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Abstract

Due to the increasing use of physically-based simulation in the special-effects industry,
it is important to provide fast and visually plausible fluid simulation. However, common
fluid solvers feature sticky solid wall boundary conditions where the first layer of fluid is
stuck to solid objects which in turn leads to fluid unnaturally crawling up walls and along
ceilings.
In each fluid simulation, pressure equations must be solved in order to ensure boundary
conditions and to make the fluid’s velocity field divergence-free. When allowing only equal-
ity constraints for boundary conditions, the pressure equations form a system of linear
equations. In order to allow the fluid to detach from solid objects, so called separating
solid wall boundary condition must be enforced. Separating boundary conditions however
feature normal velocity components at fluid-solid faces that are greater or equal to zero.
This inequality constraint can be solved by transforming the linear equation system into a
Linear Complementarity Problem, which can only be solved by expensive Quadratic Pro-
gramming solvers. Using expensive Quadratic Programming solvers stands in contrast to
the desire for efficient fluid simulation.
The goal of this thesis is therefore to explore approaches for implementing separating and
also flexible boundary conditions in general, while maintaining the system of linear equa-
tions in the pressure solve.
Recent findings show that it is possible to interpret the pressure solve as proximal operator.
Proximal operators can in turn be integrated into proximal methods, which allow splitting
difficult multi-objective optimization schemes into simpler sub-problems. This encourages
modularity and the development of highly optimized solvers for each sub-problem. Such
a proximal method is the Alternate Direction Method of Multipliers (ADMM), which has
proven to be very efficient and successful in the field of statistics, machine learning and
recently also in fluid simulation.
In this thesis, ADMM is implemented such that flexible boundary conditions are enabled
and the only concerns in the pressure solve are the divergence-free velocity field and the
free-surface boundary conditions. Another possibility to meet multiple conditions, such as
non-divergence and boundary conditions, is the Iterated Orthogonal Projection (IOP). A
series of projections is hereby applied iteratively. Hence, IOP is also implemented in order
to achieve flexible boundary conditions and compared to ADMM. Furthermore, the possi-
bility of integrating separating boundary conditions into a simple Conjugate Gradient (CG)
pressure solve is investigated and implemented. To enhance the performance of ADMM and
IOP, a hybrid method of the adjusted CG solver and IOP is developed. The results of all
four techniques are compared and evaluated in detail.
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Chapter 1

Introduction

The research field of physically-based fluid simulation has gained a lot of attention starting
from the late eighties [Bri08]. Fluids like water, smoke, dust, fire, explosions and related
phenomena are breathtaking natural spectacles which cannot be omitted when it comes to
model real world scenarios, e.g. in movies, video games or commercials. However, the desire
for physically plausible animations exceeds the abilities of a human animator to explicitly
specify the complex behavior of fluids interacting with objects and with other fluids frame
by frame. In the early days, common fluid animation practices were simple approaches such
as stop-motion, e.g. in ”King Kong” in 1933, or keyframing, e.g. in ”Gertie the Dinosaur”
in 1912, and later the use of mass-spring networks, particle systems or bump map tricks.
Today, these practices are replaced by adapting advanced techniques from the field of
Computational Fluid Dynamics (CFD). Fluid simulation has been modeled mathematically
since the fifties and sixties due to its prime importance in most scientific disciplines and
engineering. However, the aim of fluid simulation in computer graphics is the generation of
plausible visual effects in contrast to predicting the correct flow fields in CFD [MSJT08].
With physically-based fluid simulation, animators are now able to almost effortlessly create
interesting, swirling fluid-like behaviors including the interaction of flows with objects and
virtual forces which in turn leads to lower production costs but unfortunately less direct
fluid control.
Fluid simulation is as complex as it is fascinating due to the sophisticated mathematical
fundamentals forming the backbone of all the playful movement of fluids. The equations
governing a fluid’s motion, the famous Navier-Stokes equations (NSEs), are unstable partial
differential equations which are quite difficult to solve in an efficient way and even difficult to
solve at all [GHD13]. Despite heavy simplifications of the NSEs, including the assumption
of fluids to be incompressible, and the rapid growth of the computational power of CPUs
and GPUs, fluid simulation would not be feasible for animation purposes without some
major research breakthroughs in the past.
Harlow and his team paved the way for computer graphics when they developed the Particle-
in-Cell (PIC) method in 1963 [Har63] and the Marked-and-Cell (MAC) grid structure in
1965 [HW65]. [FM96] were the first ones to use the MAC-grid approach in computer
graphics to simulate fluids by approximating the NSEs on a staggered grid. Without Stam’s
significant work of the first unconditionally stable solver [Sta99], real-time interaction of
physical fluid models would not be practicable as they are now in modern computer games.
Due to its unconditional stability, the simulation time steps can be increased which leads to
faster simulation but also to increased mass diffusion which diminishes the physical accuracy
but not its profit for computer graphics.
Subsequently, hundreds of research publications lead to effective fluid solvers such that
high-quality special effects are now commonplace [GB13]. While the special effects in
”Waterworld” and ”Titanic” in 1995 and 1997 were mostly limited to relatively calm and
wide ocean shots, the current state of the art produces very realistic results so that people
can hardly recognize the difference between real water splashing and the art of simulating
it [Bri08]. Popular examples for the state of the art are close-up scenes of a stormy ocean
interacting with a boat in the movie ”The Wolf of Wall Street” (2013), vital flames and
explosions in ”Iron Man 3” (2013), crumbling stone statues burying everything underneath
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1.1. Motivation

them in ”Immortals” (2011), droplet splashes in ”Pirates of the Caribbean: On Stranger
Tides” (2011) and the stunning, all-consuming flood in ”2012” (2012), see Fig. 1.1.

Figure 1.1: The Flood in the Movie ”2012” by Scanline VFX [Sca14]

1.1 Motivation

Although subsequent research has refined, advanced and accelerated the pioneering work of
Foster, Metaxas [FM96] and Stam [Sta99], current fluid solvers are still up for improvements
in terms of unpredictable outcomes, numerical accuracy and performance. Especially the
correct handling of boundary conditions turns out to be a quite difficult task [Bri08].
Boundary Conditions (BCs) arise wherever a volume of flowing material meets a volume
of some other material [Lap03], e.g. the surface of contact between a liquid and air or its
container such as a stream and its stream-bed.
The two essential parts in a fluid solver are on the one hand the advection of fluid quanti-
ties and on the other hand solving the pressure equations. The pressure’s task is to ensure
incompressibility and to hold the boundary conditions, i.e. preventing the fluid to flow into
or out of solid walls, as explained Section 2.1.3. For the purpose of computer graphics, flu-
ids are usually considered to be incompressible since compression rarely has a visual effect.
Typically, the computational bottleneck of an incompressible fluid solver is the calcula-
tion of pressure at every time step, which requires solving a Poisson equation [MCPN08].
The most widely used method in the graphics community is the Preconditioned Conjugate
Gradient (PCG) method with Incomplete Cholesky (IC) preconditioner to accelerate con-
vergence. It is robust, easy to implement and can handle complex domain shapes. This
method is an iterative technique for solving systems of linear equations and requires no
explicit representation of the system’s matrix. The drawback of PCG is that the runtime
scales poorly for large grids and quickly becomes the CPU bottleneck.
Holding the solid boundary conditions means ensuring that the normal velocity component
at fluid-solid faces is greater than or equal to zero. Unfortunately, introducing an inequality
constraint turns the linear system of the discretized Poisson equation into a Linear Com-
plementarity Problem (LCP) which is much more expensive to solve [CM11]. Restricting
the normal velocity component of the liquid at fluid-solid faces to be zero leads to the cru-
cial artifact of fluid crawling unnaturally along walls and ceilings and eventually dripping
down or crossing over to another wall to descend [BBB07]. This numerical fact occurs
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1.1. Motivation

in free-surface simulation in current fluid solvers, e.g. in [CM11]. Fig. 1.2 (a) shows the
initial state of a breaking dam scenario while (b) illustrates this very artifact. It impairs
an animation’s visual plausibility drastically. The desired fluid behavior is shown in Fig.
1.2 (c). It is provided by solving a LCP with a multigrid approach.

In nature, the phenomenon of liquids having zero normal velocity components at solid

(a) Initial Conditions (b) Sticky BC (c) Separating BC

Figure 1.2: 3D Breaking Dam Simulation by [CM11]

wall boundaries is indeed observed. A thin film of fluid is left on walls and ceilings, since
the outermost molecules of the fluid are stuck to the surfaces past which it flows. However,
this thin film is far too small to be resolved on an animation grid. Simulations using the
’no-slip’ boundary condition, which means not slippery, enforce instead a layer of thickness
unrealistically proportional to the grid cell size that sticks to the wall until some numerical
error in advection eventually separates it [BBB07].
The issue of non-separating solid boundaries is targeted in [BBB07], [CM11] and [SB12]
by applying expensive Quadratic Programming (QP) solvers, multigrid solvers and ghost
Smoothed Particle Hydrodynamics (SPH). So far, neither have flexible boundary conditions
yet been incorporated into a simple Conjugate Gradient (CG) solver nor was the handling
of solid wall boundary conditions separated from the actual pressure solve. The problem
of sticky solid boundary conditions is only one of many constraints regarding the boundary
conditions in fluid solvers. By excluding the boundary conditions from the pressure solve,
very efficient pressure solvers like the Fast Fourier Transformation (FFT), which can only
handle the simplest boundary conditions, could be applied to solve the pressure equations
while exhibiting great performance.
In [GITH14], the Alternate Direction Method of Multipliers (ADMM) is used to couple
fluid simulation and fluid capture in order to improve fluid control. One of their key find-
ings is that the pressure solve can be interpreted as a proximal operator, which enables
its incorporation as a physical constraint into proximal methods. Proximal methods split
difficult multi-objective optimization schemes into simpler sub-problems [PB13]. These sub-
problems are expressed and accessed only by application-specific solvers known as proximal
operators which encourages modularity and the development of highly optimized solvers
for each sub-problem. ADMM is a thoroughly studied and elaborated technique which
is supposed to converge very well for strictly convex problems when choosing a moderate
accuracy. Therefore, ADMM could be applied in order to incorporate flexible solid wall
boundary conditions into a fluid solver by solving the incompressibility condition indepen-
dently from the solid wall boundary conditions.
In [MCPN08], an Iterated Orthogonal Projection (IOP) framework is used to enforce non-
divergence and complex domain boundary conditions in terms of handling internal obstacles
in a multigrid-based Poisson solver. IOP’s suitability to enabling flexible boundary condi-

3



1.2. Outline

tions has to be investigated in this work, since both problems are quite similar.
Furthermore, it should be examined whether separating solid wall boundary conditions can
be implemented within a simple CG solver when tolerating small deflections from the gov-
erning physical laws, e.g. introducing divergence at fluid-solid faces. On top of that, it is of
importance to analyze and compare each method, namely ADMM, IOP and the adjusted
CG solver.

