed database. A bilinear spherical interpolation is performed for both the linear
velocity direction as well as the rotation axis. The results of the interpolation are scaled by
respective magnitude and added. We have performed error measurements for the linear in-

66 Turbulent Fluids

10 20 30 40 50 60
0

10

20

30

40

50

number of samples N

m
ea

n
de

vi
at

io
n

[%
]

Figure 4.23: Mean relative error of the artificial boundary layer values for the car model.
A reference simulation is compared to a spherical interpolation with N samples for the
azimuth.

terpolation of the boundary layer values. The corresponding graph can be seen in Fig. 4.23.
Our choice of 20 directional samples in the azimuth means we have an interpolation error of
1.6%. As the decomposition into rotational and linear component is only an approximation,
we have also measured its error for the car model (Fig. 4.20). In this case the error is 8% on
average, and thus small enough not to cause visual artifacts.

It is not necessary to fully resolve the boundary layer during the precomputations, as
our model described in Section 4.3.3 takes care of this. Instead, one should make sure
the resolution of the precomputation is sufficiently fine to resolve all important geometric
features of the object. This is eased by the precomputation focusing only on that object, even
if it will only occupy a tiny fraction of the final simulation domain. In addition, since the
precomputation can be used on many simulations, a high resolution precomputation grid can
quickly pay off. In Section 4.3.6 we demonstrate the effectiveness of the precomputation
even when an object is extremely thin.

Simulation loop

For the actual simulation, a standard fluid solver and a vortex particle system are coupled.
In each simulation step, the artificial boundary layer is updated, new vortex particles are
created and vortex particle dynamics are applied. Afterwards, the turbulence forces are
added to the flow field, and finally, the remaining steps of the standard fluid simulation are
performed. This is repeated each time-step. Pseudo-code for this extended simulation loop
can be found at the end of this section.

Note that we can also independently choose a higher grid resolution for the evaluation of
the vortex particles. This allows us to more accurately evaluate the particle kernels, which is
especially useful for small scale vortex details. This high resolution velocity field is down-
sampled for the main simulation steps (line 28 in the pseudo-code), and up-sampled for our

CHAPTER 4. ADDING TURBULENT DETAIL 67

Setup Fig. 4.15 Fig. 4.20 Fig. 4.24 Fig. 4.22
Grid res. 160·70·160 150·40·200 100·25·60 250·80·150
ABL upscaling 2 2 2 1
Frame time [s] 19.5 13.4 10.0 1.3
ABL time [s] 5.5 3.7 0.05 0.7
particles ∼900 ∼700 ∼600 ∼1000
Vortex gain β 6.2 0.4 3.2 4.0
Precomp. res. 70x150x70 70x70x120 100x25x60 250x80x150
Precomp. [s] 220 112 59 227

Table 4.2: Detailed statistics for our simulation runs. ABL upscaling refers to the up-
sampled grid on which vortex particle evaluation and smoke/levelset advection is per-
formed. The precomputation time is given per database parameter.

algorithm before starting with line 1. Performing the algorithm (line 1–25) with a higher
resolution enables us to simulate detailed features, e.g., when advecting smoke densities
or a free surface level set, while the costly pressure projection operates on a small grid
resolution. Typically, we have used a two times higher resolution for the examples below.

4.3.6 Results and Discussion

In the following section we discuss comparisons of our method to previous work and a
reference simulation. In addition, we demonstrate several complex examples of turbulence
being generated around moving objects or due to effects such as wind or a flowing river.

Comparisons In Fig. 4.18 the effect of wall-induced turbulence can be seen for the
flow over a cavity with a grid resolution of 120×60×40. The top image shows a standard,
unmodified simulation, while the lower image uses our algorithm to introduce wall-induced
turbulence. Both simulations use the same grid resolution, but the unmodified simulation
is unable to capture any turbulence being generated from the shearing near the walls. Our
simulation exhibits complex vortices due to the vorticity generated at the wall boundaries.
To compare our method to approaches for synthetic detail generation, we have simulated the
same cavity setup including wavelet turbulence, using the implementation available on the
paper’s website [KTJG08]. This comparison is shown in Fig. 4.25(B). Wavelet turbulence
successfully adds small detail to the overall flow, but has difficulties introducing larger
vortices to the strong horizontal motion. In contrast, our method introduces persistent larger
vortices, while the resulting smoke filaments are successfully broken up by the wavelet
turbulence. This shows that our method is suitable for bridging the gap between small
synthetic vortices and the vortices resolved by a standard simulation.

We use the setup shown in Fig. 4.25 to compare our method with normal vortex particles
[SRF05]. The simulations now focus on the left edge of the cavity. The image (A) shows a
reference simulation, using a four times increased grid resolution. Note that the flow along
the wall to the left is completely straight, while turbulent structures form to the right of
the backward facing step. This behavior has been confirmed in various experiments and
simulations (e.g. [LMK97]). The image (C) shows the flow after randomly introducing

68 Turbulent Fluids

Figure 4.24: Our algorithm naturally extends to simulations of liquids. Here, we apply our
algorithm to a river flow around three obstacles, resulting in turbulent wakes behind them.

vortex particles along the walls. Naturally, the vortex particles do not take the overall flow
into account, and strongly distort the structure of the flow. Our method, shown in picture
(D), is able to recover the vortices being shed off the step, without distorting the flow along
the wall to the left. Although we are not able to fully recover the flow of the reference
simulation due to the different numerical viscosities, our method is able to qualitatively
capture the wall-induced turbulence at a much lower computational cost. On average, the
time per frame for the reference simulation was 218 times higher than for the simulation
with our algorithm.

The limitation that motivated vortex particles was that vorticity confinement uniformly
amplified vorticity magnitude. Our method, like vortex particles, overcomes this by al-
lowing local modeling of vorticity, including effects like tilting and stretching. However,
by modeling the boundary layer and considering the directions of particles vortices with
(4.26), we are able to keep vortex particles from disturbing the bulk flow. This allows us to
use vortex particles of larger magnitude than the randomly seeded vortex particles.

Complex Examples Next we consider examples with more complex geometry. Fig. 4.20
shows the simulation of a moving car that is emitting smoke. It can be observed how our
model reproduces the dependence of turbulence strength from the cars velocity. As can be
seen in the top row of Fig. 4.20, a normal simulation of the same resolution would not re-

CHAPTER 4. ADDING TURBULENT DETAIL 69

solve any shed vortices at the car’s surface. Second, Fig. 4.15 shows a thin whisk geometry
stirring smoke. The boundary layer precomputation was done with a high resolution grid
that resolved the whisk’s wires, while its subsequent use in a smoke simulation was done
on a much coarser grid. The standard grid did not resolve the wires, and only approximate
velocity boundary conditions were set, resulting in the fluid slightly following the whisk’s
motion. Still, our algorithm was able to accurately generate vortices that are produced by
its motion.

In Fig. 4.22 we show how our method works in conjunction with static flow fields.
In this case we precompute a snapshot image of static flow around the object, and use it
to advect the boundary layer, the vortex particles and the smoke densities. This simple
form of simulation works without an expensive pressure correction step. Despite the simple
underlying setup, we are able to produce complex structures forming in the wake behind
the obstacle from the interactions of the vortex particles amongst themselves. Lastly, we
demonstrate that our method can be easily extended to free surfaces in Fig. 4.24. Here
three obstacles in the liquid produce turbulent wakes behind them. For this simulation, a
particle level set [EMF02] was used to represent the liquid’s surface. Similar to particles
near obstacle walls, we reduce a particle’s kernel size once it extends past the liquid phase
to avoid non-divergence free velocity fields.

Detailed grid sizes and timings for the examples above can be found in Table 4.2. The
performance was measured on an Intel Core i7 CPU with 3.0 GHz. The majority of the time
used for our approach (denoted by ABL time in Table 4.2) is taken up by the advection of the
artificial boundary layer. For the liquid example of Fig. 4.24, the performance is strongly
dominated by the particle level set. Overall, we achieve computing times ranging from 10
to 20 seconds per frame on average. An exception is the example with a static flow field,
which requires only 1.3 seconds per frame.

4.3.7 Conclusions

In this chapter, we have presented an algorithm for simulating wall-induced turbulence. By
leveraging turbulence modeling and wall flow theory, we are able to precompute turbulence
generation based on the obstacle geometry. This precomputed object can then be included
in various simulations. During the simulation, we determine transitioning regions and in-
troduce appropriate vortex particles to represent turbulence. The particles are then evolved
according to the vortex equations of flow to respect energy conservation and cascading.
This yields the ability to efficiently compute physically plausible simulations of turbulence
around rigid objects in a variety of settings. In contrast to other turbulence methods, the
model presented can be used for obstacles which are too fine to be resolved on the simula-
tion grid, and it can be applied for free surface flows, a topic that has been barely studied in
previous work on turbulence. We do note however, that the model is passive in a sense that
turbulence generation from the liquid surface is not handled in the model.

A limitation of our method is that our precomputation assumes a rigid object, making
it difficult to apply it to deforming objects such as cloth. To resolve this, a RANS solver
could be coupled to a normal fluid solver to determine the current shear stresses at the object
surface. Alternatively, it may be possible to precompute suitable boundary layer data for
deforming objects by making use of data compression schemes. Also, the approach for the

70 Turbulent Fluids

precomputation assumes the flow around the object can be described by the translational
and rotational velocity components. If the flow around the object varies strongly, e.g., due
to strong external forces or due to multiple objects in close vicinity, the resulting confined
vorticity can differ from the desired values. It should be possible to replace the precom-
putation by a more powerful turbulence model; this would however lose the advantage of
subgrid-accurate treament of obstacle turbulence.

As we modeled the turbulence generation based on wall flow, the method will only
generate turbulence from obstacle interaction. Turbulence driven by free-stream effects or
buoyancy must be handled using other methods. In addition, a trade-off of our method is the
use of vorticity reconstruction at a higher resolution. While this allows us to go beyond the
coarse simulation Nyquist limit and get higher resolution detail (a limitation of the original
vortex particle method), it means the domain and object boundaries as well as the free-
surface boundary conditions are not as well modeled by the reconstructed high resolution
velocity field. The need for a high-resolution field also limits the detail level that can be
achieved, as for big scenes with fine detail, memory and computation time for operations
on the high-resolution field can easily become the bottleneck.

The method presented in this chapter is specifically designed for the important special
case of obstacle-induced turbulence. Many flows, such as plumes or explosions, however
involve expansion forces and buoyancy, which are also strong sources of turbulence. In the
following chapter, we will introduce a method that is able to represent these free-stream
sources of turbulence, but can also handle obstacle source. Using vortex methods on inter-
faces, we can even avoid the need for a high-resolution grid to represent detail.

CHAPTER 4. ADDING TURBULENT DETAIL 71

Figure 4.25: Comparison between a high-resolution reference simulation (A), Wavelet tur-
bulence (B), a simulation with randomly seeded vortex particles along the walls (C), and
our method (D). Wavelet turbulence does not predict the turbulence formation, and there-
fore only amplifies noise. The random vortex particles destroy the overall flow structure,
although the number and strength of the vortex particles are similar to those used in our
method. Our approach correctly identifies the turbulence being shed off the step, similar to
the reference simulation (A), and insert particles into the flow with the correct orientation,
strength and seeding position.

1: // Initialize boundary layer
2: for each voxel x on an obstacle boundary do
3: Find corresponding (xpre,ωωω pre) in precomputed set
4: // Initialize wall-attached ABL
5: ωωωABL(x)←max(ωωωABL(x),ωωω pre)
6: end for
7:

8: // Simulate boundary layer separation
9: Advect ωωωABL with the main flow

10:

11: // Seed vortex particles

72 Turbulent Fluids

12: for each voxel x with ωωωABL(x) 6= 0 do
13: pT ← 2cP ∆t (lm |ωωωABL(x)|/|U0|)2

14: if random()< pT then
15: (Y)← voxels within particle radius of x
16: ωωωS = ∑(Y) ωωωABL // sum within particle radius
17: ωωωABL(Y)← 0 // remove vorticity from ABL
18: Seed particle at x with total vorticity ωωωS

19: end if
20: end for
21:

22: // Vortex particle dynamics
23: Advect vortex particles
24: Merge, split, dissipate vortex particles (Section 4.3.4)
25: Synthesize turbulence (Section 4.3.4)
26:

27: // Standard fluid simulation steps
28: Velocity self-advection, pressure projection etc.

Pseudo-code for a main simulation loop including our turbulence model.

CHAPTER 4. ADDING TURBULENT DETAIL 73

Figure 4.26: A dense cloud subject to buoyancy forces and interaction with a moving
obstacle is simulated. We use a Eulerian solver to compute a base flow, as shown on the
left. Small-scale detail is synthesized directly on the interface of the cloud. An adapted
turbulence model provides details from obstacle interaction (middle left), while small-scale
buoyancy effects are calculated using vortex sheet dynamics (in the middle right). The
picture on the right shows the combined model.

4.4 Buoyant Turbulence

One of the most visually interesting features of turbulent flows is their complexity. Smoke
plumes from volcanoes, explosions or collapsing buildings show detailed motion on scales
from several meters down to the millimeter range, and the structure of the developing tur-
bulent eddies is clearly visible at the sharp interface of the thick smoke and the air. At the
same time, the thick clouds typically hide everything that is happening further inside the
volume. Unfortunately, such scenes are numerically expensive to simulate, and we spend
large amounts of computation on detail inside the cloud that will never be visible.

One way of dealing with these complex flow are volumetric turbulence methods, as
presented in Section 4.2 and Section 4.3. However, even with a turbulence model the syn-
thesized detail has to be represented in the simulation, and using a volumetric representation
resolving the small-scale details requires immense storage capacity.

In this chapter, we introduce the vortex sheet method by Pfaff et al. [PTG12] to solve
this problem. It explicitly discretize and track only the smoke-air interface, and greatly
reduces the amount of information we need to store. In addition, this representation is a
very suitable basis for detail synthesis. Instead of unnecessarily calculating detail that is
hidden inside the smoke volume, we restrict synthesizing detail purely to the visible smoke
interface.

The phenomena mentioned above exhibit another interesting effect: turbulence produc-
tion in such flows mainly stems from buoyancy, which induces a vortex sheet at the smoke-
air interface. This sheet reinforces small-scale surface instabilities, which then develop into
turbulence. This means that the transition region where the turbulence is created is clearly
visible, and this turbulent onset strongly influences the visible shape of the interface. How-
ever, the simulation resolution is typically too limited to directly capture these small-scale
buoyancy effects. Furthermore, most turbulence models assume fully-developed homoge-
neous turbulence, which means they are valid inside the bulk smoke volume, but not at

74 Turbulent Fluids

Figure 4.27: A buoyant plume is simulated without evaluation cutoff (left), with a cutoff of
10 cells (middle) and 5 cells (right, our default setting). While details are different due to
accumulation of small differences over time, the visual quality is comparable.

the interface. Here, the turbulence generation process is highly anisotropic and model-
dependent in nature. This means it is not well described using the statistical approaches that
are the basis for most turbulence methods.

Our method addresses this problem by directly tracking the vortex sheet at the smoke-air
interface. This allows us to compute buoyancy effects at scales independent of an underly-
ing grid, and accurately model the turbulence generation process due to buoyancy. While
vorticity-based methods are well-suited to describe turbulence formation, correct handling
of obstacle boundaries is very difficult. The model therefore handles basic interaction with
static or moving obstacles using a Eulerian solver, and tracks the obstacle-induced turbu-
lence with a model specifically tailored to our needs. The turbulence model for obstacles is
orthogonal to the buoyancy approach, which makes it possible to use both in combination
or separately as needed. We use an adaptive triangle mesh to simulate non-diffusive smoke
surfaces, and couple it to an Eulerian solver which captures the large-scale motion of the
flow.

4.4.1 Vortex primitives

Fluid solvers in graphics typically use the velocity formulation of the NS equations to obtain
the fluid motion. For dealing with turbulence, however, the vorticity formulation of the
NS equations is often advantageous. Lagrangian solutions for the vorticity equation are
common in CFD, and becoming increasingly popular in Computer Graphics. This thesis is
heavily based on Lagrangrian methods for vorticity, therefore the theory is expanded here
in more detail.

There are two ways in which Lagrangian vortex elements can be used. On the one hand,
they can be used to discretize the complete vorticity field as an alternative representation
to velocity. On the other hand, sparse elements can be used to augment an existing sim-
ulation. The second approach can increase performance by focusing resolution in desired
areas. Also, remeshing inaccuracies are not as critical since the underlying simulation pro-
vides consistency. However, the interplay between the vortex primitives and the underlying
simulation is nontrivial. In particular, vorticity structures need to be mutually exclusive in

CHAPTER 4. ADDING TURBULENT DETAIL 75

Vorton Filament Vortex Sheet

ω γΓ

Figure 4.28: Three different Lagrangian primitives to represent vorticity are shown, with
their induced velocity marked in red. Vortons are particles which induce a rotation around
the axis of their associated vorticity ωωω . One-dimensional curve primitives are called fila-
ments. They induce circular motion around the curve tangent based on a circulation number
Γ. Vortex sheets contain the vorticity γ confined to a surface. They represent a velocity
jump between two flow regimes.

both simulations, to avoid injecting excess energy into the system.
Vortons, as introduced in Section 4.3, are one primitive for discretizing vorticity. Below,

we will introduce two further types. While Vortons are zero-dimensional point elements,
Filaments represent vorticity confined to a one-dimensional curve, and Vortex sheets de-
scribe vorticity on a thin two-dimensional surface. Fig. 4.28 visualizes these primitives. In
theory, a given vorticity field can be discretized by any of the three primitives. However,
each of them has inherent advantages and disadvantages as far as re-meshing, motion equa-
tion and connectivity are concerned. Also, some forms allow a more natural representation
of a certain flow geometry than others. It is e.g. possible to discretize vorticity on a thin
surface using a patch of filaments. However, it is much easier to ensure a uniform cover-
age of a surface deforming in the flow by representing it using vortex sheets. A detailed
comparison of vortex primitives can be found in [Sto06] and [CK99].

Filaments

Vortex filaments discretize vorticity using one-dimensional line segments or spline curves.
Instead of directly storing the contained vorticity on the line elements, an equivalent repre-
sentation is used. This has advantages for the formulation of the motion equation, as will be
shown is the next paragraph. Each segment has an associated circulation number Γ which
defines a rotation around the curve segment. It relates to vorticity by

ωωω(x) = Γ(s) tδ (r⊥(s)) (4.38)

where t denotes the line tangent and r⊥ is the distance perpendicular to the tangent of the
curve. Filaments are suitable for e.g. rising smoke with low levels of turbulence, as the
characteristic vortex rings arising in such settings are represented naturally using closed
filaments.