1.2 Outline

Some of the related literature concern with creating separating solid boundary conditions
but until now, no simple CG solver has been developed which enables fluid to detach natu-
rally from solid walls or obstacles. Furthermore, solid wall boundary conditions are embed-
ded in the common pressure solves which prohibits the application of complex boundary
conditions. ADMM and IOP were proven to be suitable for and successful in fluid simula-
tion applications.
Therefore, the overall goal of this work is to permit flexible boundary conditions by sepa-
rating the boundary handling from the actual pressure solve with the application of ADMM
and IOP. Furthermore, separating boundary conditions are incorporated into a simple CG
solver by tolerating the creation of divergence at fluid-solid faces. To profit from the good
performance of the adjusted CG solver as well as from the physical accuracy of the ADMM
and IOP implementations, a hybrid method combining of IOP and the adjusted CG solver
is developed.

The remainder of this thesis is organized as follows. In the next section, a detailed
overview concerning the related work is provided. Basic knowledge about the fundamen-
tals of fluid simulation, including the NSEs and CG, ADMM and IOP, is summarized in
Chapter 2. Subsequently, the implementation of ADMM, IOP, the adjusted CG solver
and the hybrid method is explained in detail in Chapter 3 with the use of code sketches.
The choice of approaches is justified and their disadvantages are discussed. Furthermore,
difficulties and issues to consider for the implementation of separating boundary conditions
are illuminated. A thorough evaluation of the implemented techniques follows in Chapter
4, comparing their accuracy, convergence and performance as well as advantages and dis-
advantages. Each of the three methods is applied to several 2D and 3D scenes to examine
their behavior and put their robustness up for a test. A conclusion of the findings as well
as a discussion and an outlook are presented in Chapter 5.

1.3 Related Work

In this section, an overview about general literature concerning fluid simulation as an an-
imation technique is provided in the first part. The second part covers literature about
boundary conditions while the specific topic of sticky boundary conditions is examined in
the end.
As mentioned before, [FM96] make the first approach to simulate fluids in computer graphics
by solving the Navier-Stokes equations on a staggered grid [HW65] with a finite differences
approach. They thereby introduce three-dimensional Eulerian liquid simulation and vox-
elize obstacles onto the grid for handling the solid BCs. Obstacles which are not aligned
with the grid lead to significant stair-step artifacts which unfortunately do not converge to
zero if the grid resolution is increased.
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Stam [Sta99] provides the combination of implicit Poisson solvers and first-order semi-
Lagrangian advection for faster simulation, which is widely used to visually simulate fluids
today. [FF01] employs Stam’s method and simulates liquids by tracking the surface with
the Particle Level Set (PLS) method. Numerical errors and mass-loss are reduced by the
introduction of Lagrangian marker particles. The fluid-solid coupling is handled by explic-
itly setting the normal velocity component to zero at fluid-solid faces and modifying the
pressure solver to not change these velocities which mitigates the stair-case artifacts. The
fluid is allowed to slip tangentially. For minimizing the artifacts of numerical dissipation,
[FSJ01] introduces higher-order interpolation for advection as well as vorticity confinement.
A different approach is proposed by [MCG03], where a mesh-free Lagrangian method is de-
veloped based on SPH. It is an extension of the Smoothed Particle Hydrodynamics (SPH)-
based technique by [DG96] to animate highly deformable bodies. The fluid is represented
by material particles with relatively simple interactions via sums of smooth kernel functions
and their gradients. In contrast to Eulerian grid-based approaches, mass conservation and
convection are easier to handle.
Back to grid-based approaches, [LGF04] provides enhanced simulation resolution by the
usage of dynamically adapted octrees. Another advection improvement, the Back and
Forth Error Compensation and Correction (BFECC), is presented by [KLLR05] to maxi-
mize the details resolved on a grid. [ZB05] introduces the incompressible Fluid-Implicit-
Particle (FLIP) method to computer graphics. The FLIP method and its variants achieve
a near total lack of numerical diffusion in the transport stage of the fluid simulation, since
all quantities are advected on particles as opposed to a grid. It traces its history back to
the early PIC work of [Har63] and MAC of [HW65]. [SFK+08] in turn presents a different
advection technique, the MacCormack advection, and thereby addresses the loss of liquid
mass and momentum. Another attempt to tackle the loss of details resolved on a grid due
to dissipation is introduced in [KTJG08] by efficiently resolving frequencies greater than
the Nyquist limit.
[Sta01] showed in 2001 that it is advantageous to take some steps of the numerical flow
simulation in the frequency domain. While employing a semi-Lagrangian advection scheme
in the spatial domain, he switches to the frequency domain to perform the pressure solve
which leads to an order of magnitude higher performance. The simulation data is then
transformed into the spatial domain for the next iteration. [Lap03] conducts a Navier-
Stokes fluid flow simulation that operates entirely in the frequency domain to eliminate
the costs of transformation between spatial and frequency domain. Simple optimizations
such as common subexpression elimination and rearranging the loops for increased cache
efficiency improve the simulation performance by a few percent. Restricting the grid dimen-
sions to powers of two brings additional optimization for a total performance increase up to
20%. Also [Hen12] takes advantage of a FFT-based elliptic solver whose performance and
scalability is optimal on shared-memory multiprocessors and is dramatically faster than the
best iterative methods. This is a direct method that takes advantage of the fact that the
Helmholtz equation can be solved independently for each Fourier mode as stated in [Hen12].

As a fluid is generally simulated in a domain with fixed and moving obstacles, it is
necessary to consider the interaction of the fluid with these obstacles. Various research
has addressed the coupling of solids and fluids in the physics, mathematics and computer
graphics literature. First of all, a solid boundary condition, such that no liquid is allowed
to enter or come out of the solid, must be ensured. Instead of setting all fluid velocities
equal to the velocity of the object, [FF01] make the first improvement by allowing the fluid
to move freely along the tangent of the solids. [NGF02] proceeds by using the Ghost Fluid
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method to couple compressible fluids and deformable solids.
The topic of rigid body simulation is related to the handling of solid boundaries. For ex-
ample, it faces the challenge of separating two rigid bodies from contact. [GHD13] targets
the interaction of deformable solids with incompressible fluid using mass-spring systems,
attaching the solid with ad hoc damped springs to nearby fluid marker particles. Looking
closer into the interaction of water with air, [TFK+03] introduces volume-of-fluid algorithms
for animating multi-phase flow as opposed to simulating only the liquid with free-surface
flows. Furthermore, they envisage solids which are not aligned with the grid and achieve
solid-to-fluid coupling by setting the velocity of the fluid inside a cell containing a solid
to the velocity of the solid. [REN+04] propose object-liquid boundary conditions to allow
natural interaction between the PLS representation of the liquid interface and the rigid bod-
ies. Specialized boundary conditions are needed to ensure a visually pleasing interaction
between the liquid interface and immersed objects. A set of object boundary conditions for
the velocity field and both the level set function and particles comprising the particle level
set method are set up. These boundary conditions are used for both moving and stationary
objects. [CMT04] added better coupling between fluid and rigid body simulations by using
distributed Lagrange multipliers to ensure two-way coupling that generates realistic motion
for both the solid objects and the fluid as they interact with one another. The rigid objects
are treated as if they were made of fluid. The rigidity of such an object is maintained by
identifying the region of the velocity field that is inside the object and constraining those
velocities to conform with rigid body motion.
The approach of [SB12] achieves less diffusion through the introduction of a narrow layer of
ghost particles in the surrounding air and solid. This technique alleviates particle clumping
that results when particles do not have sufficient neighbors to reach their target density.
They focus on SPH where the fluid is represented by material particles with relatively sim-
ple interactions via sums of smooth kernel functions and their gradients. [BTT09] proposes
a novel boundary handling algorithm for particle-based fluids based on a predictor-corrector
scheme for both velocity and position. Different slip conditions can be realized and non-
penetration is enforced.

While it is physically correct to enforce zero normal velocity at solid boundaries, it leads
to the artifact of fluid sticking unnaturally to solid obstacles. [BBB07] and [CM11] imple-
ment freely separating boundaries by allowing the normal velocity component to be greater
than zero. This leads to solving the complementarity condition 0 ≤ p ⊥ u · n̂ ≥ vsolid · n̂,
which states that the normal velocity component can be greater than zero if the pressure is
zero. Zero pressure changes the fluid-solid face to a free-surface. On the other hand if the
pressure is greater than zero, the normal velocity component must be set to zero. The fluid
is at rest at the wall and the positive pressure is acting on the fluid to keep it at rest to
rule out suction from keeping the fluid stuck. This complementarity condition allows the
fluid to freely separate from solid walls, similar to rigid bodies separating from contact.
[BBB07] additionally propose the variational interpretation of the pressure equation as ki-
netic energy minimization. For meeting the inequality constraint, an expensive QP solver
is applied. To improve the performance of [BBB07], [CM11] solve the LCP with an efficient
multigrid-based solver while [Erl13] aims at faster numerical ways for solving LCPs as well.
[GB13] use the PCG wrapped in an active-set method and enforce non-negative pressures
in all cells near the liquid surface.

None of the aforementioned literature provides an efficient solution for separating solid
boundaries with the popular CG solver or a way to handle boundaries independently of the
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pressure solver.
[GITH14] explore the connection between fluid capture, simulation and proximal methods.
The proximal operator constraining fluid velocities to be divergence-free is directly equiv-
alent to the pressure-projection methods commonly used in incompressible flow solvers.
Proximal methods split difficult multi-objective optimization schemes into simpler sub-
problems [PB13]. These sub-problems are expressed and accessed only by application-
specific solvers known as proximal operators. ADMM has emerged as a powerful technique
for large-scale structured convex optimization problems, especially in image processing and
machine learning [Boy11]. While it was introduced for optimization in the seventies, its
origins can be traced back to techniques for solving elliptic and parabolic partial difference
equations developed in the fifties. ADMM profits from the strong convergence properties
of the method of multipliers and the decomposability property of dual ascent and performs
best when a moderate accuracy is chosen.
[MCPN08] introduce the IOP framework to calculate pressure over the grid. A series of
orthogonal projections ensures that both non-divergence and solid boundary conditions are
satisfied simultaneously to a specified accuracy. Both operators, the incompressibility pro-
jection and the boundary handling, are applied iteratively. It allows a simple and highly
efficient multigrid method to enforce non-divergence in combination with complex domain
boundary conditions. The free-surface boundary conditions cannot be satisfied, because
Dirichlet conditions on the pressure field do not translate into linear constraints on the
fluid velocity field. IOP shows slow convergence if the combined matrix of incompressibil-
ity and boundary handling has eigenvalues close to one, which means that the individual
subspaces are almost parallel. Rapid convergence cannot be guaranteed.
[SPDC10] states that a common choice for the pressure’s Poisson equation is the IOP
method which requires a series of solutions on the complete mesh. They propose a variant
of the IOP, called Accelerated Global Preconditioning (AGP). It is based on using PCG, in
contrast to stationary methods used in IOP. The main advantage of AGP over IOP is the
acceleration versus stationary. AGP iterates only on pressure, IOP iterates on both pres-
sure and velocity. Instead of computing an intermediate pressure field in order to enforce
the divergence conditions, IOP directly iterates on the velocity field. IOP iteration shows
a linear rate of convergence because it is a stationary method.