76 Turbulent Fluids

By expressing the vorticity equation in the circulation formulation, we obtain

DΓ

dt
= ν

∫
L

∇
2u ·dx+

1
ρ

∫
L

∇pdx (4.39)

with the line integral of diffusion and baroclinity, respectively. Diffusion is hard to express
efficiently for filaments, therefore filaments are mainly used in low-viscous flows, where
diffusion can be neglected. This means that for flows without baroclinic generation, circu-
lation effectively remains constant,

DΓ

dt
= 0 (4.40)

as vortex stretching is implicitly handled by elongation of the primitive itself. This is a
very desirable property, as it avoids the problems associated with evaluation of the velocity
gradient for vortex stretching in e.g. vorton methods. On the other hand, elongation also
leads to ill-shaped line segments, therefore remeshing is necessary. A simple remeshing by
subdividing elements that are too long or are strongly curved is often sufficient [Cho81].
For turbulent flows, however, this means that geometry will increase over time, as complex
structures tend to generate even more complex structures on neighboring filaments. For
fully-developed turbulence for example, filament strands will inevitably overlay and form
a complex intertwined structure which could be represented using a much smaller number
of vortons. Some effects of this can be mitigated by hairpin removal techniques [Cho96] or
vortex loop optimization [WP10].

Filaments are integrated by directly evaluating the Biot-Savart law, which for circulation
takes the form of the line integral

u (x) =
1

4π

∫
L

Γ(s)t× x− r(s)
|x− r(s)|3

ds . (4.41)

In this form, r(s) is the line parameterization and t is the tangent. Regularization is intro-
duced in the same manner as in (4.24). Depending on the concrete form of line discretiza-
tion, flat line segments or spline curves, the discretized form of (4.41) varies.

Vortex sheets

The description of vorticity confined to a two-dimensional surface is a called a vortex sheet.
Vortex sheets are particularly useful to describe thin sheets of vorticity that are induced at
flow boundaries in the boundary layer and across steep density gradients, between e.g. cold
and hot air of a rising plume. This surface is described by a surface mesh, triangle meshes
being the most common approach. Vorticity on a surface element is represented using the
vortex sheet strength γγγ , which is defined as

ωωω(x) = γγγ(x)δ (x) . (4.42)

For deriving relations for the vortex strength, it is useful to consider the velocity jump ∆u
that is induced by the vortex sheet. It relates to vortex strength by γγγ = n×∆u, with the
surface normal n.

CHAPTER 4. ADDING TURBULENT DETAIL 77

vorticity vortex strength circulation

Figure 4.29: The continuous vorticity field around a surface can be represented in terms of a
vortex sheet strength or circulation. Both are stored per surface triangle, and are equivalent
representations. Vortex strength is a vector value, while circulation consists of three scalar
rotation values around the edges of the triangle.

Using the velocity jump definition, the inviscid transport equation for vortex sheet
strength can be derived as

Dγγγ

dt
= γγγ ·∇u− γγγ(P ·∇ ·u)−2βA n×g . (4.43)

The first term on the right-hand side is the familiar vortex stretching, while the second term
describes changes in vortex strength due to elongation in the direction of γγγ . Here, P= I−nn
is the tangential projection operator. The baroclinity term is expressed using the Boussinesq
approximation [Men78] which is proportional to the Atwood ratio βA. The Atwood ratio
relates the densities of the two fluids to each other, and is defined as

βA =
ρ1−ρ2

ρ1 +ρ2
. (4.44)

The Boussinesq approximation assumes a small Atwood ratio, and is valid for e.g. hot/cold
air, but not air/water interfaces. As for filaments, diffusion is not easily modeled for vortex
sheets, so they are mostly used in the inviscid limit. Re-meshing is essential for vortex
sheet methods as the induced vorticity quickly deforms the sheets. As in the case of fila-
ments, however, the splitting of ill-shaped elements causes a steady increase in geometry
for turbulent flows.

The Biot-Savart law for the vortex sheets has the form

u(x) =
1

4π

∫
S

γγγ(x′)× x−x′

|x−x′|3
dx′ . (4.45)

Again, regularization can be performed as in the case of Vortons. Alternatively, VIC can be
used for integration and regularization.

Conversion between representations

The primitives introduced above use different representations for vorticity, namely vorticity
ωωω , circulation Γ and vortex sheet strength γγγ . As each representation has different properties

78 Turbulent Fluids

as far as dynamics or source terms are concerned, it is sometimes advantageous to convert
between representations, and use the one most appropriate for the task. We will focus on
vorticity confined to thin sheets here, as this theory is used in the presented method.

While vortex sheet strength, discretized using a triangle mesh, is the most natural repre-
sentation for this case, its dynamic equations are more involved than those of the circulation
formulation. According to Stock et al. [SDT08], the vortex sheet strength vector γγγ of a
triangle uniquely relates to the three circulations numbers Γi around the triangles edge vec-
tors ei. We can therefore express the motion equations in terms of both circulation and
vortex sheet strength. This is illustrated in Fig. 4.29. It should be noted that the circulation
numbers are defined per triangle, which means that adjacent triangles may have different
circulation numbers for the same edge. In order to convert to vortex sheet strength, we can
use the relation

γγγ =
1
A

3

∑
i=1

Γi ei (4.46)

with A denoting triangle area. On the other hand, conversion from vortex sheet strength to
circulation can be performed by solving the overdetermined linear system

[
e1 e2 e3
1 1 1

]Γ1
Γ2
Γ3

= A
(

γγγ

0

)
. (4.47)

During this conversion process, the vorticity component normal to the surface is lost. For
vortex sheets, this is however a desired property [SDT08].

4.4.2 Vortex Sheet Methods

In general, the evolution of vorticity can be described with the vorticity equation (4.20).
For this method, we will focus on plumes with a sharp density interface, which is a good
approximation model for e.g. heavy smoke plumes, or two liquids with different densities.
Under the influence of buoyancy or external forces, a thin sheet of vorticity forms at this
interface. In our model, we will not track the volumetric velocity or vorticity field, but
represent this interface vorticity, or vortex sheet, on a surface mesh.

Most commonly, the vorticity in vortex sheets is expressed via the vortex sheet strength
vector γγγ . If we formulate the vorticity equation using γγγ , we obtain the evolution (4.43),
with terms for advection, vortex stretching, elongation and baroclinity. By integrating this
equation we would be able to calculate the full dynamics of a buoyant plume. As the
evolution equation contains operators which are hard to express on a surface representation,
this is however not trivial. We therefore also make use of another expression of vorticity,
namely the circulation. For vortex sheets, these representations are equivalent and can be
converted as explained in Section 4.4.1. As some operations are formulated easier in a
circulation notation than for vortex strengths, and vice versa, we can simplify the evolution
equations by switching between representations. This procedure will be explained in the
following paragraph.

Our Model To solve the vorticity dynamics equations, it is necessary to have a discretiza-
tion of the interface. For this we use a mesh consisting of triangles, where each triangle i

CHAPTER 4. ADDING TURBULENT DETAIL 79

Figure 4.30: We simulate the dynamics of a dense fluid in water with pulsed inflow con-
ditions. The buoyancy leads to complex surfaces in the downstream region to the right.

has a corresponding vortex strength γγγ i. As we want to make use of the filament representa-
tion, too, the three circulation numbers are stored for each triangle in addition to the vortex
strength. These circulation numbers Γ1...3 define a rotation around the triangle’s edges e1...3.

As we are interested in buoyant effects, we apply the baroclinic source term in vortex
sheet strength notation for each time step.

∂γγγ

∂ t
=−2βA n̂×g . (4.48)

We now use the fact that the vortex stretching and elongation terms of the evolution equa-
tion are implicitly handled in circulation notation, and vanish from the equation. Before
evaluating the advection of out surface mesh, we therefore switch to circulation notation
(4.47) and return to vortex strength notation afterwards (4.46) Using this process, we can
avoid the calculation of these operators altogether. We now have taken care of all terms in
the vorticity equation. For evaluation of the advection term, we however still need velocity
information. This can be integrated from the vortex strength values using the Biot-Savart
law, as explained in Section 4.4.1. If we look at the integration equation

u(x) =
1

4π

∫
γγγ(x′)× x−x′

|x−x′|3
dx′ . (4.49)

we however note that such an evaluation is numerically very complex. For each mesh node,
we need to integrate over all triangles, which results in O(n2) complexity. As we want
to simulate very detailed meshes with millions of triangles, this is prohibitively expensive.
Even more importantly, we note that so far, we are only able to obtain the dynamics pre-
scribed by ideal buoyancy in free space. Most practical scenes, however, have a nontrivial
underlying flow due to interaction with obstacles and boundary conditions. In the next
section, we therefore introduce a local evaluation scheme, which resolves this issues.

80 Turbulent Fluids

1: // Grid-based Fluid solver
2: Semi-Lagrangian density and velocity advection
3: Add grid-based buoyancy
4: Pressure projection
5:

6: // Turbulence model
7: Compute production: Pwall = 2νT |∇×U−ωωωg|2
8: Update ωωωg based on (4.56) and advect
9: Update k, ε based on (4.53) and advect

10:

11: // Mesh dynamics
12: Integrate baroclinity: γγγ i← γγγ i−∆t 2βA n̂×g
13: Compute Gaussian filtered vortex strengths γ̄γγ i
14: Small-scale vortex strength: γγγ ′i← γγγ i− γ̄γγ i
15:

16: Compute circulations Γi⇐ γγγ i , (4.47)
17: for each mesh vertex i do
18: ui⇐ Integrate (4.52) for sources γγγ ′i within rC

19: Advect vertex with ui and grid velocity field
20: Advect vertex with synthesized curl noise uT =

√
αSky

21: end for
22: Compute Vortex strengths γγγ i⇐ Γi , (4.46)
23:

24: Perform mesh surface smoothing
25: Perform edge collapses and triangle subdivision

Figure 4.31: Pseudo-code for the simulation loop of our algorithm.

Local evaluation

In the local evaluation model, we split the simulation into two parts: first, a Eulerian solver
which computes a consistent flow field from obstacle interaction, inflows, and the large-
scale effects of buoyancy. Second, a surface mesh which is used for front tracking of the
smoke cloud and the simulation of detail due to small-scale buoyancy effects and obstacle
turbulence.

For computation of the large-scale flow, we use a standard grid-based solver [Sta99]
with second order semi-Lagrangian advection as described in Selle et al. [SFK+08]. Our
vortex sheet approach enables us to use low grid resolutions, as details will be computed
directly on the Lagrangian mesh. In the grid-based solver, a density field is tracked which
is then used to compute coarse-scale buoyancy forces on the velocity field.

Evaluation of the small-scale buoyancy effects is performed using the vorticity of the
mesh. To avoid duplication of buoyancy forces between grid and mesh, we remove the
large-scale component of the baroclinic vorticity from the mesh. We first apply a Gaussian
smoothing kernel on the vortex sheet strength γγγ . The kernel width σ is set to match the
grid cell width ∆x to obtain the smoothed, grid-scale vortex strength component γ̄γγ . The

CHAPTER 4. ADDING TURBULENT DETAIL 81

difference γγγ ′ = γγγ − γ̄γγ now represents the details below grid scale, which are evaluated on
the mesh.

By removing the mean only the high-frequency variations γγγ ′ remain, whose effect de-
cays very quickly in the far field. This corresponds to the formation of small vortices, which
act locally. We are therefore able to introduce a cutoff radius rC to the evaluation. Only tri-
angles within this radius have to be evaluated in the summation of (4.52). As we can rely on
the grid solver to capture the large scale buoyant motion, the effects of this approximation
are negligible. A comparison of a full evaluation versus two different cutoff radii can be
seen in Fig. 4.27. As the cutoff approximation introduces small differences which accumu-
late over time, the resulting surfaces differ. However, the visual quality is comparable for
all three simulations, while the processing time is five times faster using rC = 5∆x. We use
this value for all following simulations with our model. The position update for the mesh
nodes is performed based on the Eulerian velocity field, and by applying a per-node veloc-
ity update for the small-scale structures, which is described next. The complete simulation
loop for our combined solver is summarized in pseudo code in Fig. 4.31.

Regularization

To obtain the small-scale velocity update for the mesh, (4.49) is discretized, using the resid-
ual vorticity γγγ ′ as a source. As this equation is singular for points on the interface, we chose
to regularize the equation analogous to the vortex blob regularization for vorticity particles
[CB73]

ureg(x) =
1

4π

∫
S

γγγ
′(x′)× freg(x−x′)dx′ (4.50)

freg(r) =
r

(|r|2 +α2
R)

3
2

. (4.51)

The regularization parameter αR effectively controls the minimal size of the generated vor-
tices. We therefore set αR proportional to the mesh resolution, as will be explained in Sec-
tion 4.4.4. To discretize this equation, we use Gaussian quadrature. If G j(r) is the Gaussian
quadrature of freg for triangle j, (4.50) becomes

ui =
1

4π

m

∑
j=1

A jγγγ
′
j×G j(ri) , (4.52)

for all triangles within the cutoff radius. This means we need to evaluate a sum over all
triangles j = 1 . . .m per mesh node i. In our examples, we use three-point quadrature, and
refer the reader to [Cow73] for details on how to compute the integration weights.

4.4.3 Wall-based Turbulence Model

The method presented so is able to model buoyancy driven below grid scale, but does not
deal with interaction with flow obstacles yet. While the coarse grid solver introduced in
the local evaluation scheme provides the large scale interaction of the flow with obstacles,
turbulence shed from these interactions is not represented. However, since our mesh rep-
resentation allows us to evaluate synthesized turbulence directly on the interface, we can
employ a turbulence model similar to Section 4.2 for this type of turbulence.

82 Turbulent Fluids

Figure 4.32: To separate the sources of buoyancy and wall-based turbulence, buoyant vor-
ticity is tracked over time. The total vorticity of a snapshot from Fig. 4.26 is shown in the
middle picture, while the difference to the tracked buoyant vorticity is shown to the right.
The gray circle marks the position of the cylinder. We observe that despite a small residual
halo, our model tracks the area of obstacle influence behind the cylinder very well.

The turbulence model we propose in the following is orthogonal to the buoyancy model
of the previous sections, and both models can be used independently or in combination. We
first model the spatial and temporal distribution of turbulent kinetic energy k using an energy
transfer model, and then synthesize turbulent detail on the surface using frequency-matched
curl noise. Below, we will briefly outline the theory used, and explain our modifications.
Turbulence modeling is described in more detail in the Section 2.2.

Modified Energy Model

We compute the energy dynamics based on the commonly used k–ε model by Launder and
Sharma [LS74], which models the evolution of the turbulent energy k:

Dk
dt

= ∇(
νT

σk
∇k)+Pwall− ε (4.53)

Dε

dt
= ∇(

νT

σε

∇ε)+
ε

k
(C1P−C2ε) .

Details of the model can be found in 2.2.1.
Instead of solving this equation system on the Lagrangian markers as in Section 4.2,

we solve it on the coarse grid which is also used for the local evaluation Section 4.4.2. The
model can also be solved on the high-resolution surface mesh, this did not yield a significant
difference in our experiments. The reason for this is that the variables k and ε are averaged
properties, and spatially vary smoothly due to turbulent diffusion. The Eulerian approach
has the advantage that it is easier to exclude the effects of buoyancy, as discussed below.

The primary interest here is to compute source terms for driving the model. The sources
should capture the wall-induced turbulence, but exclude turbulence induced by buoyancy.
If we were to directly use k for injecting turbulence we would include the effects of buoy-
ancy twice: once from the k–ε model, and once from the vortex sheet model. In addition,
a general turbulence model would not be able to capture the characteristic effects of buoy-
ancy, such as the cloud billowing. We therefore need to guarantee orthogonality of the two

CHAPTER 4. ADDING TURBULENT DETAIL 83

methods, by excluding the effects of buoyancy from (4.53), such that each model can focus
on the type of turbulence it is most suitable for. With a strain-based production term that is
commonly used for the k–ε model, this would however imply separating the wall induced
turbulence from the total one. This is, to the best of our knowledge, not possible for a strain
based production. There is, however, an alternative production term PR based on rotation.
Compared to the strain based measure, it is less accurate for free-stream generation but still
captures buoyancy and wall induced turbulence very well. Assuming we have a measure for
the current buoyancy-induced turbulence, we can subtract it from PR to single out the tur-
bulence induced by obstacles. We have found that using the rotation-based production term
from Spalart [SA94] and a vorticity based integration of the buoyancy production allows us
to do just this.

According to Spalart [SA94], the production is given by

PR = 2νT ∑
i, j

Ω
2
i j (4.54)

with the rotation tensor Ωi j. We now express its tensor norm in terms of vorticity as
∑i, j Ω2

i j = |ωωω f |2. Here ωωω f is simply the vorticity of the grid-based flow field given by
ωωω f = ∇×U. With ωωωg, which denotes the buoyancy induced vorticity strength that we will
compute below, we obtain turbulence production for purely wall-generated turbulence using
the difference of the two:

Pwall = 2νT |∇×U−ωωωg|2 . (4.55)

For stability, we ensure that |∇×U| ≥ |ωωωg|. An example from the simulation of Fig. 4.26
comparing the two vorticity measurements can be found in Fig. 4.32. Finally, we need
to compute the accumulated vorticity induced by buoyancy ωωωg. Applying the Boussinesq
assumption and omitting external forces, we obtain an evolution equation for the buoyant
vorticity ωωωg with

Dωωωg

dt
= ωωωg ·∇u+

1
ρ
(∇ρ×g) . (4.56)

We integrate this equation over time on the grid in combination with the k–ε model to
obtain the wall based turbulence production Pwall as outlined in Fig. 4.31. Equipped with
this production term we compute the spatial distribution of the turbulent kinetic energy k
that we use to synthesize turbulent detail on the smoke surface.