Some of the related literature concern with creating separating solid boundary conditions
but until now, no simple CG solver has been developed which enables fluid to detach
naturally from solid walls or obstacles. Furthermore, solid wall boundary conditions are
still embedded in the common pressure solves which prohibits the application of complex
boundary conditions.
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Chapter 2

Basics

In this chapter, the basics of fluid simulation including boundary conditions, numerical
simulation, as well as ADMM and IOP are explained to build up a solid understanding for
the problem of handling flexible boundary conditions based on proximal operators.

2.1 Fluid Simulation

Fluid simulations are not confined to just liquids. Fire and flames can also be produced
by fluid simulations. When it comes to e.g. smoke, the fluid being simulated is the air
itself which is a gas. The main difference between gases and liquids is that liquids have a
free-surface and they are volume constrained as opposed to gases which do not unless dual
or multi-phase simulation are strived for.
Simulating fluids for animation purposes implies solving the fundamental equations govern-
ing a fluid’s motion: the famous incompressible Navier-Stokes equations (NSEs). The NSEs
are a system of non-linear partial differential equations of second order. A simplified model
of the NSEs are the Euler Equations, where viscosity is neglected. The Euler Equations
are commonly used in the graphics community.
There are several approaches to solve those equations. The most common are Eulerian
grid-based methods, Smoothed Particle Hydrodynamics (SPH) methods, vorticity-based
methods and Lattice Boltzmann methods. The key difference in the graphic’s setting to
CFD is that the main feature of the results is visual plausibility. That is, if a human ob-
server is unable to identify whether a given animation is physically correct, the results are
sufficient. However, in physics, engineering, or mathematics, more rigorous error metrics
are necessary.
In this thesis, the software framework of Mantaflow [man14] is used for fluid simulation.
It comes with an Eulerian simulation using MAC-grids, a PCG pressure solver, FLIP sim-
ulations for liquids and many more features which are not relevant for this work. The
simulations are conducted with the Fluid-Implicit-Particle (FLIP)-method as advection
technique. For rendering, a level set method is used where an implicit surface function
φ(i, j, k) is applied. The surface is defined as the set of points x where φ(x) = 0.

2.1.1 Incompressible Navier-Stokes Equations (NSEs)

In this section, the incompressible Navier-Stokes equations (NSEs) are discussed in detail.
Thereby, the presented information is based on [Bri08] if not stated otherwise.
The incompressible NSEs, a set of partial differential equations, govern a fluid’s motion
and hold throughout the fluid. They are composed of the momentum equation, described
in Equation 2.1, and the incompressibility condition, described in Equation 2.2.
The momentum equation in Equation 2.1 specifies how the fluid accelerates due to the
forces acting on it and can therefore be expressed as Newton’s equation ~F = m~a or F

m = ~a.
The term F

m is defined in Equation 2.3 while ~a is deduced in Equation 2.4.
The fluid force F is composed of three forces: pressure force Fp, force due to viscosity Fv
and body forces including gravitational force Fg.
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2.1.1 Incompressible Navier-Stokes Equations

δ~u

δt
+ ~u · O~u+

1

ρ
Op = ~g + νO · O~u (2.1) O · ~u = 0 (2.2)

where:
~u = velocity ρ = density p = pressure
ν = kinematic viscosity ~g = body forces, e.g. acceleration due to gravity

Fp arises due to high-pressure regions pushing on lower-pressure regions. Only the net
force, i.e. the difference of pressure, matters. The imbalance of pressure is exactly the
negative gradient of pressure −Op, which points towards lower-pressure regions. To obtain
the pressure force, the negative gradient of pressure must be integrated over the volume V ,
thus Fp = −V Op. Dividing the pressure force through the mass m leads to

Fp

m = −1
ρOp.

A viscous fluid tries to resist deformation. Therefore, the viscosity force tries to make par-
ticles move at average velocity of nearby particles which is equal to minimizing differences
in velocity between nearby bits of fluid. The Laplacian operator O · O, a differential oper-
ator, measures how much a quantity differs from the average around it. The force due to
viscosity consists of the Laplacian of the velocity v times the dynamic viscosity coefficient
η integrated over the volume V , thus Fv = V ηO · Ou. Dividing Fv through the mass m
leads to Fv

m = νO · Ou, since ν = η
ρ .

The gravitational force Fg is mass m times gravity ~g which henceforth leads to Equation
2.3.

F

m
=
Fp
m

+
Fv
m

+
Fg
m

= −1

ρ
Op+ νO · O~u+ ~g (2.3)

The acceleration ~a is exactly the material derivative D~u
Dt . Connecting the Lagrangian and

the Eulerian viewpoint leads to an equation for the material derivative.
In the Lagrangian viewpoint, the continuum is treated like a particle system, where each
particle has a position ~x and a velocity ~u and is tracked through time. When it comes
to the Eulerian viewpoint, fixed points in the space are observed over time that contain
measurements of fluid quantities like the velocity and density. This allows easier analytical
work with spatial derivatives like pressure gradient than on a cloud of arbitrarily moving
particles.
The Eulerian function q(t, ~x) specifies the value of q at a time t for the particle that is at
position ~x. The Lagrangian question, how fast a quantity q is changing for the particle at
position ~x, is answered by taking the total derivative d

dtq(t, ~x) = δq
δt + Oq · ~u. δq

δt measures
how fast the quantity q changes at a fixed point in space and Oq ·~u defines how much of that
change is just due to differences in the fluid flowing past. The total derivative is exactly
the material derivative, see Equation 2.4.

~a =
Du

Dt
=
δu

δt
+ Ou · ~u (2.4)

The second equation is called incompressibility condition and described in Equation 2.2.
Real fluids do change their volume on a microscopic level which is beyond a human’s usual
perception and therefore irrelevant for animation. Hence, fluids are treated as incompress-
ible and a constant volume where zero rate of change is assumed. This forms exactly the
incompressibility condition and can be expressed as

∫ ∫ ∫
Ω O · ~u = 0, which is only true for

O · ~u = 0. A vector field that satisfies the incompressibility condition is called divergence-
free, which is very hard to maintain. The zero divergence is assured by the pressure. The
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2.1.2 Boundary Conditions

pressure can be derived by taking the divergence of both sides in the momentum equation
as shown in Equation 2.5.

O · 1

ρ
Op = O · (−~u · O~u+ ~g + νO · O~u) (2.5)

In most animations, viscosity plays a minor role and can thus be neglected. The ma-
jority of numerical methods for simulating fluids unavoidably introduce errors that can be
physically reinterpreted as viscosity. One of the biggest challenges in computational fluid
dynamics is minimizing this viscous error as much as possible. The Navier-Stokes equations
without viscosity are called the Euler equations, see Equations 2.6 and 2.7.

δ~u

δt
+ ~u · O~u+

1

ρ
Op = ~g (2.6) O · ~u = 0 (2.7)

2.1.2 Boundary Conditions

There are two kinds of boundary conditions: solid walls and a free surface. Both conditions
are ensured by pressure.
To make sure that the fluid does not flow into solids or out of them, the normal component
of the fluid’s velocity n̂ ·u must match the normal component of the solid’s velocity n̂ ·usolid.
Inviscid fluids can freely slip past tangential directions which is called the no-stick condition.
In contrast, the no-slip condition for viscid fluids enforces zero tangential velocity in relation
to the solid. To enforce the solid wall boundaries, ~u · n̂ must be controlled which leads to
specifying Op · n̂ = δp

δn̂ .
Since air is 700 times lighter than water and comparable fluids, it does not have a big
impact on the fluid. Air is therefore not treated as a fluid but as a region with constant
atmospheric pressure which can be set to zero, since only differences in pressure matter.
The velocity v is not controlled in any particular way. The free-surface boundary condition
also applies for regions where the simulation is not further tracked. Because surface tension
is only important for smaller-scale liquids, it is not considered here.

2.1.3 Numerical Simulation

The basic equations for fluid simulation must be discretized for simulating fluids numerically
in the computer. While there are many approaches for this, a high-quality approach is
presented that works very well for graphics and is based on splitting.
Splitting implies the separation of an equation into its component parts and to solve each
one separately in turn. The fluid equations are split up into an advection, body forces and
pressure part as following.

advect(~u,4t, q) :
Dq

Dt
= 0

body(~u,4t, ~g) : ~u← ~u+4t~g

project(4t, ~u) :
δ~u

δt
+

1

ρ
Op = 0 s.t. O · ~u = 0

(2.8)

advect(~u,4t, q) advects the quantity q through the velocity field ~u for a time interval 4t.
For the body force body(~u,4t, ~g), forward Euler is used to update the velocity field ~u.
project(4t, ~u) calculates and applies the right pressure to make ~u divergence-free and also
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2.1.3 Numerical Simulation

enforce boundary conditions.
It is important that advect(~u,4t, q) is only performed in a divergence-free velocity field
which must be ensured by project(4t, ~u). Therefore, the steps are applied sequentially.

Discretization of the Simulation Area The Marked-and-Cell (MAC) [HW65] is a new grid
structure, also called staggered grid. The variables are stored at different locations in order
to use accurate central differences to calculate the pressure gradient and the divergence
of the velocity field without the usual disadvantages of the central differences. Although
this structure is perfect for handling pressure and incompressibility, it is not well suited for
evaluating the full velocity vector, since the weights for each component must be calculated
for interpolation [Bri08]. Fig. 2.1 shows the staggered grid in two and three dimensions.