Turbulence Synthesis

In contrast to buoyancy induced turbulence, we can synthesize the turbulence triggered by
our obstacle-induced turbulence model using K41 theory Section 2.3. In this regime energy
is mainly scattered from large to small scales, so we can approximate the velocity of the
turbulent details using a frequency-matched curl noise texture that is advected through the
large-scale velocities, as described in Section 2.4.1. Instead of evaluating the turbulence
at each cell of a higher resolution grid, we can synthesize it more accurately on the mesh.
Each mesh node carries a texture coordinate q for curl noise texture, and its turbulent kinetic
energy k is interpolated from the grid. The additional velocity per node is then given by

uD(r) = ∇×
√

αSk Nf(r) (4.57)

84 Turbulent Fluids

D
D

D
E

(a) (b) (c) (d)

Figure 4.33: To simplify mesh geometry, we collapse invisible thin sheets. We fist identify
candidate nodes in very thin sheets (a). Next, we compute an eroded inside volume on grid
in steps (b) and (c). Finally, we check whether these cells are visible with a raycast towards
an enclosing sphere (d). All thin sheet nodes in the blue region of (d) are marked for edge
collapses.

where Nf are the curl noise functions and αS is a scaling parameter to control turbulence
strength. We will demonstrate the interplay of the two turbulence models and their orthog-
onality in Section 4.4.5.

4.4.4 Implementation

In this section, details and parameters of our implementation in respect to turbulence esti-
mation, mesh resampling and rendering are specified.

Turbulence Model

To solve (4.53) on the grid, we perform operator splitting as for the Navier-Stokes equations.
The advection of k and ε in the PDE system is treated identical to the velocity self-advection
using the MacCormack algorithm. The diffusion component ∇(νT

σk
∇k) is expressed using

finite differences, with substepping if the CFL condition is violated. To prevent instabilities
in the k–ε model for low turbulence intensities we ensure that k and ε are always in a
meaningful range where a minimal amount of ambient turbulence is present. Bounds for k
are given in terms of turbulence intensity I as k = 3

2U0
2I2, with the characteristic velocity U0

which is an estimate of the velocity scale in the simulation. We use Imin = 10−3, Imax = 1.
We found ε is best limited using the equation for the turbulent viscosity νT , as this parameter
linerly affects production. In our experiments, νmin = 10−3, νmax = 5 are used. As starting
parameters for a weakly turbulent initial state we found νT = 0.1, k = 0.1 to produce stable
results.

Mesh Resampling

Due to advection and buoyancy, the mesh will undergo strong deformations. On the other
hand, Gaussian smoothing and buoyancy integration rely on a relatively uniform mesh ge-
ometry. Therefore, we split and collapse triangle edges to keep all edge lengths l in the
range ∆l < l < 2∆l, where ∆l is the desired minimal edge length. Vortical forces smaller

CHAPTER 4. ADDING TURBULENT DETAIL 85

this minimal length would only be visible as a slight noise on the surface. So we use the reg-
ularization parameter αR in (4.50) to enforce a minimum vortex size larger than ∆l. For our
example scenes, we chose αR = 2∆l. Finally, we apply a small amount of explicit Laplacian
smoothing to the mesh [DMSB99], to prevent the accumulation of small-scale noise on the
surface.

The vortical motion on the mesh interface creates vortex roll-ups, which lead to the
generation of spiral-shaped thin sheets. Since vorticity generation is linked to the surface
normal, both sides accumulate almost equal amounts of vorticity, with opposing direction
vectors. As the sheets become thinner, the vorticity effect on surrounding nodes therefore
becomes smaller and effectively cancels out. Also, many of these thin structures are typi-
cally hidden inside the bulk volume of the cloud. On possiblity to reduce the complexity
somewhat based on these two observations as presented in [PTG12] is explained below.

Thin sheets are identified, and the ones which are invisible from the outside are removed.
First, we mark nodes on thin sheets, check which of these are far inside volume, and finally
perform a visibility test to determine nodes not visible from the outside. The process is
visualized in Fig. 4.33.

As a first step, thin sheet nodes are identified by checking for a vertex with opposing
normal (± 20◦) within close proximity, i.e. at a distance less than ∆l opposing the vertex
normal. This can be done efficiently using the grid as acceleration data structure. Next, we
identify the volume inside the cloud on the grid. As a coarse representation of the outer
hull, we first compute a level set for the mesh. Since triangle size is always well below the
size of a grid cell, we can employ a simple and fast method [Kol05] to obtain the signed
distance function (SDF). We then enlarge and shrink the level set to close small holes and
cavities induced by the complex mesh geometry. The level set is enlarged by D = 4 cells
to compute an outer interface. We rebuild the SDF at a distance E = −(D+ 2) from this
interface, to obtain a faired volume slightly smaller than the original one. All cells inside
this volume are marked as inside cells.

As cells in a cavity might still be visible from the outside, we finally compute visibility
for the inside cells by performing a raycast towards target points on a sphere enclosing the
surface mesh. The cost for these tests is less than 5% for our simulations, as there are
typically few cells to be tested. All thin sheet nodes that are located in cells identified as
not visible from the outside are marked to be collapsed during the next edge collapse step
in line 25 of Fig. 4.31.

It has to be noted that while this algorithm is able to reduce mesh complexity, it is
rather conservative and useful mainly in scenarios with a strong entrainment but coherent
surface. Other methods such as [WTGT10, BKB12] could be employed to help to reduce
complexity; however, there also introduce severe overhead for meshes of this complexity
and may cost more than they bring in terms of performance benefit.

Rendering We use three different methods to render the simulation results.
• For very dense volumes, the mesh could be displayed directly. However, we have

found that it is beneficial to add a certain amount of transparency for very thin struc-
tures. In the shader, we check the thickness of the volume. If it is above a certain
threshold, we render it opaque, otherwise semi-transparently with a transparency pro-
portional to its thickness. We use a threshold of ∆x/2 in our examples.

86 Turbulent Fluids

Figure 4.34: A plume is rendered using semi-transparent rendering (left), wispy smoke
rendering (middle) and volume rendering (right). While volume rendering produces the
most realistic results for dense plumes, semi-transparent and wispy rendering enhance the
visualization of the vortex sheet structure.

• To emphasize the detailed structures from the surface vorticity model we can leverage
the fact that smoke often concentrates on the vortex sheets [Sto06]. To highlight these
surfaces, we modulate the transparency by an approximation term for smoke sheets as
given in Funck et al. [vFWTS08]. To prevent the apparent increase of smoke density
by elongation of the mesh, we track the smoke concentration at each triangle during
simulation. It is seeded with a constant value at the inflow, and distributed during re-
meshing. This per-triangle concentration is multiplied onto the transparency during
rendering.

• Lastly, it can be useful to leverage the commonly used volumetric shaders of an
existing rendering pipeline. To do this, we project the mesh onto a grid data structure.
This density grid might require a high resolution, but is independent of the simulation
resolution and only required for rendering.

The effect of these different rendering techniques can be seen, e.g., in Fig. 4.34. For most
of the example scenes we have used the semi-transparent shader, the only exception is
Fig. 4.36, where we used the volumetric shader.

Performance For high-resolution triangle meshes, the two most costly steps in the sim-
ulation loop are applying the Gaussian kernel to the mesh, and integrating (4.52). However,
these operations are simple and do not depend on neighborhood information. Therefore,
they are very suitable for parallelization. Using GPU computing with CUDA, we obtained
significant speedups of approximately a factor of 10. In the CUDA routine for calculating
the velocity update, we use a precomputed hash grid structure to exclude triangles outside
the cutoff radius. We note that the complexity can be further reduced using Treecodes, e.g.
[QV01]. For our example scenes with a few hundred thousand vertices, we however found
our simple approach to be sufficient.

CHAPTER 4. ADDING TURBULENT DETAIL 87

Figure 4.35: We compare the simulation of a buoyant plume with isotropic turbulence mod-
eling (middle) to our method (right). The base simulation is shown on the left. While
isotropic turbulence creates unrealistic surface distortions, the turbulence onset is calculated
correctly using our approach.

4.4.5 Results

In the following, we demonstrate the properties of our model based on several simulations
setups.

Turbulence onset To demonstrate the ability of our vortex sheet dynamics to correctly
compute the turbulence onset, we simulated a buoyant smoke plume as shown in Fig. 4.35.
The setup uses 64× 96× 64 grid cells for the base solver, and a triangle edge length ∆l =
0.18∆x. Without artificial disturbing forces, the base flow remains smooth and does not
show any turbulent detail. To demonstrate the effect of standard turbulence methods, we
synthesize turbulence using vortex particles. The vortex particles are emitted at the inflow
and moved along the flow with the smoke plume. For the particles, we use a size and energy
distribution based on the Kolmogorov spectrum. This is typically a good assumption for
bulk volume flows, as isotropization drives the turbulence towards a Kolmogorov spectrum
eventually. At the interface, however, the length scales are model-dependent and production
is highly anisotropic. This leads to a lack of coherent features using isotropic turbulence
methods. Using our method, we observe that the generated detail organically integrates
with the large-scale flow.

Eulerian-Lagrangian coupling We demonstrate the generality of our model by sim-
ulating two setups with more complex boundary conditions. The first scene, depicted in
Fig. 4.36, shows strongly billowing clouds moving through a channel of irregularly shaped
obstacles. We simulate an expanding front of smoke with density slightly above air, with
a base resolution of 40× 40× 128. It can be seen that the flow easily follows the geome-

88 Turbulent Fluids

Figure 4.36: In this example scene, an expanding, turbulent smoke front is simulated. The
typical cloud billowing is clearly visible in the smoke plume shape. This effect can not be
achieved using turbulence synthesis.

try of the scene due to the Eulerian simulation, while our vortex sheet model leads to the
development of the typical billowing cloud surfaces. In the second scene, the interaction
between water and a heavier liquid is simulated. We use a base solver with 96× 64× 64
grid cells, and pulsed inflow conditions to simulate the injection of multiple drops of fluid.
In this case, the temporally changing inflow leads to complex density surfaces developing
over time from the buoyant turbulence. Note that the irregular walls of the first, and the
pulsed inflow of the second example would be difficult to realize with a simulation based
on a pure vorticity formulation.

Wall turbulence In a next example, the interplay between mesh buoyancy and our tur-
bulence model is investigated. To this end, we simulate a plume under the influence of
buoyancy and a moving obstacle. Fig. 4.26 shows the orthogonality of the both models:
with only the turbulence model activated, we observe detailed structures forming in the
wake of the obstacle, while the rest of the flow remains laminar. Once the vortex sheet
model is enabled, the mesh shows small-scale deformations with correct orientation due to
buoyancy. We show that by combining the two models, we can benefit from both the accu-
rate prediction of source regions by the turbulent energy model, as well as the anisotropic
generation of the vortex sheet method. This example exhibits a large number of highly de-

CHAPTER 4. ADDING TURBULENT DETAIL 89

Setup Grid res. #tris ∆l/∆x Mesh Grid
mio. [s] [s]

Bunny Fig.4.26 64×64×64 0.9 / 2.6 0.2 9 / 33 0.6
Water Fig.4.30 96×64×64 0.8 / 3.2 0.15 12 / 40 1.3
Plume Fig.4.35 64×96×64 0.6 / 2.3 0.18 7 / 22 0.6
- w/o cutoff 64×96×64 0.6 / 2.4 0.18 36 / 101 0.5
- base only 64×96×64 0.2 / 0.8 0.18 1 / 6 0.5
- vortex part. 64×96×64 0.4 / 1.5 0.18 5 / 16 0.6
Street Fig.4.36 40×40×128 1.0 / 1.8 0.2 11 / 41 0.9
Duck Fig.4.37 64×96×64 0.8 / 3.1 0.2 8 / 30 0.4
- VIC 64 64×96×64 0.1 / 0.3 0.2 0.2 / 0.4 6 / 16
- VIC 256 256×384×256 0.8 / 3.8 ” 4 / 11 156 / 350

Table 4.3: Performance measurements for our simulation runs. Timings are mean runtime
per frame. Two values with a ”/” denote the mean and maximum values, respectively.
Grid refers to all Eulerian operations, while Mesh represents vortex sheet dynamics. All
simulations were run on a workstation with an Intel Core i7 CPU, a NVidia GTX 580
graphics card and 8GB of RAM.

tailed swirls, many of them less than a fifth of a cell in diameter. These surface details are
not smeared out despite moving along with the fast and turbulent velocities. Representing
this detail during the course of a purely grid-based simulation would require a large amounts
of memory, and corresponding amounts of computation for the advection step.

Performance The two most costly steps are applying the Gaussian kernel to the mesh,
and integrating (4.52). Since these operations are simple and do not depend on neighbor-
hood information, we evaluate them on the GPU. This leads to an average time of 10s per
frame for the example scenes shown. The majority of this time is spent on the vortex sheet
evaluation, i.e. the performance primarily depends on the number of triangles in the mesh.
The number of triangles is in turn determined by two factors: the shot length, as triangle
numbers typically increase during the course of a simulation, and the re-meshing resolution
∆l. The parameter ∆l can therefore be used as a means for fine-tuning detail versus perfor-
mance. The performance numbers and statistics for all scenes can be found in Table 4.3,
where base only refers to the plume simulation without a turbulence model.

In Fig. 4.37 it is demonstrated that the method can obtain the same quality of results as
the Vortex-in-Cell (VIC) scheme used, e.g., in Stock et al. [SDT08]. It is howver consider-
ably faster than VIC and interfaces better with e.g. inflows and turbulence models due to its
hybrid nature.

4.4.6 Conclusion

In this chapter, an algorithm for simulating buoyant, turbulent smoke plumes was presented.
A Lagrangian surface mesh is used to track the smoke/air interface. On this mesh, we solve
the vortex sheet dynamics, and couple it to a low-resolution Eulerian fluid solver. This
allows correctly simulating the turbulence generation process on the interface, which is
important for visual coherency. On the other hand, the coupling with Eulerian large-scale

90 Turbulent Fluids

Figure 4.37: We compare our method to Vortex-in-Cell integration. Our approach (middle)
produces similar results as VIC on a 256 grid (right), while being 19 times faster. On the
other hand, VIC with a resolution of 64 (left) has a comparable runtime to our method, but
exhibits significantly less detail.

dynamics allows evaluating the update of the velocity in a purely local fashion. This greatly
reduces the complexity, and enables the efficient simulation of detailed plumes with non-
trivial static boundaries or moving obstacles. In addition, we have proposed an orthogonal
turbulence model for capturing turbulence production from obstacles.

A limitation of this approach is that it can lead to meshes with large numbers of tri-
angles. Due to re-meshing, the number of triangles will increase over time in turbulent
regions for long simulation times. Also, accumulated integration errors and re-meshing
operations can lead to self-intersecting surfaces. Although our resampling approach may
reduce the complexity of the meshes, it can not keep up with the growth in complexity
for long shots. For this, more aggressive approaches are needed. Other methods such as
[WTGT10, BKB12] could be employed to help to reduce complexity; however, there also
introduce severe overhead for meshes of this complexity and may cost more than they bring
in terms of performance benefit. Investigating better resampling schemes might be an inter-
esting topic for future work.

This method is naturally not well-suited for diffuse, hazy smoke. It would however
be very interesting to combine our approach with a lower-resolution volumetric density
representation. Sharp, detailed interfaces could then be tracked with our method, while the
developing diffuse haze around the dense cloud could be represented on the volumetric grid.
It would also be possible to add further detail based on the texture coordinates of the mesh,
as we have a temporally coherent discretization of the surface over time.

CHAPTER 4. ADDING TURBULENT DETAIL 91

4.5 Conclusions

4.6 Application Guidelines

The new techniques introduced in this thesis together with previous methods summarized
in Section 2 are best seen as a toolbox of methods for simulating complex, turbulent flows.
Many of the elements can be interchanged, or combined in different ways depending on
the requirements. This section provides guidelines for the practical use of these individual
components. Most of them are also available as modules in the open source fluid solver
Mantaflow, which can serve as a framework for experimentation and research in turbulent
fluid dynamics.

Turbulence Prediction The simplest turbulence predictors are vorticity [FSJ01] and
wavelet-decomposition of the velocity field [KTJG08] (Section 4.1.4). These prediction are
very easy to implement, and the first thing to try. To simply add some turbulence to an
existing simulation, especially the later is sufficient and proven. Strictly speaking, however,
these prediction only produces meaningful results for strongly forced turbulence, and will
fail in most complex cases, especially when using low resolution base solvers. Even the
standard test case of a rising plume does not fall in this regime, as it strongly relies on
interface dynamics, and will look incorrect on closer inspection. The arguably most useful
representation for non-trivial turbulence prediction is TKE, as a vast set of well-proven
tools exists for this representation by the means of classical turbulence models. For many
use cases, a turbulence predictor based on a complete two-equation model such as the k–ε

model Section 4.2.2 provides the best trade-off between complexity and prediction power.
On the one hand, the simpler incomplete one-equation models require scene-dependent
information such as a mixing length, which are hard to specify in the general case. On
the other hand, more complex models such as full Reynolds stress transport rarely pay off
for Graphics applications. While they provide more prediction power especially for highly
anisotropic and transition flows, it is hard to use the information gained in a meaningful
way, as accuracy is limited by the statistical synthesis methods.

Turbulence Synthesis The most popular turbulence synthesis method in Graphics is
frequency-matched curl noise texture synthesis as described in Section 4.1.4. This is due to
their simplicity, efficiency and the fact that they work well in combination with TKE pre-
dictors. Instead of representing and simulating turbulence dynamics, only a texture lookup
has to be performed, which makes it the prime choice in methods geared towards real-time
such as Section 4.2. However, this method suffers from a number of severe drawbacks.
Firstly, the transition between coherent anisotropic structures and the isotropic textures cre-
ates visual artifacts. This can be partly alleviated by 2D anisotropy extensions as described
in Section 4.2, but the method is inherently limited in that detail structures cannot easily be
edited or aligned to coherent flow features. Therefore, it will always remain disconnected
from the base flow. Also, the modulation of the noise texture with the TKE effectively cre-
ates divergences, which may be a problem if strong gradients of turbulence intensity exist
in the scene. Even more importantly, the detail dynamics is limited by the static nature of

92 Turbulent Fluids

texture. Within an octave, there is no interaction between the generated turbulent eddies,
which creates an unrealistic frayed-out look especially if no background flow is present.

For small synthesis scales, i.e. using a high resolution base solver to cover the mid-
range turbulence, for flows with mostly homogeneous turbulence intensities or for real-time
scenarios, curl noise texture synthesis is therefore a good choice. For all other cases it pays
off to directly represent turbulence using a vortex representation, such as vortex particles
(Section 4.3), filaments [WP10] or vortex sheets (Section 4.4). This most often results in
more plausible turbulence dynamics, and allows to model more complex turbulent effects
such as transition and breakdown. On the downside, it takes more effort to couple these
representations to turbulence predictors, and re-meshing can be an issue. To represent strong
turbulence, vortex particles are the prime choice, as these flows tend to be less connected
and represented most compactly using particle kernels. Filaments are very efficient to cover
mid-level turbulence, and are also useful for the modeling of transition effects. For interface
effects, vortex sheets are most efficient. They are also the suited best for baroclinity-driven
effects, such as cloud billowing which is hard to model in other representations.