(a) The two-dimensional MAC-Grid (b) The three-dimensional MAC-Grid

Figure 2.1: The MAC-Grid

Advection Advection, also called convection or transport, is the process of moving a
quantity within the velocity field v. As mentioned beforehand, it is a crucial step of fluid
animation.
Solving the advection equation Dq

Dt = 0 is performed in the corresponding numerical rou-
tine qn+1 = advect(~u,4t, qn) which returns an approximation to the result of advecting q
through the velocity field over time step 4t. If the quantity q is moving around but does
not change in the Lagrangian viewpoint, the material derivative is set to 0.
To avoid the instability of forward Euler and the spatial discretization problems due to stan-
dard central differences, a simple and physically-motivated approach called semi-Lagrangian
method is used for advection [Sta99]. To advect particles, the particle that remains on po-
sition ~x must be identified and its value of q is looked up. To do this, the starting point of
the current particle is tracked back in time by racing backwards through the velocity field
u. The old value of q at that old position is exactly the new value of q at the new position.
In case the old position is not directly on one of the grid points, the value of q is interpo-
lated from the old values on the grid. The old position of the current particle is estimated
with forward Euler or higher-order Runge-Kutta methods. Since a Lagrangian approach
is used for an Eulerian calculation, this advection scheme is called semi-Lagrangian. If
the old position happens to be outside the fluid due to numerical errors, the quantity q is
extrapolated to the nearest point on the boundary.
The semi-Lagrangian approach is unconditionally stable since all values stay in the same
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2.1.3.1 Pressure

range which means that the quantity q is bounded.
In each advection step, averaging operations are performed which smooth out or blur sharp
features. This appearance is called dissipation. An error analysis reveals that the numerical
error due to dissipation is exactly a viscosity-like term. Therefore, viscosity must not be
considered directly in the Navier-Stokes Equations which leads to the Euler equations.

2.1.3.1 Pressure

The heart of a fluid simulation is solving the pressure and thereby making the fluid incom-
pressible and simultaneously enforcing boundary conditions.
project(4t, ~u) subtracts off the pressure gradient from the intermediate velocity field ~u,
such that the result satisfies the incompressibility condition inside the fluid and the solid
wall boundary conditions. This process is summed up in Equation 2.9.

~un+1 = ~u−4t1
ρ
Op , s.t. O · ~un+1 = 0 and ~un+1 · n̂ = ~usolid · n̂ (2.9)

The goal is to establish a system of linear equations for finding the pressure. To do so,
some discretizations must be specified.

Pressure Update Equations Each velocity component that borders a grid cell containing
fluid is updated by the pressure. The pressure in air is zero while the normal velocity
component at fluid-solid faces is equal to the normal component of the solid’s velocity.
This leads to the following pressure update Equation 2.10 for one velocity component u,

un+1
i,j = ui,j, −4t

1

ρ

pi,j − pi−1,j

4x
⇒ pi,j = pi−1,j +

ρ4x
4t

(ui,j − uni,j). (2.10)

Discrete Divergence Divergence has to be calculated only for a grid cell that is marked
as fluid. The discrete divergence is shown in Equation 2.11.

O · ~u =
δu

δx
+
δv

δy
+
δw

δz
≈
ui+1,j,k − ui,j,k

δx
+
vi,j+1,k − vi,j,k

δx
+
wi,j,k+1 − wi,j,k

δx
(2.11)

With the help of the staggered grid in Fig. 2.1, these equations can be understood quite
intuitively.

Linear Equation System for Finding the Pressure Equation 2.10 and 2.11 deliver the
velocity update by the pressure gradient and the estimation of the divergence, which allows
now the calculation of the incompressibility. Substituting the pressure update formulas,
Equation 2.10, into the divergence formula, Equation 2.11, and setting the divergence to
zero results in a linear equation for each fluid grid cell with the pressures as unknowns in
Equation 2.12.

0 =
1

4x

[(
ui+1,j,k −4t

1

ρ

pi+1,j,k − pi,j,k
4x

)
−
(
ui,j,k −4t

1

ρ

pi,j,k − pi−1,j,k

4x

)
+

(
ui,j+1,k −4t

1

ρ

pi,j+1,k − pi,j,k
4x

)
−
(
ui,j,k −4t

1

ρ

pi,j,k − pi,j−1,k

4x

)
+

(
ui,j,k+1 −4t

1

ρ

pi,j,k+1 − pi,j,k
4x

)
−
(
ui,j,k −4t

1

ρ

pi,j,k − pi,j,k−1

4x

)]
(2.12)
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2.1.3.1 Pressure

This large system of linear equations for the unknown pressure values can be written as

Ap = b

where A is a large coefficient matrix, p is a vector of all pressure unknowns and b is a vector
of negative divergences in each fluid grid cell.
In A, each row corresponds to one fluid cell and the entries are pressure coefficients which
are mostly zero except possibly for the seven entries (in 3D) corresponding to pi,j,k and
its six neighbors. Since only the non-zero entries are stored, A is a sparse matrix. The
coefficients for neighboring fluid cells are −4t

ρ4x2 and the coefficient for pi,j,k is ni,j,k
4t
ρ4x2

where ni,j,k denotes the number of fluid- or air-cell neighbors. A is not only sparse but
also symmetric. The coefficient of pi+1,j,k of row (i, j, k) must be identical to the coefficient
of pi,j,k of row (i + 1, j, k). If one of those two cells is not fluid, the coefficient is zero.
Otherwise it is the same non-zero value. Thus, only half of the non-zero entries must be
stored in A.

Conjugate Gradient Algorithm (CG) Since matrix A is a well known type of matrix,
the conventional way to solve the equation system is the efficient and simple to implement
algorithm Modified Incomplete Cholesky Conjugate Gradient Level Zero (MICCG(0)).
The Conjugate Gradient (CG) algorithm is an iterative method. It can be guaranteed to
converge to the solution and each iteration involves only basic computations that are easy
to code and can be conducted by using highly optimized standard libraries. But the larger
the grid, the longer the CG takes to converge. Preconditioning the CG speeds it up which
is then called the Preconditioned Conjugate Gradient (PCG). CG takes more iterations
the more A differs from the identity matrix I. Therefore, CG should be able to solve the
preconditioned equations M Ap = Mb, where M is approximately the inverse of A, very
fast.
Since computing M = A−1 is too expensive, one of the Incomplete Cholesky Level Zero
(IC(0)) family is taken as preconditioner to approximate M efficiently.
The residual ri = b−Api measures the remaining divergence and is used as stopping criterion
by comparing the infinity norm of the residual with a tolerance number that is inversely
proportional to the simulation’s length. To avoid inexact floating-point arithmetic, that
prevents the algorithm to converge fully, a maximum number of iterations, e.g. 100 should
be defined.
A is henceforth called Laplace Matrix.

Project Routine The project(4t, ~u) routine consists of calculating the negative divergence
b with modifications at solid wall boundaries, setting the entries of A, constructing the
preconditioner, solving Ap = b with MICCG(0) and computing the new velocities according
to the pressure gradient update as a last step. The routine is called project, since a
projection is a linear operator which means applying it several times does not change the
outcome. If the pressure solve ensures incompressibility and the boundary conditions in one
step, there will be nothing to change in a second step since incompressibility and boundary
conditions are already met.

Separating Boundary Conditions A new formulation for separating boundaries for free-
surface flow is presented in [BBB07]. It allows the fluid to separate naturally from solids
avoiding the common numerical artifact of fluid crawling up walls and along ceilings. The
source of this problem is the u · n̂ = vsolid · n̂ boundary condition which states that fluid
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2.2. Alternating Direction Method of Multipliers (ADMM)

cannot flow into or out of a solid. The boundary condition is changed to u · n̂ >= vsolid · n̂
by applying the complementarity condition 0 ≤ p ⊥ u · n̂ ≥ vsolid · n̂. The condition
u · n̂ > vsolid · n̂ enforces p = 0 making the interface act like a free-surface. On the other
hand, if u · n̂ = vsolid · n̂ then the fluid is at rest at the wall and there must be a pressure
p > 0 acting on the fluid to keep it at rest. Therefore, suction is ruled out which would
keep the fluid stuck to the wall..

2.2 Alternating Direction Method of Multipliers (ADMM)

Many problems of recent interest in statistics and machine learning can be posed in the
framework of convex optimization [WBAW12]. The Alternate Direction Method of Mul-
tipliers (ADMM) is well suited to distributed convex optimization. It is closely related to
dual decomposition, the method of multipliers, proximal methods and many others. It is
a simple and powerful algorithm and can be viewed as an attempt to blend the benefits of
dual decomposition and augmented Lagrangian methods for constrained optimization.
The algorithm solves problems in the form of

minimize f(x) + g(z)

subject to x− z = 0
(2.13)

where f, g : Rn → R ∪ {+∞} are closed proper convex functions. The ADMM to the
problem in Equation 2.13, also known as Douglas-Rachford splitting, is

xk+1 := proxλf (zk − yk)
zk+1 := proxλg(x

k+1 + yk)

yk+1 := yk + xk+1 − zk+1

where k is an iteration counter [PB13]. The difference from the general linear equality-
constrained problem is that the variable x is split into two parts, called x and z, with the
objective function separable across this splitting. The variable y is the dual variable update.
x and z are the slack variables and updated in an alternating fashion which accounts for
the alternating direction.