Chapter 5

Liquid Turbulence

Turbulence on a liquid surface is a phenomenon that is distinct from the phenomena that
we have seen previously. While velocity variations in the surrounding air and water play
a role in the creating the detailed waves and wrinkles on a liquid surface, they do not tell
the whole story. It is appealing to think that the ripples on the surface of a liquid are mere
images of the vortices present in the surrounding fluid, but laboratory measurements in the
physics literature [SvdW08] have shown that this appealing picture predominantly applies
to the low frequency components of the liquid surface. As the frequency increases, new
dynamics emerge that are distinct from the velocities in the surrounding fluids.

If the surface variations on a liquid surface were directly enslaved to the turbulence of
the underlying velocity fields, we would expect that some statistic of the surface, e.g. the
surface gradient, would follow the same power law as the velocity field. In essence, we
would expect the −5

3 Kolmogorov spectrum to appear somewhere in relation to the sur-
face. However, wave turbulence theory [ZLF92] predicts a much steeper exponent, −11

4 ,
otherwise known as the Kolomogorov-Zakharov (KZ) spectrum. The larger negative expo-
nent implies that high frequency surface waves are much less persistent than high frequency
velocities. This general implication is supported by laboratory experiments, but the effect
has been observed to be even more extreme, as even larger exponents, e.g. −6, have been
measured [SvdW08]. Other works [Fal10] have also reported measurements that are not in
line with the theory. These highlight the fact that, relative to single phase turbulence, free
surface turbulence is a phenomenon that still contains many more unanswered questions.
Given the distinct physical nature of this phenomenon, it is usually referred to as “wave tur-
bulence” or “weak turbulence”. Many excellent survey papers are available [BP01, DK99]
on the topic.

Fortunately, there is numerical evidence that the high frequency components on liquid
surfaces can be approximated using advected wave sources ([Sav06], Chapter 7.3). In light
of this, it should be possible to add novel detail to the surface of an existing liquid simulation
by running a couple wave simulation along its surface. Many wave models exist in addition
to the classic wave equation, and we will begin by briefly describing several of them.

93

94 Turbulent Fluids

5.1 Wave Models

5.1.1 The Classic Wave Equation

The classic wave equation can be stated as,

∂ 2h
∂ t2 = c∇

2h (5.1)

where h denotes the height of a 2D liquid surface. In computer graphics, this is a very
popular model for wave motion that lends itself to straightforward integration schemes and
appears in many works, e.g. [TWGT10a, ATBG08, KM90].

5.1.2 The Korteweg-de Vries Equation

A very well-studied model for wave motion is the Korteweg-de Vries (KdV) equation
[Joh97, Tre00], which contains both a quadratic non-linearity and a third spatial derivative
that enables dispersion:

∂h
∂ t

+h
∂h
∂x

+
∂ 3h
∂x3 = 0. (5.2)

The KdV equation is only one-dimensional, and its two-dimensional generalization is the
Kadomtsev-Petviashvili (KP) equation:

∂

∂x

(
∂h
∂ t

+h
∂h
∂x

+
∂ 3h
∂x3

)
+

∂ 2h
∂y2 = 0. (5.3)

It is immediately apparent that KP equation is anisotropic, as the treatment of spatial deriva-
tives is not symmetric. The asymmetry arises because it is assumed that the wave in the y
direction has relatively low frequency. For this reason, we have shied away from using the
KdV and KP equations. However, we note that the direction of principal variation could
certainly be detected in a liquid simulation, allowing the KP equation to be oriented and ap-
plied. There is a wealth of powerful techniques related to the inverse scattering transform
that could then potentially be brought to bear on the problem [DJ89].

5.1.3 The Non-Linear Schrödinger Equation

The KdV equation applies specifically to shallow water (long wave) scenarios. A more
general, and also well-studied, alternative is the non-linear Schrödinger (NLS) equation,
which takes the form:

i
∂h
∂ t

+α
∂h
∂x

= β |h|2h, (5.4)

where α and β are constants, i =
√
−1, and the real component of the solution is the one of

interest. In the shallow water limit, the NLS equation is known to reduce to the KdV equa-
tion. Like the KdV equation, the NLS equation is one-dimensional, so a two dimensional
generalization is needed. For the case of water waves, the 2D analog to the NLS equation

CHAPTER 5. LIQUID TURBULENCE 95

is the Davey-Stewartson system [DS74]:

i
∂h
∂ t

+λ
∂ 2h
∂x2 +

∂ 2h
∂y2 −ν |h|2h = h

∂φ

∂x
(5.5)

α
∂ 2φ

∂x2 +
∂ 2φ

∂y2 = ξ
∂ |h|2

∂x
, (5.6)

where φ denotes the velocity potential. Much additional investigation has been performed
on these equations, including the addition of surface tension [DR77] and a deep water gen-
eralization [Hog85]. By looking at the right hand side of these equations, it is clear that they
still display anisotropies similar to the KP equations, so we again preferred not to use them,
but again note that inverse scattering transform methods could potentially be applied.

5.2 The iWave Algorithm

We elected to use the iWave algorithm [Tes04b, Tes04a], because it is known to introduce
more visual variety to wave simulations, is used extensively in production [Car07, FH09,
AAB+11], and inherits much of the simplicity of the classic wave equation. One of the
visual features that the more sophisticated non-linear models described above enable is
dispersion, where a coherent feature gradually breaks apart into features with different fre-
quencies. As we will see, the iWave algorithm also supports some form of this behavior. We
note that the NLS and KdV equations support additional non-linear effects, such as phase
shifting when two wave fronts collide. As the iWave algorithm is linear, it does not sup-
port this behavior. Finally, we found was that the custom-built kernel at the heart of iWave
has larger spatial support than the Laplacian from the classic wave equation, which has the
positive side off of making the overall integrator significantly stabler.

5.2.1 The iWave Equation

The central iWave equation closely resembles the classic wave equation:

∂ 2h
∂ t2 = c

√
−∇2h, (5.7)

but instead employs the less conventional fractional Laplacian
√
−∇2 in lieu of the tradi-

tional ∇2. Following the reasoning in Tessendorf [Tes04b], the radical arises as follows.
Assume that we have a potential, φ , and that the fluid velocity u can be retrieved by tak-
ing its gradient, u = ∇φ . For a wave simulation, we are only concerned with the vertical
component, h, so if we assume it points in the y direction, the term of interest is:

∂h
∂ t

=
∂φ

∂y
. (5.8)

Mass conservation must also be enforced in the liquid, ∇2φ = 0. Separating this equation
out into its constituent terms we obtain:(

∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2

)
φ = 0. (5.9)

96 Turbulent Fluids

The temptation is to discard the ∂ 2

∂y2 term, as there is no significant variation in the vertical
direction. Doing this would in fact yield the classic wave equation. If we instead collapse
the other two derivatives into the term

(
∂ 2

∂x2 +
∂ 2

∂ z2

)
= ∇2

⊥, we can obtain:(
∇

2
⊥+

∂ 2

∂y2

)
φ = 0

−∇
2
⊥φ =

∂ 2φ

∂y2 .

The radical from Eqn. 5.7 then appears because we can take the square root of both sides:

√
−∇2

⊥φ =

√
∂ 2φ

∂y2√
−∇2

⊥φ =
∂φ

∂y
.

We can now plug this is into our original definition of velocity potential, Eqn. 5.8:√
−∇2

⊥φ =
∂h
∂ t

. (5.10)

This almost matches Eqn. 5.7, except that the φ term remains. If we could instead obtain an
equation that only contains h, integrating it forward in time would be much easier. In order
to do this, we apply a time derivative to both sides:√

−∇2
⊥

∂φ

∂ t
=

∂ 2h
∂ t2 , (5.11)

and the perform a substitution based on the linearized Bernoulli equation,

∂φ

∂ t
= ch, (5.12)

to obtain the final iWave equation:

c
√
−∇2h =

∂ 2h
∂ t2 . (5.13)

5.2.2 Spatial Discretization

Having established Eqn. 5.7, the next step is to spatially discretize the fractional Laplacian,√
−∇2. Tessendorf [Tes08] converts the operator to a Fourier representation to obtain the

following convolution kernel:

G(x) =
∫

∞

0
k2 e−k2σ2

J0(k|x|) dk, (5.14)

where k is frequency, σ is a Gaussian cutoff parameter, the J0 is the zeroth Bessel function
of the first kind. This equation can be difficult to parse, so we will try to impart some
intuition here.

CHAPTER 5. LIQUID TURBULENCE 97

0 10 20 30 40 50 60 70 80 90 100
0.5

0

0.5

1

Figure 5.1: Left: The J0 Bessel function. Right: The J0(|x|) function plotted using a 2D
coordinate x. It is essentially the top plot, swept in a circle.

+ + · · ·

=

Figure 5.2: The integral
∫

∞

0 J0(k|x|) dk is a summation of 2D Bessel functions over a set of
frequencies.

We will first look at solely the J0(x) term. The J0 Bessel function is an oscillatory
function that decays fairly slowly in space, as can be seen on the left of Fig. 5.1. When x
denotes a 2D spatial coordinate and J0(|x|) is evaluated in the 2D plane, we obtain the wavy
shape seen on the right of Figure 5.1.

The integral in Equation 5.14 denotes a summation of many of these 2D functions with
increasing frequency, as can be seen in Figure 5.2. Notably, the summed functions tend to
cancel each other, so the integral falls off faster in space than its constituent Bessel functions.
However, adding these functions directly does not generate a fractional Laplacian kernel, as

98 Turbulent Fluids

the spectrum obtained is not correct. Each Bessel function should instead be weighted by
the square of its frequency,

∫
∞

0 k2 J0(k|x|) dk, as can be seen in Fig. 5.3.

12· + 22· + 32· · · ·

=

Figure 5.3: The integral
∫

∞

0 k2 J0(k|x|) dk weights each Bessel function according to the
weights dictated by the fractional Laplacian.

Tessendorf observes that this integral is actually divergent; as the frequency k grows
larger, the weight k2 grows quadratically, so in the limit k→ ∞, the integral sums to ∞. In
order to address this problem, he adds a “soft cutoff” Gaussian term, e−k2σ2

, which shrinks
faster than the k2 term, and thus suppresses the divergence. Note that this Gaussian is in
the frequency domain, not the spatial domain. By combining the three components we have
just described, J0, k2, and e−k2σ2

, we obtain the full term under the integral in Eqn. 5.14.
The final resulting kernel can be seen in Fig. 5.4.

5.2.3 Time Discretization

With the spatial discretization of the fractional Laplacian in place, we can now turn to
devising a temporal discretization. Again following Tessendorf [Tes04b] we add a damping
term to the iWave equation in order to maintain stability:

∂ 2h
∂ t2 +α

∂h
∂ t

= c
√
−∇2h, (5.15)

where α denotes a damping constant. If we denote our iWave convolution kernel as G, we
can now insert simple finite difference stencils into the time derivatives:

ht+1−2ht +ht−1

∆t2 +
ht+1−ht

∆t
= Ght , (5.16)

CHAPTER 5. LIQUID TURBULENCE 99

and obtain an update rule for h:

ht+1 =
(2−α∆t)ht −ht−1 +∆t2Ght

1+α∆t
. (5.17)

5.2.4 A Preview of the 3D iWave Kernel

In subsequent sections (§5.5.3), we will be constructing a 3D version of the iWave kernel in
order to synthesize waves on a liquid surface. The intuition behind the 2D kernel transfers
fairly directly to the 3D domain. The J0 Bessel function will be replaced with the sinc(x) =
sinx

x function, but the role of the integral summing over various frequencies will remain the
same (Figure 5.5).

5.3 Closest Point Turbulence

Finally, we propose two turbulence coupling methods that seed the high resolution wave
simulation in visually expected regions.

Despite much recent progress, it remains a challenge to simulate large-scale, high-
resolution liquids. The recently popular “up-res” approach separates simulations into large-
and small-scale details, and runs separate algorithms for each scale. In addition to be-
ing more efficient, imposing a one-way coupling between scales can facilitate design. A
user can interact with a fast, low-resolution simulation, and later add additional high-
resolution detail in a way that does not invalidate the low-resolution design. This approach
has been successfully applied to several natural phenomena, including cloth simulations
[BMWG07] and single phase smoke simulations [KTJG08, NSCL08, SB08a, NCZ+09,

12e−σ2
+ 22e−4σ2

+ 32e−9σ2 · · ·

=

Figure 5.4: The final integral
∫

∞

0 k2 e−k2σ2
J0(k|x|) dk adds a “soft cutoff” term to avoid

blowup at large k.

100 Turbulent Fluids

+ + + · · ·

Figure 5.5: In 3D, the J0 in the iWave kernel will become a sinc function, shown above with
a quadrant removed to show the internal structure. The notion of scaling and summing over
various frequencies to obtain the final kernel remains exactly the same.

HMK11, YCZ11]. However, it has been less successful for liquid simulation. Practitioners
have reported [Lai11] that applying single-phase techniques to liquid simulations introduces
undesirable artifacts and does not create plausible new details.

We posit that the reason for this is that the physics being simulated has been incomplete.
Previous methods for increasing the resolution of liquid simulations [NSCL08, JKB+10,
YZC12] have assumed that if the turbulence of the underlying fluid velocity field is in-
creased, high resolution surface dynamics will follow. However, the literature on free sur-
face turbulence, also known as “wave turbulence” or “weak turbulence”, maintains that the
free surface, especially at high frequencies, possesses additional dynamics that are not mere
images of the underlying velocity field. While the low frequency components of the ve-
locity field initiate surface waves, many high frequency details arise from the independent
oscillation of the surface membrane [SvdW08, Fal10].

We present a method that captures these additional dynamics by explicitly performing
a wave simulation on the liquid surface. In doing so, we reduce the volumetric problem to
a surface-only problem. We use the state-of-the-art in visual wave simulation, the iWave
algorithm [Tes04b, Tes04a]. As we are simulating a scalar on a surface of rapidly changing
topology, we immediately encounter the problem of consistently parameterizing a deform-
ing surface. We sidestep this problem entirely by using a newly developed embedding
method known as the Closest Point Method (CPM) [RM08]. The CPM operates on a 3D
extension field instead of a 2D surface field, and thus requires no surface parameterization.
However, it requires the existence of 3D spatial operators. Natural 3D analogs of 2D surface
operators are often available, such as the 5-point 2D and 7-point 3D Laplacians. However,
for many operators, such as the fractional Laplacian in the iWave algorithm, no obvious
3D equivalent is available, and it is unclear if the CPM can be used. We show that a vi-
able CPM operator can be constructed by taking the inverse Abel transform of the original
surface operator.

The CPM has predominantly been used on rigid 3D objects, where the cost of comput-
ing a closest point transform [Mau03] can be amortized. We instead deal with a deforming
surface where the transform is computed and advected every frame. In order to prevent
this from becoming the bottleneck, we propose an iterative transform based on the Nacelle
algorithm [Tes11] that is faster than fast marching-based methods [AS03] and more effec-
tive at maintaining sharp features. Lastly, we propose two turbulence seeding methods that
provide visually consistent methods of coupling the high-resolution surface simulation to
the low-resolution volume simulation.

Our specific contributions are as follows:

CHAPTER 5. LIQUID TURBULENCE 101

Figure 5.6: An overview of the different steps of our simulation algorithm. We read in data
from an existing level set solver and add additional surface detail by performing a surface-
only wave simulation. The final result can be used as a bump or displacement map during
rendering.

• A method of constructing operators for the Closest Point Method when no natural
3D operator is available.

• A fast, iterative Nacelle method for building the closest point transform of a deform-
ing surface.

• A frozen core version of the Nacelle method and an efficient narrow-band advection
method that improves surface details.

• Two turbulence seeding strategies that introduce waves in visually expected regions.

5.4 Previous Work

Prior graphics work: Level set simulation of liquids was pioneered by Foster and Fed-
kiw [FF01]. Since then, many techniques have been proposed for simulating liquids with
higher spatial resolution. Recent works include coarse grid projections [LZF10], higher or-
der reinitialization methods [HK10], complementary Lagrangian meshes [WTGT09], and
fast tall cell methods [CM11]. Bargteil et al. [BGOS06b] developed a method for texturing
such simulations and successfully ran a reaction-diffusion simulation on the surface. How-
ever, significant surface parameterization problems arose, which led to subsequent work
[BSM+06, KAK+07, NKL+07] where the parameterization was synthesized each step. A
surface texture was then synthesized from exemplars; no simulation took place. Our method
sidesteps the parameterization problem entirely and allows a non-trivial iWave simulation
to be performed on the surface.

One of the goals of our algorithm is to facilitate the design of liquid animations, so it
can also be considered a liquid control algorithm. Many approaches, such as keyframes
[MTPS04, SY05] and guiding shapes [NB11] have been developed to address this problem.
Our method can be used to add additional surface detail to the results of these algorithms,
so we consider them to be complementary.

A good survey of techniques for simulating ocean waves is available in Darles et al. [DCGG11].
While these techniques give good results for scenes without interaction, we do a full 3D
simulation that automatically adds sources and handles obstacle interactions. Other recent
work on wave simulation has included the development of fast, Lagrangian “wave parti-
cles,” [YHK07], and the addition of the FFT algorithm described by Tessendorf [Tes04b] to
a shallow water solver [CM10]. Several previous authors have attempted to simulate waves
on deforming surfaces. Angst et al. [ATBG08] simulated waves on a fixed character mesh

102 Turbulent Fluids

surface that does not undergo any topology changes. They only simulated the traditional
wave equation, not the iWave equation. Thürey et al. [TWGT10a] also simulated the wave
equation on a Lagrangian mesh in order to capture surface tension effects. The focus of
their method was on sheet breakup and large scale instabilities, so they did not achieve the
fine-scale wave detail that we are able to produce. Kim et al. [KSK09b] simulated a vor-
tex sheet along the liquid surface to capture high resolution interface effects. Again, their
approach initiated detailed sheet breakup, which is orthogonal to the surface detail that we
capture in this current work, and could be combined with ours to achieve highly detailed
liquids.

The closest work to ours is Patel et al. [PTM09], which performs an orthogonal pro-
jection of a 2D iWave simulation onto a 3D river. This approach works best when the 3D
liquid is well-approximated by a 2D plane, which is a well-founded assumption for rivers,
but clearly not true for general liquids. Figure 5.9, for example, would be difficult to cap-
ture without introducing significant distortions, but is a trivial test case for our method. The
algorithm also requires the user to manually specify turbulence injection sites, whereas we
propose a method that injects turbulence automatically.