Convergence When applying ADMM, the residual rk = xk − zk converges to zero as
k →∞. The dual variable y approaches an optimal value y∗ while xk and zk do not need
to converge to optimal values.
ADMM can show poor converges for high accuracy. But it often converges to modest
accuracy within a few tens of iterations [WBAW12].
The ADMM iteration is said to have converged, when the maximum value of the residual
rk is lower than an absolute threshold εabs plus a relative threshold εrel times the maximum
value of x and z: max(rk) ≤ εabs + εrel ·max(xk, zk).
Applying ADMM to the pressure solves makes x and z two velocity fields u and v. The
dual variable y is from now on called q. The first proximal operator proxλf is an operator
that makes the velocity field u divergence-free. proxλg is the operator which ensures that
the solid wall boundary conditions are met in v.
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2.3. Iterated Orthogonal Projection (IOP)

2.3 Iterated Orthogonal Projection (IOP)

[MCPN08] use IOP to calculate the pressure over a grid by applying a series of orthogonal
projections concerning non-divergence and boundary conditions iteratively. IOP allows to
use a simple and highly efficient multigrid method to enforce non-divergence in combination
with complex domain boundary conditions.
Removing the divergent part of the flow can be viewed as an orthogonal projection which
can be written as a matrix-vector multiplication xndiv = Pndivx. The boundary condition
enforcement procedure can be expressed as xbound = Pboundx. Combining both projections
leads to

Pint = limn→∞(PndivPbounds)
n = limn→∞(PiterPndiv)

n. (2.14)

Both projections are iteratively applied. The IOP framework independently satisfies both
constraints and converges to xint. Since the eigenvalues of both Piter and Pbound are zero or
one, the eigenvalues of Piter are also between zero and one which guarantees convergence
of an iteration that consists of simple repeated multiplication with Piter. The convergence
rate of IOP can be quite slow if Piter has eigenvalues close to one which means that the
individual subspaces are almost parallel. Rapid convergence cannot be guaranteed, but in
practice, a limited number of iterations suffices for a satisfactory visual result.
IOP can be stopped when either the change between the velocity field from the previous
iteration and the current velocity is small enough or when the divergence is eliminated up
to a specified threshold.
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Chapter 3

Implementation

This chapter presents and explains the implementation of Alternate Direction Method of
Multipliers (ADMM) and Iterated Orthogonal Projection (IOP) as pressure solve to allow
for flexible solid wall boundary conditions in Section 3.2 and 3.3. Furthermore, difficulties
in splitting the pressure solve properly into the incompressibility condition and boundary
conditions are illuminated in Section 3.2. Inspired by the findings during the ADMM im-
plementation, separating boundary conditions are incorporated into a simple CG solver in
Section 3.4. Due to the rather poor performance of ADMM and IOP and physical inaccura-
cies in the adjusted CG solver, a hybrid method combining the advantages of each method
is presented in Section 3.5.
But first of all, the original pressure solve as implemented in Mantaflow [man14] is intro-
duced in Section 3.1. Mantaflow is the fluid simulation framework in which the pressure
solve techniques are embedded. It is an open-source framework targeted at fluid simulation
research in computer graphics. While the near-zero dissipation FLIP method is applied as
advection scheme and the Preconditioned Conjugate Gradient (PCG) is used as pressure
solve, particle level set methods based on [EF02] are used for surface tracking in order to
the render the 3D simulations later on. Furthermore, it is assumed that obstacles and walls
are not moving, i.e usolid = 0.
The structure of a two-dimensional MAC-grid used in Mantaflow is shown in Fig. 3.1 (a).
Additionally to velocity and pressure information, each cell is classified by flags as fluid,
solid or air cell. Gray cells represent solid cells, blue is associated with fluid while air cells
are transparent. Purple arrows symbolize velocity components into the x-direction, whereas
blue arrows indicate y-velocity components. Black dots represent the pressure of each cell.
In order to access the normal velocity components at fluid-solid faces, the underlying grid
structure shown in Fig. 3.1 (a) must be considered. When iterating over the grid to modify
those velocity components, it has to be determined from which cell they are accessed. It
is assumed, that each lower velocity component, i.e. the left x-component and the bottom
y-component, are accessed from the current cell. Therefore, when accessing velocity com-
ponents at the left fluid-solid border, the very velocity components are accessed from fluid
cells, as highlighted in red in Fig. 3.1 (b). In contrast, the velocity components at the right
fluid-solid border are accessed from solid cells.

3.1 Original Conjugate Gradient Pressure Solve (OrigPS)

In this section, the original CG pressure solve implemented in Mantaflow is presented and
explained. Thereby, the implementation of ADMM and IOP in Section 3.2 and 3.3 as well
as the adjusted CG pressure solve and the hybrid method in Section 3.4 and 3.5 can be
comprehended very well.
The original pressure solve in Mantaflow is henceforth abbreviated by OrigPS.
After advecting the fluid quantities and applying body forces at the beginning of each sim-
ulation step, the velocity field must be modified such that it is divergence-free and the
boundary conditions must be ensured. Therefore, the pressure solve is conducted which
implies solving Ap = b for the pressure p. The pressure solve is encapsulated in the proce-
dure solvePressure sketched in a simplified form in Algorithm 1.
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3.1. Original CG Pressure Solve (OrigPS)

(a) 2D MAC-Grid with Flags in Mantaflow (b) Cells Containing the Fluid-Solid Velocity

Figure 3.1: The 2D MAC-Grid in Mantaflow

First, the Laplace Matrix A is generated in makeLaplaceMatrix in line 2 according to Sec-
tion 2.1.3. Each row in A corresponds to one fluid cell and the entries are the pressure
coefficients which are mostly zero except possibly for the seven entries (in 3D) for pi,j,k
and its six neighbors. For building A, information about the cell classification must be
provided in the variable flags. In the original pressure solve, the variable flags contains the
unmodified cell classification as shown in Fig. 3.1 (a).
In line 3, the right-hand side, vector b, of the equation system is formulated by setting it
to the divergence of each fluid cell. To do so, the method makeRhs is called. To calculate
the divergence of each fluid cell, the velocity field u and the cell classification flags must
be provided. Then, the linear equation system is solved iteratively by the Preconditioned

Algorithm 1 Solve p in Ap = b and Update u

1: procedure solvePressure(u,p,flags)
2: makeLaplaceMatrix(A, flags)
3: makeRhs(b, u, flags)
4: for i ← 1 to maxIterations do
5: gcg → iterate(A, p, b)
6: end for
7: correctVelocity(u, p, flags)
8: end procedure

Conjugate Gradient (PCG) in line 5. If the solution for p is approached sufficiently, i.e.
the residual is small enough, the iteration variable i is set to maxIterations which leads to
breaking out of the loop.
As a last step, the velocity field u is updated with the negative pressure gradient calcu-
lated from p in correctVelocity, see line 7. Therefore, the velocity field now holds both the
incompressibility condition and the boundary conditions as explained in Equation 2.10 in
Section 2.1.3.
The pressure solve assigns pressure values to fluid cells for correcting the velocity compo-
nents adjacent to fluid cells. The pressure in air cells is assumed to be zero while pressure
in fluid cells is assumed to be equal to the neighboring fluid cell’s pressure, such that the
pressure gradient is zero. Therefore, the velocity at fluid-solid or air-solid faces is never
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3.2. ADMM as Pressure Solve (ADMMSep or ADMMStick)

updated. The rules governing the pressure update applied in correctVelocity are visualized
exemplary for x-velocity components in Fig. 3.2. Between two fluid cells, the negative

(a) Fluid-Fluid (b) Fluid-Air (c) Air-Fluid (d) Fluid/Air-Solid (e) Solid-Fluid/Air

Figure 3.2: Rules for Updating the Velocity in the original Pressure Solve

pressure gradient is added to the existing velocity, see Fig. 3.2 (a). Since the pressure in
air cells is assumed to be zero, the pressure gradient updating velocity components between
air and fluid cells is reduced to the pressure value of the corresponding fluid cell, see Fig.
3.2 (b) and (c). The pressure gradient at faces adjacent to solid grid cells is assumed to be
zero. Therefore, the velocity at solid cell faces is always set to zero as shown in Fig. 3.2
(d) and (e).
Note that it is now important to bare in mind, to which cell the velocity component between
two cells belongs to. As aforementioned, the velocity component ui,j belongs to the right
cell in each image in Fig. 3.2.
Unfortunately, the implementation of the original pressure solver leads to the disturbing
artifact where fluid is crawling upwards on walls and sticking to ceilings. To avoid this,
the normal velocity components at fluid-solid faces cannot be set to zero. In order to allow
these very velocity components to be greater or equal to zero, the pressure solve is modified
in four different approaches as explained in Section 3.2, 3.3, 3.4 and 3.5.

3.2 ADMM as Pressure Solve (ADMMSep or ADMMStick)

In this section, ADMM is applied as pressure solve in order to allow for flexible solid
wall boundary conditions. This method is henceforth abbreviated with ADMMSep when
separating boundary conditions are simulated and ADMMStick in case sticky boundary
conditions are applied.
To generate a velocity field that is both incompressible and meets the boundary conditions
with ADMM, two proximal operators must be implemented, one for each sub-problem.
It turns out to be quite difficult to split the pressure solve properly into two distinct sub-
problems. Furthermore, it is not possible to use pressure as slack variables since the pressure
values are never read. Therefore, ADMM has to operate on two velocity fields u and v.
The first proximal operator is the original pressure solve applied with a modified cell clas-
sification. Each solid cell is now classified as air cell. Therefore, only the incompressibility
condition and the free-surface boundary conditions are handled in the pressure solve. This
first proximal operator is implemented in the procedure solvePressure as presented in Sec-
tion 3.1. The second proximal operator ensures the solid wall boundary conditions and is
encapsulated in the procedure ensureBC.
The algorithm of using ADMM as pressure solve is sketched in Algorithm 2. In line 2, the
second velocity slack variable, namely v, is initialized with a copy of u. The variable q is
the dual update variable and hence a velocity field. It is initialized with zero in line 3.
The residual r = u − v is a velocity field as well and initialized with zero in line 3. Since
solvePressure has to operate on a modified cell classification where solid cells are replaced
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Algorithm 2 Solve Ap = b by means of ADMM

1: procedure applyADMM(flags,u,p,εCG,εAabs,εArel)
2: v = copy(u)
3: q,r = MACGrid(0)
4: noSolidsFlags = removeSolids(flags)
5: for i ← 1 to maxIterADMM do
6: solvePressure(u,p,noSolidsFlags,εCG)
7: if i==1 then markDetachingCells(u,p,flags) end if
8: v = u + q
9: ensureBC(flags,v)

10: q = q + u - v
11: r = u - v
12: if max(r) <= εAabs + εArel ∗ (max(u, v)) then break end if
13: u = v - q
14: end for
15: end procedure

by air cells, the variable noSolidsFlags is instantiated in line 4. It is a copy of the original
cell classification where solid cells are replaced by air cells.
In the ADMM loop starting in line 5, the first proximal operator, solvePressure, is applied
in line 6. After this, the variable v must be updated in line 8. The procedure markDe-
tachingCells is described later. In line 9, the second operator is applied to v and ensures
the solid wall boundary conditions. To do so, it is iterated over the grid and the velocity
components at fluid-solid faces less than zero are set to zero. Only velocity components
greater or equal to zero are allowed. In Section 3.1, it is explained how to iterate over the
MAC-grid in order to modify the velocity components. After the application of the second
proximal operator, the dual variable is updated in line 10. Furthermore, the residual r is
calculated in line 11 to check for the stopping criterion in line 12.