We use the Closest Point Method (CPM) [RM08], a level set-based, parameterization-
free surface simulation method, to perform our iWave simulation. The CPM is not the first
level set-based method proposed for simulating surface phenomena (see e.g. previous vari-
ational formulations [BCOS01, Gre06]), but it sidesteps many of the complexities present
in previous methods, so we prefer it here. All of the level set-based methods require 3D
generalizations of 2D surface operators, so even if a variational method was employed, the
3D iWave kernel we present in §5.5.3 would be needed. Other works have used the CPM to
simulate fire [HZQW10], the wave equation, and the Navier-Stokes equations [AMT+12].
All of these works deal with cases where the surface operators have obvious 3D analogs,
such as the gradient and Laplacian. To our knowledge, ours is the first method that success-
fully uses an operator that is a non-trivial 3D generalization. Hong et al. [HZQW10] apply
the CPM to deforming surfaces by propagating scalars between frames using the extension
field. We present a fast, iterative method of computing the extension that could be used to
accelerate their method, and detail-preserving mechanisms that could further improve their
results.

5.5 A Free Surface Turbulence Algorithm

In this section, we describe our algorithm for simulating turbulence on a free surface. We
still start with preliminaries on the Closest Point Method (CPM) and iWave algorithms,
show how they can be unified, and then present the complete algorithm. A high level
overview of our approach can be seen in Figure 5.6.

5.5.1 The Closest Point Method

The Closest Point Method [RM08] is an embedding method for simulating partial dif-
ferential equations (PDEs) on arbitrary surfaces. As with other embedding methods, it
works directly on 3D volumes that avoid the problems of traditional surface-based sim-
ulation, such as the construction of low-distortion surface parameterizations, and the de-

CHAPTER 5. LIQUID TURBULENCE 103

velopment of specialized surface-based operators such as the Laplace-Beltrami operator
[WMKG07, CLB+09]. While the algorithm operates in 3D, it supports narrow banding,
which allows it to scale according to the complexity of the surface, not the volume.

Similar to previous embedding methods, the CPM operates on the 3D extension field of
the surface, which is constructed by assigning each grid point the scalar value of the nearest
surface point. Simulation proceeds by applying the 3D version of the desired PDE to the
extension field. For example, in the case of surface diffusion, the familiar 7-point Laplacian
stencil would be used instead of a Laplace-Beltrami operator. More concretely, an explicit
CPM for diffusing a surface scalar u2D through T timesteps of size ∆t on a fixed surface
mesh would proceed as shown in Algorithm 1.

Algorithm 1: diffuseUsingCPM(u2D)

1 begin
2 Build the closest point transform, CP, of u2D
3 Build the extension field, u1

3D =CP(u2D)
4 for t = 1 to T do
5 u∗3D = ut

3D +∆t ·∇2ut
3D

6 ut+1
3D =CP(u∗3D)

In this algorithm, ∇2 corresponds to the 7-point Laplacian, and CP interpolates and
propagates the scalar values at grid points adjacent to surface out to the entire volume.
The algorithm is very similar to a basic 3D explicit integration, with the key addition of
the extension step on Line 6. Despite its apparent simplicity, the CPM has been shown to
produce the correct curved surface behavior. We will not recap here the validations that have
been performed on the method (see e.g. [MBR11] for a recent example), and will instead
introduce relevant details when we later construct our 3D fractional Laplacian.

The CPM is not the first embedding method proposed for implicit surfaces, as varia-
tional versions have been available for some time [BCOS01, Gre06]. Unlike the variational
versions, the CPM does not require the underlying PDEs to be rewritten to include tangent
plane projections that constrain the dynamics to level sets near the interface. Greer [Gre06]
described degeneracies that can occur if the narrow band boundary conditions are not care-
fully set in a variational method, but no such non-physical boundary conditions are needed
by the CPM. Even if a variational version is preferred, all existing embedding methods re-
quire 3D generalizations for their 2D operators, so the results presented in §5.5.3 are still
needed. All of the methods require the construction of extension fields, so the closest point
transform we describe in §5.5.5 could also be used to accelerate the variational approaches.

5.5.2 The iWave Algorithm

The iWave algorithm [Tes04b] produces more realistic water wave behavior than alterna-
tives such as the traditional wave equation, and is used extensively in production (see e.g.
[Car07, FH09, AAB+11]). It is derived from the linearized Bernoulli’s equation for irrota-
tional flow,

∂φ

∂ t
=−p−U, (5.18)

104 Turbulent Fluids

where φ is the velocity potential, p is the pressure, and U is the potential energy. It can be
stated in undamped form as the equation:

∂ 2h
∂ t2 =−g

√
−∇2h. (5.19)

Here, h is the fluid height, t is time, g is the gravity magnitude, and
√
−∇2 is a fractional

Laplacian operator [Pod99, MR93]. Aside from the radical, it is very similar to the tradi-
tional wave equation, ∂ 2h/∂ t2 = c∇2h. The fractional term arises because the gradient of
the potential φ in Bernoulli’s equation is constrained to be divergence-free, ∇2φ = 0, and
a squaring term in the vertical direction h must be accounted for. For this reason, it is also
referred to as the vertical derivative operator. For further details, see §3.2 in [Tes04b].

The fractional nature of the operator significantly complicates its spatial discretization,
because fractional derivatives usually have non-local support, and the resulting operator is
divergent in frequency space due to the k2 term, where k denotes the spatial frequency.
Tessendorf [Tes04b] addresses the first problem by imposing a hard spatial cutoff, and the
second by introducing a Gaussian “soft-cutoff” that suppresses the growth of the k2 term.
The final vertical derivative operator G2D(r) is then stated in polar coordinates [Tes08] as

G2D(r) =
∫

∞

0
k2e−k2

J0(kr)dk, (5.20)

where r is the radial coordinate, e−k2
is the soft-cutoff, and J0 is the zeroth Bessel function

of the first kind. The hard spatial cutoff is realized by only evaluating Eqn. 5.20 out to a
user-specified r. Eqn. 5.20 is discretized into a convolution kernel using Algorithm 2.

Algorithm 2: iWave2DKernel(W , kM)
Data: iWave2D is the convolution kernel, W is the spatial width of the desired

kernel, and kM is the maximum desired wave frequency to be captured.
1 begin
2 iWave2D = 0
3 h = bW/2c
4 for y = -h to h do
5 for x = -h to h do
6 r =

√
x2 + y2

7 for k = 0 to kM do
8 iWave2D(x,y)+ = k2e−k2

J0(kr)

5.5.3 Building a 3D Vertical Derivative

In order to simulate iWave on a surface using the CPM, we need a 3D version of Eqn. 5.20
and Algorithm 2. However, unlike the Laplacian operator, the vertical derivative has no
obvious 3D analog. Indeed, the definition of the operator seems to be inherently surface-
based, as the radical arises from taking the square root in the normal direction. The salient

CHAPTER 5. LIQUID TURBULENCE 105

spatial function in Eqn. 5.20 is the J0 Bessel function of the first kind, so a reasonable first
attempt is to replace it with the spherical Bessel function of the first kind, j0(r) = sinr

r =
sinc(r). We found that generating a 3D kernel using a simple, naı̈ve replacement of J0 with
j0 results in an unstable simulation and unusable results. More care is clearly needed in the
construction of the operator. The broader question is: what makes a good CPM operator?
Ruuth and Merriman [RM08] reason that if u3D is an extension of the scalar field u2D, then
u3D does not vary in the normal direction, and so at the surface,

∇u3D = ∇Su2D, (5.21)

where ∇S denotes the 2D surface gradient. Therefore, u3D will only vary along the surface,
and the ∇S operator will only induce motion in the surface tangent directions.

We examine this intuition in a slightly different form. Say we have the scalar field
u2D(x,y), and its extension u3D(x,y,z). We can state Eqn. 5.21 in terms of a convolution
about the origin with an arbitrary operator D:∫

x,y
D2D(x,y) u2D(x,y)dxdy =∫

x,y,z
D3D(x,y,z) u3D(x,y,z)dxdydz.

Since u3D is an extension field, it must be constant in some normal direction. The direction
is arbitrary, but for expository purposes, let us choose the z direction:∫

x,y
D2D(x,y) u2D(x,y)dxdy =∫

x,y
u3D(x,y,0)dxdy

∫
z
D3D(x,y,z)dz.

By construction,
∫

x,y u2D(x,y) =
∫

x,y u3D(x,y,0), so if we assume that D3D(x,y,z) is spheri-
cally symmetric, which is reasonable given that the Laplacian and gradient operators also
display this form of symmetry, this further reduces to:

D2D(x,y) =
∫

z
D3D(x,y,z)dz. (5.22)

Eqn. 5.22 provides an answer to our original question: a good 3D CPM operator should
project down to the original 2D operator. Simple inspection shows that this condition is met
by the familiar 7-point Laplacian and gradient operators. This can be viewed as ensuring
that a CPM simulation on the extension field of a 2D plane produces the same results as a
straight 2D simulation.

More formally, the projection of a spherically symmetric function is an Abel transform.
So, if a natural 3D operator is not available, we can construct one by taking the inverse Abel
transform. Fortunately, the J0 function is both spherically symmetric and has a known Abel
transform pair [Bra99],

A −1 (J0(r)) =
1
π

sinc(r),

106 Turbulent Fluids

where A −1 denotes the inverse Abel transform. Using this relation, we can now build the
inverse of the 2D iWave kernel:

A −1
(∫

∞

0
k2e−k2

J0(kr)dk
)
=

1
π

∫
∞

0
k3e−k2

sinc(kr)dk. (5.23)

Note that an extra k appears due to the J0(kr) term, and we have folded it into the k3 term.
Eqn. 5.23 can now be used to generate a 3D vertical derivative kernel, provided that the
removable singularity at sinc(0) is properly handled. Our 3D vertical derivative operator
can now be stated as:

G3D(r) =
1
π

∫
∞

0
k3e−k2

sinc(kr)dk. (5.24)

5.5.4 Reducing Projection Error

The J0 and j0 functions arise from the fractional operator, so they have non-local support
that falls off relatively slowly in space. Some projection error is therefore inevitable, as the
3D kernel only extends a finite amount in the normal direction (z in the preceding equations),
and the integral in Eqn. 5.22 will be truncated to some subinterval of [−∞,∞].

If a normal direction is known a priori, e.g. if the surface is known to be a static plane,
then it is possible to correct for this error. For example, the projection error ε(x,y) for a
single position (x,y) in the z direction is,

ε(x,y) = D2D(x,y)−
∫ h

−h
D3D(x,y,z)dz, (5.25)

where h denotes the spatial cutoff of the kernel. If ε(x,y) is subtracted from an appropriate
kernel cell, e.g. D3D(x,y,0), the projection error through (x,y) would be reduced to zero.
Unfortunately, the normal direction generally changes according to the liquid surface, so
precomputing such corrections would introduce undesirable anisotropies into the 3D kernel.

However, it is possible to eliminate all projection error from the cell with the largest
weight, the center cell. As the kernel is spherically symmetric, ε(0,0) is the same regardless
of projection direction. If ε(0,0) is subtracted from the center kernel cell, the projection
error through the center can be eliminated entirely. With this correction, we found that the
relative error of a kernel of width 15 is 0.26% under the L∞ norm. The complete algorithm
for generating the 3D iWave kernel is now shown in Algorithm 3. In all our examples, we
set kM = 10.

2D Validation: We have verified that in the simple 2D planar case, our 3D kernel
accurately reproduces the results of the original 2D iWave algorithm. We injected wave
sources along a pre-defined curve on a planar surface, and used them as inputs to both
our 3D solver and the original reference implementation of the 2D iWave solver [Tes04b].
As can be seen in Figure 5.7, as well as the accompanying video, our approach is able to
accurately reproduce the results obtained with the 2D iWave algorithm. To quantify the
error of our three-dimensional iWave kernel, we computed the difference between the 2D
and 3D simulations. We calculated the relative L2 error of the height fields, and found a
per-timestep error between 0.15% and 0.25%.

CHAPTER 5. LIQUID TURBULENCE 107

Figure 5.7: Validation of our 3D iWave kernel: On the left is the result of a standard planar
2D iWave simulation after a figure-eight shaped mouse input and 280 timesteps. On the
right is the result of our 3D simulation after the same number of timesteps on the same
input. Our simulation method introduces less than 1% error per timestep and produces
visually indistinguishable results.

Algorithm 3: iWave3DKernel(W , kM)
Data: W is the width of the desired kernel. kM is the maximum desired wave

frequency to be captured. iWave2D is the kernel computed by Alg. 2.
1 begin
2 iWave3D = 0
3 h = bW/2c
4 for z = -h to h do
5 for y = -h to h do
6 for x = -h to h do
7 r =

√
x2 + y2 + z2

8 for k = 0 to kM do
9 iWave3D(x,y,z)+ = k3

π
e−k2

sinc(kr)

10 sum = 0
11 for z = -h to h do
12 sum += iWave3D(0,0,z)

13 iWave3D(0,0,0) −= iWave2D(0,0)− sum

5.5.5 A Fast Closest Point Transform

In many previous applications of the CPM, the surface mesh is fixed, so the cost of com-
puting the closest point transform of a surface can be amortized over many timesteps. In
our application, the surface is known to be rapidly deforming, so no such amortization is
possible. Therefore, it is crucial that a fast method of computing the closest point transform

108 Turbulent Fluids

be devised. One approach is to use fast marching-based methods [AS03], but this approach
involves a heap search that is difficult to parallelize, and tends to smear out the scalar field.
This smearing is usually considered a feature of fast marching-based methods, as it corre-
sponds to rarefaction solutions of the Eikonal equation. In our application however, this
smearing introduces spurious variations along the normal direction. The scan conversion
algorithm of Mauch [Mau03] is another possibility, but it uses the surface triangle mesh,
whereas we have a signed distance function that contains richer geometric information.

We have found that the signed distance function of the existing liquid simulation can
be used to compute a fast, iterative, highly parallelizable closest point transform. A first
order version of the algorithm is similar to the method described by Losasso et al. [LSSF].
Given a signed distance function ϕ , and the cell centers of the computational grid, we can
compute the closest point of a cell by starting a particle, ci, at the cell’s center, and iterating
along the normal direction, ϕ(ci) ·∇ϕ(ci), until ϕ(ci) < ε . We used the value ε = 10−6 in
our computations.

The Nacelle algorithm of Tessendorf [Tes11] describes a second order method of warp-
ing one level set onto another. We can use the same method to compute the closest point
transform, which corresponds to a warp of all points to the zero level set. The iteration for
each particle ci then becomes,

Γ =
(
∇ϕ(ci)

T H(ϕ(ci))∇ϕ(ci)
)
/|∇ϕ(ci)|

∆ = −ϕ(ci)/|∇ϕ(ci)|

ci = ci +
(
−1+(1+2 ·∆ ·Γ)

1
2

)
∇ϕ(ci)

Γ
,

where H(·) denotes the Hessian operator. The Hessian can approach zero in flat regions
of the distance field and become problematic near the medial axis, so we test if Γ < ε at
the beginning of each iteration, and fall back to first order iteration if the condition is true.
We found that this variant of the Nacelle algorithm is highly parallelizable, and very fast.
Results obtained via fast marching and our Nacelle variant are shown in Figure 5.8.

We found that implementing our Nacelle variant was quite simple, as it is essentially a
particle iteration augmented by a second order correction. None of the heaps or quadratic
solves involved in fast marching are needed, and the final code is drastically simpler than
the canonical implementation of the Mauch algorithm 1. Unlike fast marching methods,
it also supports efficient lazy evaluation: the extension value of any random cell can be
queried and computed in O(1) time without computing the values at all of the intervening
cells between the queried cell and the interface. We exploit this feature when performing
MacCormack advection in §5.5.6.

5.5.6 Building and Advecting the Extension Field

A Frozen Core Extension Field: Once the closest point transform has been computed, a
method must be selected to extend surface values into the narrow band. Ruuth and Merriman
[RM08] originally used 4th order Newton divided differences, but subsequent work derived
4th and 6th order Weighted Essentially Non-Oscillatory (WENO) schemes [MR09], which

1https://bitbucket.org/seanmauch/stlib.

CHAPTER 5. LIQUID TURBULENCE 109

Figure 5.8: Left to right: a sphere with a checkerboard surface; the center slice of the
sphere’s extension field, computed using fast marching; the same slice computed using our
Nacelle variant. Our variant is faster and does not smear out the scalars. Computing the 2003

extension field took 3 minutes and 20 seconds with fast marching, and 21 single-threaded
seconds with our algorithm.

we will refer to as WENO4 and WENO6. Too frequent re-extension can be computationally
expensive and smear out the scalar field unnecessarily. Greer [Gre06] observed that this is
analogous to the well-known problems of periodic velocity field re-extension and signed
distance field reinitialization. We also encounter severe smearing when re-extending every
timestep (Figure. 5.9(a)), even when using WENO4 or WENO6. Never re-extending the
surface scalars captures crisper features (Figure. 5.9(b)), but it becomes unclear if valid
surface dynamics are being simulated. In both cases, undesirable anisotropies appear that
reveal the underlying grid.

We found that a subtle modification fixes both of these problems. When computing
the extension field, we ‘freeze’ the values that are less than one grid cell away from the
interface. These values define the on-surface solution, and are accurately computed by the
solver, so they should be smeared out as little as possible. We refer to this as a frozen core, as
it freezes the values at the core of the narrow band. This change significantly improves the
crispness of the results, and also suppresses the appearance of grid anisotropies, as shown in
Fig. 5.9(c). This strategy is not entirely novel, as Adalsteinsson and Sethian [AS03] make
use of a similar technique when initializing their fast marching method. However, we have
not seen these substantial improvements noted anywhere else in the literature, so they are
worth emphasizing here.