Convergence In line 12, the ADMM iteration is stopped when convergence is reached
according to Section 2.2. Common values of εArel range between 10−3 and 10−4. For εAabs, a
value on the scale of typical variable values is chosen which is here 10−3 as well. When using
the stopping criterion based on rvel = u−v, it is taken into account how well both problems
of incompressibility and boundary conditions are solved simultaneously. But it is also
possible to calculate the divergence of u and stop the iteration when rdiv = div(u) ≤ εAdiv.
A practical value for εAdiv is 10−2. Note that the divergence should be calculated after
the dual update of u in order to measure the divergence of the velocity field where both
proximal operators are combined.
In order to compare OrigPS, ADMM and IOP later on, solvePressure in Algorithm1 is
modified to stop when the divergence of the resulting velocity field is below the threshold
εCG. To do so, correctVelocity is applied to a temporary velocity field after each CG
iteration. When the divergence of the temporary velocity field is low enough, the iteration
is stopped.
For better convenience, the kind of residual used in the method is added to its name, e.g.
ADMMVelSep or IOPDivSep.

Classifying Solid Cells According to their Role in the Fluid-Solid Interaction In order to
allow the fluid to detach from solid objects, each solid cell must be classified as free-surface
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or solid wall depending on its current role. If the fluid is flowing towards a wall, solid cells
act as a wall to withstand the fluid’s pressure and to ensure that the fluid does not flow
into the solid. The pressure inside the solid cell is then assumed to be equal to the pressure
in the adjacent fluid cell so that the fluid cannot flow into the solid. On the other hand, if
the fluid is not pushing against the wall, the boundary acts like a free-surface. This is the
case for phases where the fluid detaches from the wall e.g. at the ceiling. To allow the fluid
to detach from the wall, the solid cells are then treated as air cells by considering the fluid
cell’s pressure in the pressure update.
The method markDetachingCells is from crucial importance. Positive normal velocity at
fluid-solid faces are allowed in ensureBC when separating boundary conditions are desired.
But when the normal velocity at a solid cell c is set to zero to prevent fluid to flow into
the solid cell in iteration i = m, and that very normal velocity is allowed to be greater
than zero in another iteration i = n, the resulting fluid simulation exhibits incorrect fluid
behavior. The fluid is getting pushed away from solid walls for one cell width and is jittering
in domain corners. This results from treating a fluid-solid face differently in each iteration.
The classification of solid cells into free-surface and solid walls must be established before
the first application of ensureBC and must not be changed during one time step. The
solid cells are classified as free-surface if the normal velocity component at its face to the
neighboring fluid cell is greater than zero.
For this reason, the method markDetachingCells is developed as shown in Algorithm 3.
To ensure the solid boundary conditions, it is iterated over the whole grid. For each grid

Algorithm 3 Classify Solid Cells into Free-Surface and Solid Wall

1: procedure markDetachingCells(u,flags)
2: for each cell c do
3: if isFluid(c) then
4: if isSolid(left) AND u.x > 0 then setAir(left) end if
5: if isSolid(bottom) AND u.y > 0 then setAir(bottom) end if
6: if isSolid(front) AND u.z > 0 then setAir(front) end if
7: else if isSolid(c) then
8: if isFluid(left) AND u.x < 0 then setAir(c) end if
9: if isFluid(bottom) AND u.y < 0 then setAir(c) end if

10: if isFluid(front) AND u.z < 0 then setAir(c) end if
11: end if
12: end for
13: end procedure

cell, the left, lower and front neighbors are evaluated. Therefore, each fluid-solid face is
captured. If the current cell is a fluid and one of the neighbors is a solid cell, the normal
velocity component at this very fluid-solid face is evaluated. If the velocity component in
relation to the normal direction is positive, this solid cell is classified as free-surface. For
convenience, this cell is marked as air in the flags variable. Note that the flags variable
provided to applyADMM should be a copy of the original variable such that the rest of the
fluid simulation is operating on the original flags variable again.
The procedure ensureBC is not aware of any classification but sets each velocity component
at fluid-solid faces to zero. Solid cells which were modified to air by markDetachingCells
are therefore not changed at all. Note that the fluid at solid cells classified as free-surface is
never flowing into the wall although this could be possible when the value in the neighboring
fluid cell is changing to a positive value during the ADMM iteration.
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In order to compare ADMM with the original pressure solver OrigPS, ADMM can also be
applied with sticky walls. Then, no solid cell is classified as free-surface and the same sticky
behavior is achieved.
Note that the classification of the solid cells can also be conducted by checking on the
pressure values in the neighboring fluid cells. If the pressure is negative, the solid cell is
classified as free-surface since the fluid is in the process of detaching from the wall.

3.3 IOP as Pressure Solve (IOPSep or IOPStick)

Since the Iterated Orthogonal Projection (IOP) has already been successfully applied to a
similar problem in [MCPN08], IOP is now implemented to allow flexible solid wall boundary
conditions in the pressure solve.
The implementation of IOP resembles the implementation of ADMM. However, it is less
sophisticated. Applying IOP with sticky boundary conditions is from now on abbreviated
with IOPStick and IOP with separating boundary conditions is called IOPSep.
Since both solvePressure and ensureBC operate on the same velocity field u when it comes
to IOP, there is no need for the variables v and q. A similar stopping criterion to ADMM
would be to compare the velocity field from the previous time step uprevious to the current
velocity field ucurrent. However, the residual rvel = ucurrent − uprevious accounts for the
changes from one time step to another and not for the difference between the slack variables
which accounts for how well both problems are solved. Since both operators are applied to
the same velocity field, the second operator could change the velocity field again so that the
total change is less than after the first operator. Simulation results show in case rvel is used
as residual and the same thresholds are used for ADMM and IOP, that IOP simulations
feature semi-permeable walls while ADMM simulations require more iterations and produce
correct results.
Therefore, the default stopping criterion for IOP is the divergence. It can be assumed that
if the incompressibility is well solved, which can be measured in the divergence of u, the
boundary conditions are solved similarly well since both problems are solved on one single
variable u.

In Algorithm 4, the code snipped for applying IOP as pressure solve is shown. Besides
the different use of the velocity field variables, all method calls are the same. In line 2,
the residual r is initialized while the modified cell classification is instantiated in line 3.
The IOP loop starts in line 4. The pressure projection is applied in solvePressure in line
5, followed by the updating the classification of the solid cells in line 6. The projection

Algorithm 4 Solve Ap = b by means of IOP

1: procedure applyIOP(flags,u,p,εCG,εIdiv)
2: r = MACGrid(0)
3: noSolidsFlags = removeSolids(flags)
4: for i ← 1 to maxIterIOP do
5: solvePressure(u,p,noSolidsFlags,εCG)
6: if i==1 then markDetachingCells(u,p,flags) end if
7: ensureBC(flags,u)
8: r = div(u)
9: if max(r) <= εIdiv then break end if

10: end for
11: end procedure
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to ensure the boundary conditions ensureBC is applied on u in line 7. The divergence as
residual is calculated in line 8 and evaluated in line 9.

3.4 Conjugate Gradient Pressure Solve with Separating
Boundaries (OrigPSSep)

Inspired by the idea to allow positive normal velocity components at solid-fluid faces,
the original conjugate gradient pressure solve is extended to implement separating solid
wall boundary conditions as well. This implementation is in the following referred to as
OrigPSSep.
The only adjustment in Algorithm 5 compared to Algorithm 1 is the cell classification in
line 7. After solving Ap = b iteratively in Algorithm 1, the method markDetachingCells
is called before the pressure update is conducted in correctVelocity as shown in Algorithm
5. The solid cells are either classified by means of the velocity or by checking for negative
pressure in the adjacent fluid cells. When using the classification based on the velocity, the
pressure update must be conducted on a temporary velocity field where all solid cells are
changed to air cells. Those solid cells that possess a positive normal velocity component at
a fluid-solid face after the update are then classified as free-surface, i.e. set as air cell for
the actual update in correctVelocity. Classifying solid cells as free-surface if their adjacent
fluid cell features negative pressure leads to separating boundary conditions as well.
Since the pressure solve is conducted using a different classification of solid cells than for

Algorithm 5 Solve p in Ap = b and Update u with Separating BCs

1: procedure solvePressure(u,p,flags)
2: makeLaplaceMatrix(A, flags)
3: makeRhs(b, u, flags)
4: for i ← 1 to maxIterations do
5: gcg → iterate(A, p, b)
6: end for
7: markDetachingCells(u,p,flags)
8: correctVelocity(u, p, flags)
9: end procedure

the pressure update, divergence is introduced at the fluid-solid faces where a free-surface
is determined. While this does not lead to visual artifacts for most scenarios, it is still an
objectionable result since the advection step should only be applied on a divergence-free
velocity field.
Classifying the solid cells before the pressure solve, directly after the application of body
forces, leads to semi-permeable walls due to a high number of solid cells classified as free-
surface. Nevertheless, a solution for eliminating the divergence is presented in the next
section.

3.5 IOP with Additional Boundary Information (IOPSepBC)

Since ADMM and IOP might perform not fast enough for some practical application, the
convergence is accelerated by supplying the pressure solve again with information about the
solid boundary conditions. Obviously, the two sub-problems are then no longer separated.
Furthermore, ADMM with rvel can no longer be carried out. The velocity field returned
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by solvePressure already meets all boundary conditions, so that ensureBC does not have
any impact in v. Therefore, rvel = u− v is always zero and ADMM is equal to the original
pressure solve.
Applying IOP with BCs information passed to the pressure solve is more suitable because
the operation takes place on only one velocity field.
Nevertheless, applying ADMM or IOP with using rdiv and supplying boundary information
to the pressure solve is exactly applying OrigPSSep several times to rule out the introduced
divergence.

In this chapter, four different methods as pressure solve are introduced, additionally
to the original pressure solve. In the following chapter, the five variants of the pressure
solve, namely OrigPS, OrigPSSep, ADMMSep, IOPSep and IOPSepBC, are simulated and
extensively evaluated.
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Chapter 4

Results and Evaluation

In this part, the previously implemented methods called original pressure solve with sep-
arating walls (OrigPSSep), ADMM and IOP as pressure solve with separating boundary
conditions (ADMMVelSep and IOPDivSep) are evaluated and compared. The resulting
fluid simulations are therefore graphically demonstrated and analyzed.
This chapter starts with presenting a breaking dam scene simulated by OrigPS in 3D and
moves on to reproducing the same scenario with OrigPSSep, ADMMVelSep and IOPDivSep.
As a next step, the convergence of all methods and their variants is exposed and the choice
of the stopping criterion is discussed in Section 4.1. The resulting performance of the
methods is illustrated afterwards in Section 4.2 and leads to an investigation of how far
the solutions differ from each other in Section 4.3. In Section 4.4, the hybrid method IOP-
DivBC is explained and evaluated. Section 4.5 compares the cell classifications based on
velocity and pressure. As a last part, the methods are applied to different scenes to put
their robustness and behavior with static obstacles to the test in Section 4.6.