Narrow Band MacCormack Advection: We found that first order semi-Lagrangian
advection [Sta99] smeared out details captured by the CPM, and opted instead to use the
MacCormack advection scheme of Selle et al. [SFK+08]. Two modifications significantly
improved our results. First, we replaced the linear interpolant for the backtraces with the
same WENO4 scheme used for extension field construction. Second, we observed that ex-
tending and advecting the surface field unnecessarily interpolated the field twice: once dur-
ing extension, and again during advection. In order to remove this unnecessary smearing,
we construct the extension field using nearest neighbor interpolation. We use the Nacelle
algorithm to find the nearest surface point, but instead of interpolating grid values to obtain
a final result, we simply grab the value from the nearest grid cell. This essentially computes
an anti-rarefaction solution that suppresses all variation in the normal direction. As interpo-

110 Turbulent Fluids

(a) With extension

(b) Without extension

(c) With frozen core extension

Figure 5.9: We inserted a small circular wave at the top of a sphere and simulated 500
timesteps using different re-extension strategies. Top to bottom: with WENO4 re-extension
every timestep, with no re-extension, and WENO4 re-extension using the frozen core from
§5.5.6 every step. The frozen core result does not smear out the waves and suppresses grid
anisotropies that ruin the symmetry of the other cases.

CHAPTER 5. LIQUID TURBULENCE 111

lation still occurs during advection, the field is still smoothed, and we did not observe any
stairstepping artifacts. In addition to producing significantly crisper surface details (see Fig-
ure 5.10), the removal of the additional WENO4 call makes this approach computationally
cheaper.

Figure 5.10: Top: Without frozen core extension and improved advection from §5.5.6.
Bottom: Same frame, with modifications from §5.5.6. Note that the turbulent wake behind
the block is lost entirely without our improvements.

The advection scheme must support narrow banding to avoid introducing a volumetric
bottleneck into the algorithm. Narrow banding with first order semi-Lagrangian advection
is straightforward, as backtraces can be computed for a band around the interface, and the
extension values for this band can be computed on-the-fly using the Nacelle algorithm.
However, the MacCormack method advects the field forward and backwards to compute
an error term. The narrow bands for these stages differ, and computing the values for the
backwards stage is significantly more complex: they correspond to an advected extension
field, not just an extension field. Therefore, we cannot obtain valid values for the backwards
band by simply applying the Nacelle algorithm. A obvious solution to this problem would
be to fatten the narrow band for the forward stage according to the grid velocities, but in
practice this results in a significant amount of unnecessary computation.

We instead performed a preliminary pass to determine the exact set of cells needed to
perform narrow band MacCormack advection. We traced the velocities forward to find all
the cells needed for the forward band, and traced these cells backwards to determine the
cells needed in the backwards band. We then constructed the extension field for all of these

112 Turbulent Fluids

cells and performed the advection. The preliminary pass did not contain any calls to the
WENO4 interpolant, and thus consisted mostly of fast integer operations that consumed 5%
to 6% of the running time. By comparison, when we fattened the narrow band according
to cell velocities, it doubled the extension field building time. This build time becomes
the main bottleneck at high resolutions (See Table 5.1), so this approach added at least an
additional 25% to the running time. Our two pass method is clearly more efficient.

5.5.7 Turbulence Seeding

Wave propagation is only perceived as realistic if waves are seeded in visually expected
regions. Following the intuition of Kim et al. [KTJG08], we identify under-resolved regions
of the fluid surface where details are being lost. For liquids, this corresponds to regions of
high surface curvature, so we inject turbulence into locations where the absolute principal
surface curvatures are close to the Nyquist limit of the current grid. This is in line with
other curvature-based strategies in liquid simulations, such as those employed recently by
Thüery et al. [TWGT10a] and Yu et al. [YWTY12] to seed a (classical) surface wave
simulation, as well as the particle seeding strategy of Foster and Fedkiw [FF01]. Intuitively,
this corresponds to regions where the ‘surface skin’ layer of the liquid tears and initiates
surface oscillations.

We compute a source field for injecting surface waves by filtering the maximum cur-
vature values with a Catmull-Rom spline centered at half the grid resolution, and a falloff
value of one-fifth the grid resolution. Once the seeding regions have been located, we set the
source term in these regions to the local Gaussian curvature in order to reflect the variations
occurring along the surface. We found that the curvature computation method from Museth
et al. [MBWB02] provided smooth, robust results for both the principal and Gaussian cur-
vatures. Note that all of these quantities can be computed efficiently on the low-resolution
grid.resampling to higher resolution.

We found that in some scenarios, adding this source field to the height field was suffi-
cient (Figs. 5.12 and 5.14). However, if the appearance of a higher apparent surface resolu-
tion is desired, convolving the source field once with the vertical derivative operator creates
the impression that scattering has occurred across a wider range of scales, and produces
higher frequency waves. For this additional convolution, we use a vertical derivative opera-
tor (Eqn. 5.24) integrated over the [2,kM) domain, and use the extension field of the result.
This seeding method was used in Figure 5.11. We exclude the [0,2) range because these
frequencies are close to the Nyquist frequencies already present on the grid. We add the
source field to the height fields of both the current and previous timesteps in order to convey
the impression that the waves have persisted for some time, but are currently scattering into
higher frequencies. Otherwise, the sources induce instantaneous velocities that produce vi-
sual spikes in the height field. We have found that these two turbulence seeding strategies,
Gaussian curvature and convolved Gaussian curvature, work well in practice. These are by
no means the only strategies possible, but we leave further exploration to future work.

The seeding strategy should be made aware of internal obstacles in order to avoid inject-
ing spurious turbulence. In Figure 5.11, a large amount of surface curvature exists where the
liquid wraps around the central column. Much of this curvature is along the liquid-obstacle
interface, not the liquid-air interface, so injecting turbulence in these regions is incorrect,

CHAPTER 5. LIQUID TURBULENCE 113

and can result in overly lively waves around the column. This problem is addressed by
zeroing out the source term in regions surrounding internal obstacles.

5.5.8 The Complete Algorithm

We have now described all of the components of our algorithm. The complete algorithm is
shown in Algorithm 4. The extensions performed on Line 2 are the nearest neighbor exten-
sions described in §5.5.6, while the extensions on lines 6 and 8 use the WENO4 interpolant.
As the iWave algorithm uses explicit integration, the surface wave simulation is run for T
user-specified substeps for every step of the coarse simulation. We found that setting T = 5
worked well in all of our examples. Line 11 encodes the Leapfrog scheme from Tessendorf
[Tes04b].

Algorithm 4: surfaceWaves(ϕ t , vt , CPt−1, ht , ht−1)
Data: ϕ t and vt are the current level set and velocity field of the coarse simulation;

CPt is the closest point transform of timestep t, ht is the surface height at
timestep t; α is a damping coefficient, T is the number of substeps, ∆t is the
surface simulation timestep size.

1 begin
2 ht =CPt−1(ht), ht−1 =CPt−1(ht−1)
3 Advect ht and ht−1 using vt .
4 Build closest point transform of ϕ t , CPt .
5 source = filtered curvature of ϕ t , convolved by Eqn. 5.24.
6 source =CPt(source)
7 for i = 1 to T do
8 ht =CPt(ht), ht−1 =CPt(ht−1)
9 d = ht convolved by Eqn. 5.24

10 temp = ht

11 ht = (2−α∆t)ht−ht−1

1+α∆t + source−d
12 ht−1 = temp+ source
13 Clear the source field if i = 1

5.6 Discussion and Results

The iWave algorithm uses the ‘deep water’ approximation h� λ , where h is the water
depth and λ is the wave length. As we are simulating high frequencies, our λ s are quite
small, so this approximation is valid even if the liquid is globally shallow. We note that
this ‘relatively deep’ approximation is fairly common in the fluid mechanics literature, and
some practitioners [Joh97] prefer to use the terms ‘short’ and ‘long’ waves in lieu of ‘deep’
and ‘shallow’ in order to avoid any confusion. If alternate dispersion relations are desired,
Eqn. 5.24 can be scaled using the exact same terms described in Tessendorf [Tes04b].

Implementation: We ran all of our simulations on a 12-core 2.66 Ghz Mac Pro with
96 GB of memory. All of our simulations fit into memory, so we did not need to use a

114 Turbulent Fluids

Figure 5.11: A 1002×50 PhysBAM simulation, up-resed to 8002×400. The left half of each image shows the
original simulation, and the right shows our up-resed version. Our simulation took roughly 10× the time of the
original, whereas a brute force simulation would take roughly 512×, i.e. 83, the time. The source and height
values around the column were clamped to zero as respectively described in §5.5.7 and §5.6.

hierarchical or blocked data structure. However, we expect that such structures would yield
additional speedups due to improved memory locality. We used the WENO4 interpolant
[MR08], which has a stencil width of four. The more expensive WENO6 was also tested,
but it did not improve the results sufficiently to justify the additional computation. We
used a 3D iWave kernel (Eqn. 5.24) with a stencil width of 15. Reducing its spatial ex-
tent would reduce the running time, but at the cost of reduced wave propagation speeds.
We used OpenMP to parallelize the convolution, Nacelle computation, and extension field
computation stages of our algorithm. While we parallelized the most computationally in-
tensive functions, the entire algorithm can be run in parallel, so it is an excellent candidate
for GPU acceleration. We found that the obstacle interaction method of the original iWave
algorithm, which set the height values on the interior of obstacles to zero, worked well in
our 3D generalization. No additional considerations were needed. All of our results were
rendered using a modified version of PBRT [PH10] that read in the height fields from our
simulations as solid textures and then used them as bump maps. The solid texture lookup
function in PBRT was modified to use the WENO4 interpolant. meshes had to be subdi-
vided impractically small to capture all the details contained in the simulation data, and that
bump mapping combined with Fresnel reflections already effectively captured these details.

Houdini test: We compared both the scalability and quality of our algorithm to the
Houdini simulation from Lait [Lai11]. We used the Houdini 12 solver, which utilizes a

CHAPTER 5. LIQUID TURBULENCE 115

Figure 5.12: A 1003 PhysBAM simulation, up-resed to 8003. The left half of each image shows the original
simulation, and the right shows our up-resed version. The 8× up-resing only took approximately twice the time
of the original simulation.

parallel Preconditioned Conjugate Gradient solver, and collected timing information for the
scene at the resolutions of 1003, 2003 and 4003. At the highest resolution, the simulation
took nearly a week, which is totally impractical for production. The overall motion of the
liquid clearly changed between resolutions.

By comparison, our solver was able to up-res the 1003 simulation to 2003 in less than
half of the time of the base simulation. When comparing our results to the direct 2003

solution, we observed that our algorithm captured higher frequency motions (Figure 5.14).
The main bottleneck in the simulation at this resolution was writing the large volume files
to disk, which took up 46% of the running time. Using a sparse volume data structure, or an
integrated simulation-renderer solution, would yield additional speedups. We also up-resed
the 1003 simulation to 4003, 8003, and 10003. The 8003 and 10003 simulations in particular
captured extremely detailed surface motion, and would take months for the Houdini 12
solver to compute. Disk I/O remained one of the bottlenecks, respectively taking 25%,
22%, and 21% of the running times. Convolution and extension field construction times
also become more significant, which suggests that more aggressive parallelization could
yield further speedups.

The running time exhibits inferior scaling when increasing from 4003 to 8003, though
the scaling is still significantly better than the greater than 8× scalings observed for the

116 Turbulent Fluids

Example Base Res. Upped Res. Frame
Time

Total
Time

Scaling

Houdini 1003 N/A 00:00:24 01:39:00 -
Figure 5.14 2003 N/A 00:03:44 14:59:00 9.08

4003 N/A 00:38:00 152:00:00∗ 10.1
1003 2003 00:00:12 00:48:14 -
1003 4003 00:00:58 03:55:00 4.87
1003 8003 00:05:29 21:56:15 5.60
1003 10003 00:11:12 44:51:56 2.07

Pouring 1003 N/A 00:01:52 06:13:20 -
Figure 5.12 1003 2003 00:00:07 00:24:38 -

1003 4003 00:00:34 01:53:55 4.62
1003 8003 00:03:15 13:00:52 6.85

Dam 1002×50 N/A 00:00:18 01:33:00 -
Break 1002×50 2002×100 00:00:06 00:30:44 -
Figure 5.11 1002×50 4002×200 00:00:21 01:45:33 3.43

1002×50 8002×400 00:02:48 11:13:09 6.38

Table 5.1: All timings are in hours:minutes:seconds. The Scaling column denotes the scaling relative to the
timing in the preceding row. Rows marked N/A in the Upped Res. column are timings for direct Houdini or
PhysBAM simulations.

direct volumetric solvers. The disk I/O does not appear to be solely responsible for this,
as the convolution and extension field stages also exhibit roughly this scaling. Most likely
the memory traffic from the large volumes is saturating the bus, which further suggests that
investigating high bandwidth architectures such as a GPU might be fruitful.

PhysBAM tests: Our algorithm is agnostic to the source of the level set data, so Figures
5.11 and 5.12 show the results of running our algorithm on two simulations produced using
the PhysBAM code release [DHF+11]. In keeping with our goal of up-resing, we again
ran the simulation at relatively coarse 1003 and 1002× 50 resolutions. The simulations
were run single-threaded, as the multi-threaded version of the PhysBAM release is listed
as “experimental”. We expect that a multi-threaded implementation would produce timings
competitive with the Houdini solver.

We observed timing breakdowns and scalings that were similar to the Houdini example.
Disk I/O dominates initially, but decreases to roughly a quarter of the running time at higher
resolutions. The same decrease in scaling at 8003 is also observed. In the “Dam Break”
example (Figure 5.11), we were able to up-res the simulation by a factor of four along each
spatial axis using approximately the same amount of time as the original simulation, and in
the “Pouring” example (Fig. 5.12), in less time than the original simulation.

Other wave kernels: Once the components of our turbulence algorithm are in place,
it becomes straightforward to experiment with other models of wave motion. We ran the
“Dam Break” example using the traditional wave equation instead of the iWave kernel in
Figure 5.13. The traditional wave equation still gives useful results, but the smaller kernel
introduced a smaller timestep size, and the final results tended to suppress higher-frequency

CHAPTER 5. LIQUID TURBULENCE 117

waves. However, if the user prefers this ‘look’, we found that it could be achieved with
minimal code modification. Other models, such as the Korteweg-de Vries and non-linear
Schrödinger equations [Joh97] could also be used to achieve alternate looks.

The importance of damping: We found that the damping parameter, α in Algorithm
4, had a significant impact on the quality of the final results. For less damped simulations,
0<α < 0.2, the waves persisted longer than expected and produced a distracting “memory”
effect. Higher dampings, 0.2 < α < 0.4, produced behavior more in line with perceptual
expectations. This is in agreement with the default setting of α = 0.3 in the original 2D
iWave implementation [Tes04b]. A comparison of various α settings can be seen in Figure
5.15 and the supplemental video.

5.7 Conclusions and Future Work

We have described an efficient, closest point method of increasing the apparent spatial reso-
lution of an existing liquid simulation. We have addressed two main obstacles to performing
this in a Eulerian setting: the construction of a 3D iWave operator, and the efficient exten-
sion of surface scalars. We have additionally described methods for maintaining simulation
details, and proposed two turbulence seeding methods. The algorithm can produce sur-
face features in running times competitive with, and sometimes superior to, the original
base simulation. We have used our algorithm to simulate liquids containing detailed, high
frequency motion that, to our knowledge, have not been captured by any previous method.

Since we are dealing specifically with the problem of “up-resing” a liquid, our algorithm
only performs a one-way coupling. It remains to be seen if the higher frequency detail can
be coupled back to the coarse simulation, as was done in Thürey et al. [TWGT10a]. Our
algorithm only requires signed distance and velocity fields as inputs, so it could be applied to
animated meshes, as was done in [ATBG08], by computing the signed distance field of the
mesh and extrapolating velocities from the vertices. For particle-based liquid simulations, a
distance function such as the one proposed by Zhu and Bridson [ZB05] could provide a basis
for our approach. While an implicit version of the CPM [MR09] would allow our algorithm
to take larger timesteps, modifications would be needed to the Leapfrog scheme used by the
iWave algorithm. Such a scheme could significantly improve the efficiency of simulating
high phase-velocity capillary waves. In §5.5.3, we imposed a physically consistent spherical
symmetry constraint on the 3D kernel. Relaxing this assumption presents opportunities for
motif-based stylizations such as those in Ma et al. [MWGZ09].

We have shown that CPM surface physics can be viewed in terms of an Abel trans-
form, and that surface scalar extension and convolution become bottlenecks at high reso-
lutions. There is a rich body of literature surrounding the Fourier-Abel-Hankel transform
cycle [Bra99], so there may be a signal processing approach that can accelerate these stages.
Finally, we have used the inverse Abel transform to generalize one non-trivial 2D operator,
the fractional Laplacian, to 3D. We are confident that this methodology will be useful in
making other surface-only operators compatible with the CPM.

118 Turbulent Fluids

Figure 5.13: Top: iWave kernel Bottom: Traditional wave equation. When the traditional wave kernel is used,
usesul results are obtained, but the waves are not as sharp, and tend towards a preferred frequency.

CHAPTER 5. LIQUID TURBULENCE 119

Figure 5.14: In reading order: Original 1003 Houdini simulation, 2, 4, 8, and 10× upres, and direct 2003

Houdini simulation. Note how even at 2× upres, higher frequency waves than those in the direct 2003 solution
are captured.

Figure 5.15: Different settings for the damping α . Left to right: α = 0.1,0.2,0.3 and 0.4. Waves persist for
too long for low dampings, but can die off too quickly before contributing any detail with high dampings.

Bibliography

[AAB+11] Alexis Angelidis, Josh Anon, Gary Bruins, Jon Reisch, and Esdras Varagnolo.
Ocean mission on Cars 2. In ACM SIGGRAPH 2011 Talks, pages 17:1–17:1,
2011.

[AM89] M. E. Agishtein and A. A. Migdal. Dynamics of vortex surfaces in three
dimensions: Theory and simulation. Physica D, 40:91–118, 1989.

[AMT+12] S. Auer, C. MacDonald, M. Treib, J. Schneider, and R. Westermann. Real-
time fluid effects on surfaces using the Closest Point Method. Computer
Graphics Forum, (in press), 2012.

[AN05] Alexis Angelidis and Fabrice Neyret. Simulation of smoke based on vortex
filament primitives. In ACM SIGGRAPH / EG Symposium on Computer Ani-
mation, 2005.

[ANSN06] Alexis Angelidis, Fabrice Neyret, Karan Singh, and Derek Nowrouzezahrai.
A controllable, fast and stable basis for vortex based smoke simulation. In
ACM SIGGRAPH / EG Symposium on Computer Animation, 2006.

[AS03] D. Adalsteinsson and J. Sethian. Transport and diffusion of material quantities
on propagating interfaces via level set methods. Journal of Computational
Physics, pages 271–288, 2003.

[ATBG08] Roland Angst, Nils Thuerey, Mario Botsch, and Markus Gross. Robust and
Efficient Wave Simulations on Deforming Meshes. Computer Graphics Fo-
rum, 27 (7):1895–1900, October 2008.