Breaking Dam Scenario As a first evaluation step, all variants of the pressure solve are
compared to each other by simulating a breaking dam scene as follows. A fluid box is placed
on the left side of a squared domain. Fig. 4.1 shows that during time, the fluid breaks
down, splashes against the right wall at t = 37, (b), crawls up the right wall, hits the ceiling
at t = 66, (c), and reaches the left wall at t = 120, (e), and breaks down again until the
main fluid body hits the left wall at t = 160, (f), and forms a big wave pressing against it
at t = 200, (g). The simulation is run for 250 steps, i.e. tmax = 250. The time step δt is 0.5
for all simulations and the three-dimensional grid size is 96×96×96. The default accuracy
for the CG solver is εCG = 10−3. Unfortunately, the fluid is sticking unnaturally to the
ceiling and does not detach until t = 200. Even after t = 200, a few fluid drops glue to the
ceiling. This incorrect behavior fuels exactly the motivation for exploring other methods
which cause the fluid to detach naturally from solids, e.g. walls, obstacles and ceilings.
The breaking dam scenario is now simulated with OrigPSSep, ADMMVelSep and IOPDivSep
as shown in Fig. 4.2. For improving the distinction between these, the 3D simulations
are rendered in different colors, i.e. blue, green, pink and yellow for OrigPS, OrigPSSep,
ADMMVelSep and IOPDivSep. The accuracy for the CG solver inside ADMM and IOP,
εCG, is set to 10−3 as well. IOP uses the divergence as stopping criterion, while ADMM
stops on behalf of how close the two different velocity fields u and v are, as explained in
Section 4.1. The accuracy εIdiv is set to 10−2, εAabs and εArel to 10−3. These configurations
of IOP and ADMM produce very similar results which makes them well comparable. Note
that the subscript ’CG’ stands for the accuracy of the CG pressure solve in every method,
while ’I’ stands for IOP and ’A’ for ADMM. When using the velocity as residual in ADMM,
two accuracies need to be specified, i.e. an absolute and a relative value as explained in
Section 2.2.
In opposite to the results produced by OrigPS in Fig. 4.2 (a)-(d), the simulations with
OrigPSSep, ADMMVelSep and IOPDivSep feature well detaching fluid behavior since all
three methods allow positive normal velocity components as shown in Fig. 4.2 (c)-(p). At
t = 120, a thin fluid layer is still crawling along the ceiling for OrigPS in Fig. 4.2 (c) while
the fluid is already completely detached at t = 100 when using separating boundary condi-
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4.1. Convergence

(a) t = 0 (b) t = 37 (c) t = 66 (d) t = 100

(e) t = 120 (f) t = 160 (g) t = 200 (h) t = 249

Figure 4.1: Breaking Dam Scenario Simulated by the Original CG Pressure Solve in 3D

tions. Although the visual results vary for OrigPSSep, ADMMDivSep and IOPDivSep, all
three methods produce visually plausible results and none seems more plausible than the
other.
Against other predictions in [Bri08], it is therefore possible to achieve separating boundary
conditions at fluid-solid boundaries with a simple CG solver when classifying the boundary
cells into solid or air cells depending on their current role (solid wall or free-surface) before
the pressure update.
Note that OrigPSSep advances faster than ADMMVelSep as demonstrated in Fig. 4.2 f),
j) and g), k) while IOPDivSep can almost compete with OrigPSSep. At t = 100, the fluid
is detaching from the ceiling. It seems that in OrigPSSep, the fluid movement describes a
curve while simulations with ADMMVelSep and IOPDivSep show a linear fluid line. Fur-
thermore, the fluid seems to behave less splashy for IOPDivSep, but all results look equally
plausible. There is no obvious difference in mass loss during the simulation.
Simulating ADMM and IOP with sticky boundaries produces very similar results to OrigPS.
The fluid is equally sticking to the walls and ceiling. However, it is impossible to deter-
mine which method is closer to OrigPS just from visually inspecting the simulation results.
Some fluid sheets look more familiar when using ADMM, some fluid portion closer to IOP.
Especially after many time steps, the differences in the resulting simulations are not easy
to identify. The similarity of the methods is discussed in Section 4.3.

4.1 Convergence

To compare the different ways of solving the pressure equations, the same stopping criterion
should be used for accurate comparisons of the solutions and their performance. Unfor-
tunately, this turns out to be very difficult. The common stopping criterion for ADMM
is to measure the difference between both slack variables, the two velocity fields u and
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4.1. Convergence

(a) OrigPS, t = 66 (b) OrigPS, t = 100 (c) OrigPS, t = 120 (d) OrigPS, t = 160

(e) OrigPSSep, t = 66 (f) OrigPSSep, t = 100 (g) OrigPSSep, t = 120 (h) OrigPSSep, t = 160

(i) ADMMVelSep, t = 66 (j) ADMMVelSep, t = 100(k) ADMMVelSep, t = 120(l) ADMMVelSep, t = 160

(m) IOPDivSep, t = 66 (n) IOPDivSep, t = 100 (o) IOPDivSep, t = 120 (p) IOPDivSep, t = 160

Figure 4.2: 3D Breaking Dam Simulations with Sticky and Separating Boundaries

v. Minimizing the difference between both velocity fields leads to a solution where both
problems are solved equally well. Since neither IOP nor the CG solver operate on two
separate velocity fields, it is not possible to use the ADMM stopping criterion as a stop-
ping criterion for all methods. When using the difference between the previous and the
current velocity field ucurrent and uprevious in IOP, a different quantity is measured. While
rAvel = u − v in ADMM measures how well both problems are solved simultaneously,
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4.1. Convergence

rIvel = ucurrent − uprevious stands for the change within two IOP iterations which includes
solving both problems in one single velocity field. Solving both problems in one velocity
field might lead to reversing modification done by the pressure solve with the application
of the boundary conditions. A much higher accuracy has to be chosen for IOP when using
a stopping criterion based on the velocity change compared to running ADMM with rAvel
which is in turn hard to compare.
Another challenge occurs when inspecting the behavior of the residual of ADMM more
deeply. The residual decreases in a periodic way with a period of approximately 20 time
steps and an ever decreasing amplitude. It shows that the solutions of the two sub-problems
alternate between approximating each other and drifting apart again but converge to the
same solution in the end. An explanation therefore is the dual variable update which com-
bines both solutions, taking one more into account than the other and overcorrecting this
by weighting the other solution higher. It is thus important to stop the simulation at a
point where both solutions are equally solved, i.e. when rAvel = u − v is at one of its
minima.
Both the CG solver and the IOP method can use the divergence as stopping criterion. Due
to the lack of another common stopping criterion, the divergence can also be used as a
stopping criterion in ADMM but this comes with consequences. It is hence essential to
examine where the divergence is introduced for each method.

Where does divergence occur?
1. OrigPS: When running a simulation with OrigPS, divergence is introduced mainly

at the boundaries and dispersed over the whole field until it vanishes. Some single
cells at the fluid surface show temporarily high divergence but go down uniformly
during the CG iterations until the maximum value of divergence is below a specified
threshold.

2. OrigPSSep: OrigPSSep shows the same divergence behavior as OrigPS but with
additional divergence in the fluid cells next to solid cells which were classified as free-
surface. This is expected since after reducing the divergence in the pressure solve, the
pressure update is applied and creates new divergence by allowing the fluid to detach.
When using the divergence as stopping criterion in OrigPSSep, the fluid cells next
to solid cells must be disregarded in the divergence calculation since their divergence
does not always go down. This divergence is fuels the motivation for applying ADMM
and IOP.

3. ADMMDivSep and IOPDivSep: Most divergence in ADMM and IOP methods
occurs at fluid cells next to solid cells. That is reasonable since the pressure solve
eliminates the divergence and the boundary handling recreates divergence at fluid-
solid faces by modifying the velocity there.

Divergence Residual for OrigPS, OrigPSSep and IOPDivSep The residual rdiv in OrigPS
and OrigPSSep goes down in a jagged way but reaches the desired threshold quite fast, see
Fig. 4.3 (a) and (b). For IOP, the divergence goes down smoothly as shown in Fig. 4.3
(c). For each IOP iteration, the CG solver is called which minimizes the divergence up
to the specified threshold. After that, the boundaries are handled which might introduce
divergence again. The divergence decreases rapidly in the first steps and goes up again
around the tenth step. From then on, it decreases straight as shown in Fig. 4.3 (c).
Critical time steps like t = 37, see Fig. 4.1 (b), start with a higher divergence.
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(a) OrigPS (b) OrigPSSep (c) IOPDivSep

Figure 4.3: Behavior of the Residual in time step t = 150

Divergence and Velocity Residual for ADMM The main problem with the divergence
as stopping criterion for ADMM is, that it is a criterion considering how well the velocity
field complies to the incompressibility condition and not taking into account how well the
boundary conditions are met. This problem does not occur for IOP since both problems
are solved in one single velocity field.
The divergence residual rdiv as well as the usual residual rvel develop in a periodic way. For
some time steps, it takes a while to reach the periodic behavior and sometimes, the second
amplitude is higher than the first. Especially critical time steps, e.g. t = 37 in Fig. 4.1
(b) where the fluid hits the right wall, show a high divergence in the beginning and the
periodic behavior is reached not until the tenth iteration.
Stopping when the divergence is the lowest means to stop when the incompressibility prob-
lem is solved the best which does not imply that the boundary conditions are solved well
at all. In fact, since both solutions approach each other and depart again, a minimum
in divergence implies that the boundary conditions are not handled well. In Fig. 4.4 (a)
ADMMDivSep with rdiv = div(u) is shown while in (b) ADMMVelSep with rvel = u − v
is displayed. For better convenience, the choice of stopping criterion is appended to the
method name. While the residual of ADMMVelSep has a minimum at t = 78 and at t = 93
amongst others, the divergence in ADMMDivSep peaks at t = 75 and t = 92 which proves
that stopping by the means of rdiv never results in a solution where both problems are
solved well. The minima of the divergence are at t = 67, t = 84 and t = 101 amongst oth-
ers. Therefore, the two residuals measure the same problem but a different quantity. While
rAvel measures how well both problems are solved, rAdiv quantifies how well the incompress-
ibility condition is met. As mentioned in Section 2.2, the variable q does converge to its
optimal value but u and v not necessarily. The two residuals are phase shifted which makes
it impossible to stop at minimum divergence and at the optimal solution for both prob-
lems. This is also indicated by simulations with ADMMDivSep which show slight artifacts

(a) ADMMDivSep, εADMM = 10−2 (b) ADMMVelSep, εAabs = εArel = 10−3

Figure 4.4: Behavior of the Residual in time step t = 150
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introduced due to slightly open boundaries while even lower accuracies for ADMMVelSep
do not feature artifacts. It is recommended to use ADMM only with rAvel to make sure
both problems are solved well.
Note that rvel is calculated before u is updated by the dual variable and rdiv is mea-
sured after the update as explained in Section 3.2. The divergence plots in Fig. 4.3 and
4.4 are extracted from a simulation where OrigPSSep, ADMMVelSep, ADMMDivSep and
IOPDivSep are all applied to the same input values. In each fifth step of an original sim-
ulation, the methods to compare are called on the same input values in order to provide a
perfect comparison of several time steps. When all methods start in the same fluid state,
the resulting fluid state can be compared accurately, see details in Section 4.3.