[Aup04] B. Aupoix. Modeling of compressibiliy effects in mixing layers. Journal of
Turbulence, 5, 2004.

[BB09] T. Brochu and R. Bridson. Animating smoke as a surface. SCA posters, 2009.

[BBB07] Christopher Batty, Florence Bertails, and Robert Bridson. A fast variational
framework for accurate solid-fluid coupling. ACM Transactions on Graphics,
26(3):Article 100, 2007.

[BBB10] Tyson Brochu, Christopher Batty, and Robert Bridson. Matching fluid sim-
ulation elements to surface geometry and topology. ACM Trans. Graph.,
29(4):47:1–47:9, July 2010.

120

BIBLIOGRAPHY 121

[BCOS01] Marcelo Bertalmı́o, Li-Tien Cheng, Stanley Osher, and Guillermo Sapiro.
Variational problems and partial differential equations on implicit surfaces.
J. Comput. Phys., 174(2):759 – 780, 2001.

[BGOS06a] Adam W. Bargteil, Tolga G. Goktekin, James F. O’Brien, and John A. Strain.
A semi-lagrangian contouring method for fluid simulation. ACM Transactions
on Graphics, 25(1), 2006.

[BGOS06b] Adam W. Bargteil, Tolga G. Goktekin, James F. O’brien, and John A. Strain.
A semi-Lagrangian contouring method for fluid simulation. ACM Trans.
Graph., 25:19–38, January 2006.

[BHN07] Robert Bridson, Jim Houriham, and Marcus Nordenstam. Curl-noise for pro-
cedural fluid flow. ACM SIGGRAPH papers, 26(3):Article 46, 2007.

[BKB12] Tyson Brochu, Todd Keeler, and Robert Bridson. Linear-time smoke ani-
mation with vortex sheet meshes. In ACM SIGGRAPH / EG Symposium on
Computer Animation, 2012.

[BL78] B. S. Baldwin and H. Lomax. Thin Layer Approximation and Algebraic
Model for Seperated Turbulent Flows. American Institute of Aeronautics and
Astronautics Journal, 1978.

[BLP98] M. Brady, A. Leonard, and D. I. Pullin. Regularized vortex sheet evolution in
three dimensions. J. Comput. Phys., 146:520–545, 1998.

[BM82] J. T. Beale and A. Majda. Vortex methods i: convergence in three dimensions.
Math. Comput., 159:1–27, 1982.

[BMWG07] Miklós Bergou, Saurabh Mathur, Max Wardetzky, and Eitan Grinspun.
Tracks: toward directable thin shells. ACM Trans. Graph., 26(3), July 2007.

[BP01] M. Brocchini and D. H. Peregrine. The dynamics of strong turbulence at free
surfaces. Part 1. description. Journal of Fluid Mechanics, 449:225–254, 2001.

[BP12] Alfred Barnat and Nancy S. Pollard. Smoke sheets for graph-structured vor-
tex filaments. In Proceedings of the 2012 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, SCA ’12. ACM, 2012.

[Bra99] Ronald Bracewell. The Fourier Transform and Its Applications. McGraw–
Hill, 1999.

[Bri08] Robert Bridson. Fluid Simulation for Computer Graphics. A K Peters, 2008.

[BSM+06] Adam W. Bargteil, Funshing Sin, Jonathan E. Michaels, Tolga G. Goktekin,
and James F. O’Brien. A texture synthesis method for liquid animations. In
ACM SIGGRAPH/Eurographics Symposium on Computer animation, pages
345–351, 2006.

[Car07] Deborah Carlson. Wave displacement effects for Surf’s Up. In ACM SIG-
GRAPH 2007 Sketches, New York, NY, USA, 2007. ACM.

122 Turbulent Fluids

[CB73] A. J. Chorin and P. S. Bernard. Discretization of a vortex sheet, with an
example of roll-up. J. Comp. Phys., 13:423–429, 1973.

[CD05] Robert Cook and Tony DeRose. Wavelet noise. In Proceedings of ACM
SIGGRAPH 2005, volume 25, 2005.

[Cho81] A. J. Chorin. Estimates of intermittency, spectra and blow-up in developed
turbulence. Comm. on Pure and Applied Math., 34:853–866, 1981.

[Cho96] A. J. Chorin. Microstructure, renormalization and more efficient vortex meth-
ods. ESAIM Proc., 1:1–14, 1996.

[CK95] M. K. Chung and S. K. Kim. A nonlinear return-to-isotropy model with tur-
bulent fluctuations. Phys. Fluids, 7:1425–1436, 1995.

[CK99] Georges-Henri Cottet and Petros Koumoutsakos. Vortex Methods: Theory
and Practice. Cambridge Univ. Press, 1999.

[CLB+09] Ming Chuang, Linjie Luo, Benedict J. Brown, Szymon Rusinkiewicz, and
Michael Kazhdan. Estimating the Laplace-Beltrami operator by restricting
3d functions. In Eurographics Symposium on Geometry Processing, pages
1475–1484, 2009.

[CM10] Nuttapong Chentanez and Matthias Müller. Real-time simulation of large
bodies of water with small scale details. Proceedings of the 2010 ACM SIG-
GRAPH Symposium on Computer Animation, pages 197–206, 2010.

[CM11] Nuttapong Chentanez and Matthias Mueller. Real-time eulerian water sim-
ulation using a restricted tall cell grid. ACM Trans. Graph., 30:82:1–82:10,
2011.

[CMT04] M. Carlson, P. J. Mucha, and G. Turk. Rigid fluid: Animating the inter-
play between rigid bodies and fluid. ACM Trans. Graph. (SIGGRAPH Proc.),
23:377–384, 2004.

[Cow73] G.R. Cowper. Gaussian quadrature formulas for triangles. Int. J. Num. Meth-
ods, 7(3):405–408, 1973.

[CP03] G. H. Cottet and P. Poncet. Advances in direct numerical simulations of 3d
wall-bounded flows by vortex-in-cell methods. J. Comput. Phys., 193:136–
158, 2003.

[CS07] B. Chaoat and R. Schiestel. From single-scale turbulence models to multiple-
scale and subgrid-scale models by fourier transform. Theor. and Comp. Fluid
Dyn., 21(3):201–229, 2007.

[CTG10] Jonathan Cohen, Sarah Tariq, and Simon Green. Interactive fluid-particle
simulation using translating eulerian grids. In Proceedings of the 2010 SIG-
GRAPH Symposium on Interactive 3D Graphics and Games, 2010.

BIBLIOGRAPHY 123

[CZY11] Fan Chen, Ye Zhao, and Zhi Yuan. Langevin particle: A self-adaptive la-
grangian primitive for flow simulation enhancement. Computer Graphics Fo-
rum, 30(2):435–444, 2011.

[DCGG11] E. Darles, B. Crespin, D. Ghazanfarpour, and J. Gonzato. A Survey of
Ocean Simulation and Rendering Techniques in Computer Graphics. Comput.
Graph. Forum, 30:43–60, 2011.

[Deh02] Walter Dehnen. A hierarchial o(n) force calculation algorithm. J. Comput.
Phys., 179:27–42, 2002.

[dFN01] Javier de Frutus and Julia Novo. A spectral element method for the navier-
stokes equations with improved accuracy. SIAM journal on Numerical Anal-
ysis, 38(3):799–819, 2001.

[DGS07] J. Dandois, E. Garnier, and P. Sagaut. Numerical simulation of active separa-
tion control by a synthetic jet. J. Fluid Mech., 574:25–58, 2007.

[DHF+11] Pradeep Dubey, Pat Hanrahan, Ronald Fedkiw, Michael Lentine, and Craig
Schroeder. PhysBAM: physically based simulation. In ACM SIGGRAPH
2011 Courses, pages 10:1–10:22, 2011.

[DJ89] P. G. Drazin and R. S. Johnson. Solitons: An Introduction. Cambridge Uni-
versity Press, 1989.

[DK99] Frédéric Dias and Christian Kharif. Nonlinear gravity and capillary-gravity
waves. Annual Review of Fluid Mechanics, 31:301–346, 1999.

[DMG89] P. Degond and S. Mas-Gallic. The weighted particle method for convetion-
diffusion equations. Part I: The case of an isotropic viscosity, 53:485–507,
1989.

[DMSB99] Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan Barr. Implicit fair-
ing of irregular meshes using diffusion and curvature flow. Proc. SIGGRAPH,
pages 317–324, 1999.

[DR77] VD Djordjevic and LG Redekopp. On two-dimensional packets of capillary-
gravity waves. Journal of Fluid Mechanics, 79(4):703–714, 1977.

[Dri56] E. R. Van Driest. On turbulent flow near a wall. J. Aeronaut. Sci.,
23(11):1007–1011, 1956.

[DS74] A. Davey and K. Stewartson. On three-dimensional packets of surface waves.
Proceedings of the Royal Society of London. A. Mathematical and Physical
Sciences, 338(1613):101–110, 1974.

[Dur93] P. A. Durbin. A reynolds stress model for near-wall turbulence. J. Fluid
Mech., 249:465–498, 1993.

[EFFM02] D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell. A hybrid particle level set
method for improved interface capturing. J. Comp. Phys., 183:83–116, 2002.

124 Turbulent Fluids

[EMF02] D. Enright, S. Marschner, and R. Fedkiw. Animation and rendering of com-
plex water surfaces. In Proceedings of ACM SIGGRAPH, pages pp. 736–744,
2002.

[Fal10] Eric Falcon. Laboratory experiments on wave turbulence. Discrete. Cont.
Dyn.-B, 13:819–840, 2010.

[FF01] Nick Foster and Ronald Fedkiw. Practical animation of liquids. In Proc. of
SIGGRAPH, pages 23–30, 2001.

[FH09] Lucio Flores and David Horsley. Underground cave sequence for Land of the
Lost. In ACM SIGGRAPH 2009 Talks, pages 6:1–6:1, New York, NY, USA,
2009. ACM.

[FKPG96] M. Farge, N. Kevlahan, V. Perrier, and E. Goirand. Wavelets and turbulence.
Proceedings of the IEEE, 84(4):639–669, 1996.

[FOK05] Bryan E. Feldman, James F. O’Brien, and Bryan M. Klingner. Animating
gases with hybrid meshes. In Proceedings of ACM SIGGRAPH, 2005.

[Fri95] Uriel Frisch. Turbulence: The Legacy of A. N. Kolmogorov. Cambridge Uni-
versity Press, 1995.

[FSJ01] Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. Visual simulation of
smoke. In Proceedings of ACM SIGGRAPH, pages 15–22, 2001.

[GBF03] E. Guendelman, R. Bridson, and R. Fedkiw. Nonconvex rigid bodies with
stacking. ACM Trans. Graph. (SIGGRAPH Proc.), 22(3):871–878, 2003.

[GBO04] Tolga G. Goktekin, Adam W. Bargteil, and James F. O’Brien. A method for
animating viscoelastic fluids. ACM Transactions on Graphics (Proc. of ACM
SIGGRAPH 2004), 23(3):463–468, 2004.

[Gha03] A. Gharakhani. Application of vrm to les of incompressible flow. J. Turb.,
4:4, 2003.

[GM77] R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamics: theory
and application to non-spherical stars. Mon. Not. R. Astron. Soc., pages 375–
389, 1977.

[GO93] B. Galperin and S. A. Orszag. Large Eddy Simulations of Complex Engineer-
ing and Geophysical Flows. Cambridge University Press, 1993.

[Gre06] John B. Greer. An improvement of a recent Eulerian method for solving pdss
on general geometries. J. Sci. Comput., 29(3):321–352, June 2006.

[Hal79] O. H. Hald. The convergence of vortex methods. SIAM J. Numer. Anal.,
32:791–809, 1979.

BIBLIOGRAPHY 125

[HJ00] D. C. Haworth and K. Jansen. Large-eddy simulation on unstructured de-
forming meshes: towards reciprocating ic engines. Computers and Fluids,
29:493–524, 2000.

[HK03] J. Hong and C. Kim. Animation of bubbles in liquid. Proceedings of Euro-
graphics 2003, 22(3), 2003.

[HK10] Nambin Heo and Hyeong-Seok Ko. Detail-preserving fully-Eulerian interface
tracking framework. ACM Trans. Graph., 29:176:1–176:8, December 2010.

[HMK11] Ruoguan Huang, Zeki Melek, and John Keyser. Preview-based sampling for
controlling gaseous simulations. In ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation, pages 177–186, 2011.

[HN81] C. W. Hirt and B. D. Nichols. Volume of fluid (vof) method for the dynamics
of free boundaries. J. Comp. Phys, 39:201–225, 1981.

[Hog85] SJ Hogan. The fourth-order evolution equation for deep-water gravity-
capillary waves. Proceedings of the Royal Society of London. A. Mathematical
and Physical Sciences, 402(1823):359–372, 1985.

[HPP76] J. Hardy, O. De Pazzis, and J. Pomeau. Molecular dynamics of a classical lat-
tice gas: Transport properties and time correlation functions. Physical Review
A, 13:1949–1960, 1976.

[Hsu81] C. Hsu. A curviliniear-coordinate method for momentum, heat and mass
transfer in domains of irregular geometry. PhD thesis, University of Min-
nesota, 1981.

[HW66] F. Harlow and E. Welch. Numerical calculation of time-dependent viscous
incompressible flow of fluids with free surface. Physics of Fluids, 8, 1966.

[HZQW10] Yi Hong, Dengming Zhu, Xianjie Qiu, and Zhaoqi Wang. Geometry-based
control of fire simulation. The Visual Computer, 26, September 2010.

[IGLF06] G. Irving, E. Guendelman, F. Losasso, and R. Fedkiw. Efficient simulation
of large bodies of water by coupling two and three dimensional techniques.
ACM Transactions on Graphics, 25(3):805–811, 2006.

[IKLH04] M. Ikits, J. Kniss, A. Lefohn, and C. Hanson. GPU Gems: Programming
techniques for real-time Graphics. Addison Wesley, 2004.

[JC94] M. Jones and M. Chen. A new approach to the construction of surfaces from
contour data. Computer Graphics Forum, 13(3):pp. 75–84, 1994.

[JKB+10] Taekwon Jang, Heeyoung Kim, Jinhyuk Bae, Jaewoo Seo, and Junyong Noh.
Multilevel vorticity confinement for water turbulence simulation. Vis. Com-
put., 26(6-8):873–881, June 2010.

[JO93] Javier Jiménez and Paolo Orland. The rollup of a vortex layer near a wall.
Journal of Fluid Mechanics, 1993.

126 Turbulent Fluids

[Joh97] R. S. Johnson. A Modern Introduction to the Mathematical Theory of Water
Waves. Cambridge University Press, 1997.

[Joh06] Voker John. On large eddy simulation and variational multiscale methods in
the numerical simulation of turbulent incompressible flows. Applications of
Mathematics, 51:321–353, 2006.

[KAK+07] V. Kwatra, D. Adalsteinsson, T. Kim, N. Kwatra, M. Carlson, and M.C. Lin.
Texturing fluids. IEEE Transactions on Visualization and Computer Graph-
ics, 13(5):939 –952, sept.-oct. 2007.

[KFCO06] Bryan M. Klingner, Bryan E. Feldman, Nuttapong Chentanez, and James F.
O’Brien. Fluid animation with dynamic meshes. In Proceedings of ACM
SIGGRAPH, 2006.

[KLLR05] ByungMoon Kim, Yingjie Liu, Ignacio Llamas, and Jarek Rossignac. Flow-
fixer: Using BFECC for fluid simulation. In Proceedings of Eurographics
Workshop on Natural Phenomena, 2005.

[KLySK12] Doyub Kim, Seung Woo Lee, Oh young Song, and Hyeong-Seok Ko. Baro-
clinic turbulence with varying density and temperature. IEEE Transactions
on Visualization and Computer Graphics, 18:1488–1495, 2012.

[KM90] Michael Kass and Gavin Miller. Rapid, stable fluid dynamics for computer
graphics. In Proceedings of SIGGRAPH, pages 49–57, 1990.

[Kol41] A.N. Kolmogorov. The local structure of turbulence in incompressible viscous
fluid for very large reynolds number. Dokl. Akad. Nauk SSSR, 30, 1941.

[Kol05] Ravikrishna Kolluri. Provably good moving least squares. In Proceedings
of ACM-SIAM Symposium on Discrete Algorithms, pages 1008–1018, August
2005.

[KSK09a] Doyub Kim, Oh-Young Song, and Hyeong-Seok Ko. Stretching and wiggling
liquids. ACM Transactions on Graphics, 28(5):120, 2009.

[KSK09b] Doyub Kim, Oh-young Song, and Hyeong-Seok Ko. Stretching and wiggling
liquids. ACM Trans. Graph., 28(5):120:1–120:7, December 2009.

[KTJG08] Theodore Kim, Nils Thuerey, Doug James, and Markus Gross. Wavelet Tur-
bulence for Fluid Simulation. ACM Transactions on Graphics (SIGGRAPH),
27 (3):6, August 2008.

[KySK08] Doyub Kim, Oh young Song, and Hyeong-Seok Ko. A semi-lagrangian cip
fluid solver without dimensional splitting. Comput. Graph. Forum (Proc. Eu-
rographics), 27(2):467–475, 2008.

[Lai11] Jeff Lait. Correcting low frequency impulses in distributed simulations. In
ACM SIGGRAPH Talks, pages 53:1–53:2, 2011.

BIBLIOGRAPHY 127

[Leo75] A. Leonard. Numerical simulation of interacting, three-dimensional vortex
filaments. In Proceedings of the IV Intl. Conf. on Numerical Meth., 1975.

[Leo80] A. Leonard. Vortex methods for flow simulation. J. Comput. Phys., 37:289–
335, 1980.

[LF02] Arnauld Lamorlette and Nick Foster. Structural modeling of flames for a
production environment. In Proceedings of ACM SIGGRAPH, 2002.

[LGF04] F. Losasso, F. Gibou, and R. Fedkiw. Simulating water and smoke with an
octree data structure. Proceedings of ACM SIGGRAPH, pages 457–462, 2004.

[LGOD98] A. Lozano, A. Garc?a-Olivares, and C. Dopazo. The instability growth lead-
ing to a liquid sheet breakup. Phys. Fluids, 10(9):2188–2197, 1998.

[LK01] K. Lindsay and R. Krasny. A particle method and adaptive treecode for vor-
tex sheet motion in three-dimensional flow. J. Comput. Phys., 172:879–907,
2001.

[LMK97] Hung Le, Parviz Moin, and John Kim. Direct numerical simulation of tur-
bulent flow over a backward-facing step. J. Fluid Mech., 330(01):349–374,
1997.

[LMLS06] R. B. Langtry, F. R. Menter, S. R. Likki, and Y. B. Suzen. A correlation-based
transition model using local variables. J. Turbomach., 128:123–143, 2006.

[LRR75] B. E. Launder, G. J. Reece, and W. Rodi. Progress in the development of a
reynolds-stress turbulence closure. J. Fluid Mech., 68:537–566, 1975.

[LS74] B. E. Launder and D. B. Sharma. Applications of the energy-dissipation
model of turbulence to the calculation of flow near a spinning disc. Lett.
Heat Mass Transf., 1:1031–138, 1974.

[LSSF] F. Losasso, T. Shinar, A. Selle, and R. Fedkiw. Multiple interacting liquids.
Proceedings of ACM SIGGRAPH.

[LZF10] Michael Lentine, Wen Zheng, and Ronald Fedkiw. A novel algorithm for
incompressible flow using only a coarse grid projection. ACM Trans. Graph.,
29:114:1–114:9, July 2010.

[Mau03] Sean Mauch. Efficient Algorithms for Solving Static Hamilton-Jacobi Equa-
tions. PhD thesis, California Institute of Technology, Pasadena, CA, USA,
April 2003.

[MBR11] Colin B. Macdonald, Jeremy Brandman, and Steven J. Ruuth. Solving eigen-
value problems on curved surfaces using the Closest Point Method. J. Com-
put. Phys., 230(22), 2011.

[MBWB02] Ken Museth, David E. Breen, Ross T. Whitaker, and Alan H. Barr. Level set
surface editing operators. ACM Trans. Graph., 21:330–338, July 2002.

128 Turbulent Fluids

[MCP+09] Patrick Mullen, Keenan Crane, Dmitry Pavlov, Yiying Tong, and Mathieu
Desbrun. Energy-Preserving Integrators for Fluid Animation. ACM SIG-
GRAPH Papers, 28(3):Article 38, Aug 2009.

[MCPN08] Jeroen Molemaker, Jonathan M. Cohen, Sanjit Patel, and Jonyong Noh. Low
viscosity flow simulations for animation. In ACM SIGGRAPH / EG Sympo-
sium on Computer Animation, pages 9–18, July 2008.

[Men78] J. C. S. Meng. The physics of vortex-ring evolution in a stratified and shearing
environment. J. Fluid Mech., 84(3):455–469, 1978.

[MG96] J. S. Marshall and J. R. Grant. Penetration of a blade into a vortex core:
vorticity response and unsteady blade forces. J. Fluid Mech., 306:83–109,
1996.

[MK05] F. Menter and M. Kuntz. A scale-adaptive simulation model using two-
equation models. AIAA paper 05-1095, 2005.

[MR93] Kenneth Miller and Bertram Ross. An introduction to the fractional calculus
and fractional differential equations. Wiley & Sons, 1993.

[MR08] Colin B. Macdonald and Steven J. Ruuth. Level set equations on surfaces via
the Closest Point Method. J. Sci. Comput., 35(2–3):219–240, June 2008.

[MR09] Colin B. Macdonald and Steven J. Ruuth. The implicit Closest Point Method
for the numerical solution of partial differential equations on surfaces. J. Sci.
Comput., 31(6):4330–4350, 2009.

[MSKG05] M. Müller, B. Solenthaler, R. Keiser, and M. Gross. Particle-based fluid-
fluid interaction. ACM SIGGRAPH / EG Symposium on Computer Animation,
2005.

[MTPS04] Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. Fluid
control using the adjoint method. ACM Trans. Graph., 23:449–456, August
2004.

[MWGZ09] Chongyang Ma, Li-Yi Wei, Baining Guo, and Kun Zhou. Motion field texture
synthesis. ACM Trans. Graph., 28:110:1–110:8, December 2009.

[NB11] Michael B. Nielsen and Robert Bridson. Guide shapes for high resolution nat-
uralistic liquid simulation. ACM Trans. Graph., 30:83:1–83:8, August 2011.

[NCZ+09] Michael B. Nielsen, Brian B. Christensen, Nafees Bin Zafar, Doug Roble, and
Ken Museth. Guiding of smoke animations through variational coupling of
simulations at different resolutions. In Proceedings of the 2009 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, SCA ’09, pages
217–226, New York, NY, USA, 2009. ACM.

[Ney03] Fabrice Neyret. Advected textures. In ACM SIGGRAPH/EG Symposium on
Computer Animation (SCA), 2003.

BIBLIOGRAPHY 129

[NKL+07] Rahul Narain, Vivek Kwatra, Huai-Ping Lee, Theodore Kim, Mark Carlson,
and Ming C. Lin. Feature-Guided Dynamic Texture Synthesis on Continuous
Flows. In Eurographics Symposium on Rendering, pages 361–370, 2007.

[NSCL08] Rahul Narain, Jason Sewall, Mark Carlson, and Ming C. Lin. Fast animation
of turbulence using energy transport and procedural synthesis. ACM SIG-
GRAPH Asia papers, page Article 166, 2008.

[Obu41] A.M. Obukhov. The spectral energy distribution in a turbulent flow. Dokl.
Akad. Nauk, 32:22–24, 1941.

[OW72] J. T. Oden and L. C. Wellford. Analysis of viscous flow by the finite element
method. AIAA J., 10:1590, 1972.

[Pan71] S. Panchev. Random Functions and Turbulence. Oxford: Pergamon Press,
1971.

[Pao65] Y. H. Pao. Structure of turbulent velocity and scalar fields at large wavenum-
bers. Phys. Fluids, 8:1063–1075, 1965.

[Per85] Ken Perlin. An image synthesizer. In Proceedings of ACM SIGGRAPH, pages
287–296, 1985.

[PH10] Matt Pharr and Greg Humphreys. Physically-Based Rendering: From Theory
to Implementation. Morgan Kaufmann, 2010.

[Pod99] Igor Podlubny. Fractional Differential Equations. Academic Press, 1999.

[Pop83] S. B. Pope. A lagrangian two-time probability density function equation for
inhomogeneous turbulent flows. Phys. Fluids, 26:3448–3450, 1983.

[Pop00] Stephen B. Pope. Turbulent Flows. Cambridge University Press, 2000.

[PPB95] Valerie Perrier, Thierry Philipovitch, and Claude Basdevant. Wavelet spectra
compared to fourier spectra. Journal of Mathematical Physics, 36, 1995.

[Pra45] L. Prandtl. über ein neues formelsystem für die ausgebildete turbulenz. Nachr.
Akad. Wiss. Göttingen K1, pages 6–10, 1945.

[PTC+10] Tobias Pfaff, Nils Thuerey, Jonathan Cohen, Sarah Tariq, and Markus Gross.
Scalable fluid simulation using anisotropic turbulence particles. SIGGRAPH
Asia papers, pages 174:1–174:8, 2010.

[PTG12] Tobias Pfaff, Nils Thuerey, and Markus Gross. Lagrangian Vortex Sheets for
Animating Fluids. ACM Transactions on Graphics (SIGGRAPH), 31 (4):8,
August 2012.

[PTM09] S. Patel, J. Tessendorf, and J. Molemaker. Monocoupled 3D and 2D river
simulations. In ACM SIGGRAPH/Eurographics Symposium on Computer An-
imation, Posters Session, 2009.

130 Turbulent Fluids

[PTSG09] Tobias Pfaff, Nils Thuerey, Andrew Selle, and Markus Gross. Synthetic tur-
bulence using artificial boundary layers. ACM Transactions on Graphics,
28(5):121:1–121:10, 2009.

[PWS+02] P. Ploumhans, G. S. Winckelmans, J. K. Salmon, A. Leonard, and M. S. War-
ren. Vortex methods for direct numerical simulation of three-dimensional
bluff body flows. J. Comput. Phys., 178:427–463, 2002.

[QV01] L. Qian and M. Vezza. A vorticity-based method for incompressible unsteady
viscous flows. J. Comput. Phys., pages 172:515–542, 2001.

[RM08] Steven J. Ruuth and Barry Merriman. A simple embedding method for solving
partial differential equations on surfaces. J. Comput. Phys., 227(3):1943 –
1961, 2008.

[RMSG+08] Avi Robinson-Mosher, Tamar Shinar, Jon Gretarsson, Jonathan Su, and Ron
Fedkiw. Two-way coupling of fluids to rigid and deformable solids and shells.
ACM SIGGRAPH papers, 27(3):Article 46, August 2008.

[RNGF03] Nick Rasmussen, Duc Quang Nguyen, Willi Geiger, and Ronald Fedkiw.
Smoke simulation for large scale phenomena. In Proceedings of ACM SIG-
GRAPH, 2003.

[Ros31] L. Rosenhead. The formation of vorticies from a surface of discontinuity.
Proc. Roy. Soc. London, 134:170–192, 1931.

[SA94] P. R. Spalart and S. R. Allmaras. A one-equation turbulence model for aero-
dynamic flows. AIAA Paper, 92:0439, 1994.

[Sav06] Ralph Savelsberg. Experiments on Free-Surface Turbulence. Ph.D. thesis,
2006.

[SB08a] H. Schechter and R. Bridson. Evolving sub-grid turbulence for smoke anima-
tion. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
pages 1–7, 2008.

[SB08b] Hagit Schechter and Robert Bridson. Evolving sub-grid turbulence for smoke
animation. In Proceedings of the 2008 ACM/Eurographics Symposium on
Computer Animation, 2008.

[SDT08] M. Stock, W.J.A. Dahm, and G. Tryggvason. Impact of a vortex ring on a
density interface using a regularized inviscid vortex sheet method. J. Comp.
Phys., 227:9021–9043, 2008.

[SF93] Jos Stam and Eugene Fiume. Turbulent wind fields for gaseous phenomena.
In Proceedings of ACM SIGGRAPH, 1993.

[SFK+08] Andrew Selle, Ronald Fedkiw, ByungMoon Kim, Yingjie Liu, and Jarek
Rossignac. An unconditionally stable MacCormack method. Journal of Sci-
entific Computing, 2008.

BIBLIOGRAPHY 131

[Sma63] J. Smagorinsky. General circulation experiments with the primitive equations.
i. the basic experiment. Monthly Weather Review, 1963.

[Smi61] Oliver K. Smith. Eigenvalues of a symmetric 3× 3 matrix. Comm. of the
ACM, 4, 1961.

[Spa09] P. R. Spalart. Detached eddy simulation. Annual Review of Fluid Mechanics,
41:181–202, 2009.

[SR07] Philippe R. Spalart and Christopher L. Rumsey. Effective inflow conditions
for turbulence models in aerodynamic calculations. AIAA Journal, 45(10),
2007.

[SRF05] Andrew Selle, Nick Rasmussen, and Ronald Fedkiw. A vortex particle
method for smoke, water and explosions. Proceedings of ACM SIGGRAPH,
24(3):910–914, 2005.

[SS00] Boris Shraiman and Eric Siggia. Scalar turbulence. Nature, (405):639–646,
2000.

[Sta99] Jos Stam. Stable fluids. In Proceedings of ACM SIGGRAPH, 1999.

[Sto06] Mark Stock. A Regularized Inviscid Vortex Sheet Method for Three Dimen-
sional Flows With Density Interfaces. PhD thesis, University of Michigan,
2006.

[SvD96] S. Shankar and L. van Dommelen. A new diffusion procedure for vortex
methods. J. Comput. Phys., 127:88–109, 1996.

[SvdW08] Ralph Savelsberg and Willem van de Water. Turbulence of a free surface.
Physical Review Letters, 100:034501, Jan 2008.

[SY05] Lin Shi and Yizhou Yu. Taming liquids for rapidly changing targets. In ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, pages 229–
236, 2005.

[TA83] G. Tryggvason and H. Aref. Numerical experiments on hele-shaw flow with
a sharp interface. J. Fluid Mech., 136:1–30, 1983.

[Tes04a] Jerry Tessendorf. Interactive water surfaces. In Game Programming Gems 4.
Charles River Media, 2004.

[Tes04b] Jerry Tessendorf. Simulating ocean water. In ACM SIGGRAPH Courses,
2004.

[Tes08] Jerry Tessendorf. Vertical derivative math for iwave, October 2008.

[Tes11] Jerry Tessendorf. Resolution independent volumes. In ACM SIGGRAPH
Courses, 2011.

132 Turbulent Fluids

[TIR06] N. Thuerey, K. Iglberger, and U. Rüde. Free Surface Flows with Moving and
Deforming Objects for LBM. Proceedings of Vision, Modeling and Visual-
ization 2006, pages 193–200, Nov 2006.

[Tre00] Lloyd N. Trefethen. Spectral Methods in MATLAB. SIAM, 2000.

[TWGT10a] Nils Thuerey, Chris Wojtan, Markus Gross, and Greg Turk. A Multiscale Ap-
proach to Mesh-based Surface Tension Flows. ACM Transactions on Graph-
ics (SIGGRAPH), 29 (4):10, July 2010.

[TWGT10b] Nils Thuerey, Chris Wojtan, Markus Gross, and Greg Turk. A multiscale ap-
proach to mesh-based surface tension flows. ACM Trans. Graph., 29(4):48:1–
48:10, July 2010.

[vFWTS08] Wolfram von Funck, Tino Weinkauf, Holger Theisel, and Hans-Peter Sei-
del. Smoke surfaces: An interactive flow visualization technique inspired by
real-world flow experiments. IEEE Transactions in Visualization and CG,
14(6):1396–1403, 2008.

[Wan04] Qian Xi Wang. Variable order revised binary treecode. J. Comput. Phys.,
200:192–210, 2004.

[Wil93] D. C. Wilcox. Turbulence modelling for CFD. DCW Industries, 1993.

[WMKG07] Max Wardetzky, Saurabh Mathur, Felix Kälberer, and Eitan Grinspun. Dis-
crete Laplace operators: no free lunch. In Eurographics Symposium on Ge-
ometry Processing, pages 33–37, 2007.

[WP10] S. Weissmann and U. Pinkall. Filament-based smoke with vortex shedding
and variational reconnection. ACM Transactions on Graphics, 29(4), 2010.

[WSW+96] G. S. Winckelmans, J. K. Salmon, M. S. Warren, A. Leonard, and B. Jodoin.
Application of fast parallel and sequential tree coeds to computing three-
dimensional flows with the vortex element and boundary element methods.
ESAIM Proc., 1:225–240, 1996.

[WTGT09] Chris Wojtan, Nils Thürey, Markus Gross, and Greg Turk. Deforming meshes
that split and merge. ACM Trans. Graph., 28 (3):9, August 2009.

[WTGT10] Chris Wojtan, Nils Thuerey, Markus Gross, and Greg Turk. Physics-inspired
topology changes for thin fluid features. ACM Transactions on Graphics,
29,3:8, July 2010.

[YCZ11] Zhi Yuan, Fan Chen, and Ye Zhao. Pattern-guided smoke animation with La-
grangian coherent structure. ACM Trans. Graph., 30:136:1–136:8, December
2011.

[YHK07] Cem Yuksel, Donald H. House, and John Keyser. Wave particles. ACM Trans.
Graph., 26, July 2007.

BIBLIOGRAPHY 133

[YKH+09] J.-C. Yoon, H. R. Kam, J.-M. Hong, S.-J. Kang, and C.-H. Kim. Procedural
synthesis using vortex particle method for fluid simulation. Compu. Graph.
Forum, 28(7):1853–1859, 2009.

[YNBH09] Qizhi Yu, Fabrice Neyret, Éric Bruneton, and Nicolas Holzschuch. Scalable
real-time animation of rivers. Comput. Graph. Forum, 28(2):239–248, 2009.

[YWTY12] Jihun Yu, Chris Wojtan, Greg Turk, and Chee Yap. Explicit mesh surfaces for
particle based fluids. ACM Eurographics, 2012.

[YZC12] Zhi Yuan, Ye Zhao, and Fan Chen. Incorporating stochastic turbulence in
particle-based fluid simulation. The Visual Computer, (in press), 2012.

[ZB05] Yongning Zhu and Robert Bridson. Animating sand as a fluid. Proceedings
of ACM SIGGRAPH, 24(3):965–972, 2005.

[ZLF92] V. E. Zakharov, V. S. L’Vov, and G. Falkovich. Kolmogorov Spectra of Tur-
bulence I: Wave Turbulence. Springer–Verlag, 1992.

[ZYC10] Ye Zhao, Zhi Yuan, and Fan Chen. Enhancing fluid animation with adaptive,
controllable and intermittent turbulence. ACM Eurographics, 2010.

	Introduction
	About the Authors
	Structure of the Course Notes

	Turbulent Flows
	The Reynolds Average
	Turbulence Modeling
	Energy Transport Models
	Extending Energy Transport Models

	The Energy spectrum
	Turbulence synthesis
	Curl Noise Synthesis
	Composition

	Discussion

	Literature
	History
	Fluid Simulation in Computer Graphics
	Low-dissipative Methods
	Sub-grid Methods

	Lagrangian Vortex Methods
	Turbulence Methods
	Turbulence Modeling
	Turbulence Synthesis

	Recent works

	Adding Turbulent Detail
	Wavelet Turbulence
	Procedural Wavelet Turbulence
	High-Resolution Fluid Synthesis
	Results
	Conclusions

	Anisotropic Turbulence Modeling
	Overview
	Turbulence Model
	Implementation
	Results and Discussion
	Conclusions

	Obstacle-Induced Turbulence
	Overview
	Vorticity Formulation
	Wall-Induced Turbulence
	Turbulence Synthesis
	Implementation
	Results and Discussion
	Conclusions

	Buoyant Turbulence
	Vortex primitives
	Vortex Sheet Methods
	Wall-based Turbulence Model
	Implementation
	Results
	Conclusion

	Conclusions
	Application Guidelines

	Liquid Turbulence
	Wave Models
	The Classic Wave Equation
	The Korteweg-de Vries Equation
	The Non-Linear Schrödinger Equation

	The iWave Algorithm
	The iWave Equation
	Spatial Discretization
	Time Discretization
	A Preview of the 3D iWave Kernel

	Closest Point Turbulence
	Previous Work
	A Free Surface Turbulence Algorithm
	The Closest Point Method
	The iWave Algorithm
	Building a 3D Vertical Derivative
	Reducing Projection Error
	A Fast Closest Point Transform
	Building and Advecting the Extension Field
	Turbulence Seeding
	The Complete Algorithm

	Discussion and Results
	Conclusions and Future Work