Choosing Thresholds for the Divergence Residual in CG, ADMMDiv and IOPDiv Using
the divergence as stopping criterion leads to some restrictions regarding the choice of εCG,
εAdiv and εIdiv. In each ADMM or IOP iteration, the CG pressure solve is called once. Both
the internal CG and the outer ADMM or IOP loop terminate when the specified threshold
for the divergence is undercut. If both the internal threshold εCG and the outer threshold
εAdiv or εIdiv are equal, some difficulties occur. While the CG pressure solve reduces the
divergence of u to a value below εCG, modifying u to comply with the boundary conditions
introduces divergence which in turn means that the divergence might exceed εCG again. If
εAdiv or εIdiv are equal to or even lower than εCG, the ADMM or IOP loop can hardly ever
converge. The only possibility for it to converge is, when the CG pressure solver runs a
minimum number of iterations and hence reduces the divergence eventually below εAdiv or
εIdiv.
Therefore, the thresholds εAdiv and εIdiv should always be chosen less strict than εCG. It is
better to have equally balanced iterations in the inner and the outer loop. Choosing εAdiv
or εIdiv to be stricter than εCG leads to slowly decreasing divergence and a huge number or
total CG iterations, especially for IOP. In Section 4.2, the performance is evaluated.

As shown in Fig. 4.5, when εCG = 10−3 > εIdiv, εAdiv the divergence approaches very
slowly its threshold. While the divergence in ADMM develops in its usual periodic way

(a) IOPDivSep, εIdiv = 10−4, t = 19 (b) IOPDivSep, εIdiv = 5 · 10−4, t = 33

(c) ADMMDivSep, εAdiv = 10−4, t = 19 (d) ADMMDivSep, εAdiv = 5 · 10−4, t = 33

Figure 4.5: Behavior of the Residual with εCG = 10−3 > εIdiv, εAdiv
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and only requires more iterations to undercut εAdiv, see Fig. 4.5 (c) and (d), the divergence
in IOP behaves differently, see Fig. 4.5 (a) and (b). While it decreases smoothly until the
two-hundredth iteration, it goes up and down it a jagged way until it eventually undercuts
its threshold. This problem does not occur for ADMM with rAvel since the stopping criteria
in the inner and outer loop are not closely related.

Choosing Thresholds for Velocity Residual in ADMMVel It turns out to be a good
choice to set εAabs and εArel to a similar or even equal threshold. If one of the thresholds
incorporates a much higher value, the other threshold is neglected.

4.2 Performance

In this section, the performance of OrigPS, OrigPSSep, ADMMVelSep, ADMMDivSep and
IOPDivSep is evaluated by measuring the total amount of required CG, ADMM and IOP
iterations, as well as the runtime per time step. In the first part, Section 4.2.1, the perfor-
mance of the 3D breaking dam simulations from the beginning of this chapter is presented
and evaluated. Next, Section 4.2.2, ADMMVelSep, ADMMDivSep and IOPDivSep are
simulated in multiple, varying parameter settings. Thereby, the performance is examined
depending on the choice of parameters, i.e. thresholds εCG, εA, εI , and a practical parameter
setting is determined.
The simulations with this very parameter setting are later on examined in Section 4.3,
where all simulations are supplied with the same initial values for each time step. By doing
so, the resulting output for each time step can be compared in a more convenient form
than when the methods operate only at t = 0 on the same initial values. The methods are
simulating a 2D breaking dam scenario.
The resulting performance of the settings chosen in Section 4.2.2 is presented in Section
4.2.3. As a last part, the performance is examined in relation to the chosen grid size in
Section 4.2.4.

4.2.1 3D Breaking Dam Scenario

In the beginning of this chapter, a 3D simulation of the breaking dam scenario is run with
OrigPS, OrigPSSep, ADMMVelSep and IOPDivSep, see Fig. 4.2. As a first evaluation
aspect of the methods’ performance, the averaged total number of CG iterations, the re-
quired number of ADMM and IOP iterations and the runtime measurements are visualized
in Fig. 4.6. The averaged data is specified in Table 4.1. The performance of ADMMDivSep
is examined as well in order to compare its performance to ADMMVelSep and IOPDivSep.
The thresholds are set as follows: εCG = εAabs = εArel = 10−3 and εIdiv = εAdiv = 10−2.
As expected, OrigPS and OrigPSSep need by far the least CG iterations, namely 20 CG
iterations per time step and can hardly be recognized in Fig. 4.6. While the pressure
solve is only applied once per time step, it is called several times from the ADMM and
IOP loop when it comes to ADMMVelSep, ADMMDivSep and IOPDivSep simulations.
ADMMDivSep requires the highest number of CG iterations, namely twice as many as
IOPDivSep and factor 1.5 of ADMMVelSep, see Fig. 4.6 (a).
This confirms that using the divergence as residual in ADMM does not lead to optimal
results. The performance plots for all three methods show a characteristic curve where the
time steps t = 0 until t = 50, t = 110 until t = 160 and t = 240 until the end show higher re-
source consumptions compared to the others. Those time steps are therefore more difficult
to solve. However, when it comes to the number of ADMM iterations in ADMMVelSep,
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(a) Total Number of CG Iterations (b) ADMM and IOP Iterations (c) Runtimes

Figure 4.6: Iterations and Runtimes for the 3D Breaking Dam Simulation

Method Color Total CG Iter ADMM / IOP Iter Runtime in s

OrigPS blue 20 - 6
OrigPSSep green 20 - 10
ADMMVelSep magenta 987 137 544
ADMMDivSep red 1,446 305 790
IOPDivSep yellow 574 236 348
IOPDivSepBC gray 34 2.75 17

Table 4.1: Averaged Iterations and Runtimes per Time Step for 3D Breaking Dam

the number is very constant as shown in Fig. 4.6 (b). Only the inner CG loop takes more
effort in solving those time steps.
The runtimes1 are pointed out in Fig. 4.6 (c). ADMMVelSep requires 544 seconds per
time step when simulating the 3D breaking dam scenario. This means that 250 time steps
last for 37 hours only regarding the pressure solve. Even the best performing method as of
IOPDivSep needs 50 times longer for a 3D breaking dam scene than OrigPS. Due to the
poor performance, an acceleration method as hybrid between OrigPSSep and IOPDivSep
is presented in Section 4.4. The accelerated method is called IOPDivSepBC and performs
very well as shown in Table 4.1.
Furthermore, the performance of ADMMVelStick, ADMMDivStick and IOPDivStick is
similar but leads to slightly higher resource consumption.

4.2.2 Varying Parameter Settings

To evaluate the performance of ADMMVelSep, ADMMDivSep and IOPDivSep in relation
to the thresholds εCG, εAabs, εArel, εAdiv and εIdiv, all three methods are run 21 times with
varying parameters.
The threshold εCG ranges from 10−1 to 10−5, while εAabs, εArel, εAdiv and εIdiv take values
between 10−2 and 10−5 as shown by the x- and y-axes in Fig. 4.7. Thereby, the highest CG,
ADMM and IOP accuracy of 10−5 is only used once and serves as high-accuracy compari-
son. εAabs and εArel are always set to the same value. Since it is reasonable to assume that
setting εAabs and εArel to the same value as εAdiv and εIdiv leads to comparable and slightly
more accurate results, the same range is used for all three methods. The assumption about
producing similar results is confirmed in Section 4.3. Due to the high resource consumption
in 3D, these tests are run in 2D on a grid size of 96× 96× 1.
In Fig. 4.6, the total amount of required CG iterations is displayed in the first row. The
second row shows the total number of ADMM and IOP iterations while the runtime is

1The machine, on which all 3D simulations are run, is x64-based with Windows 8.1 Professional and an
Intel(R) quad Core(MT) i7 CPU 920 @2.67GHz.
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displayed in the last row 2. The first aspect to notice when evaluating the total amount

(a) ADMMVelSep, CG Iter (b) ADMMDivSep, CG Iter (c) IOPDivSep, CG Iter

(d) ADMMVelSep, ADMM Iter (e) ADMMDivSep, ADMM Iter (f) IOPDivSep, IOP Iter

(g) ADMMVelSep, Runtime in s (h) ADMMDivSep, Runtime in s (i) IOPDivSep, Runtime in s

Figure 4.7: Performance of ADMM and IOP in Relation to the Thresholds ε

of CG iterations in the first row of Fig. 4.6 is that ADMMDivSep requires a lot of CG
iterations, namely 33,838, for the high-accuracy simulation with εCG = εAdiv = 10−5. In
contrast to this, ADMMVelSep needs for εCG = εAabs = εArel = 10−5 only 24,500, whereas
IOPDivSep requires the smallest number of CG iterations, that is 15,000. In contrast, for
all lower combinations, e.g. εCG = εAabs = εArel = 10−3, ADMMVelSep needs equal or
sometimes even less iterations compared to IOPDivSep.
Furthermore, the required CG iterations for settings above the diagonal from the lower left
to the upper right are significantly higher than expected, especially for IOP as visualized
in Fig. 4.6 (c). The simulation with εCG = 10−1 and εIdiv = 10−4 requires 16,743 CG
iterations while the high-accuracy comparison simulation converges with 14,842 CG iter-
ations. This demonstrates that IOP converges poorly when choosing a higher accuracy
for the outer loop than for the inner loop. Although ADMMDivSep usually needs almost
double as many CG iterations than IOPDivSep with the same thresholds, ADMMDivSep
needs only 9.637 CG iterations for εCG = 10−1 and εAdiv = 10−4. That lets conclude that
ADMMDivSep converges slowly but more robustly than IOP.
The IOP iterations in Fig. 4.7 (f) match the observations based on plot Fig. 4.7 (c). IOP
requires 16,453 outer iterations for εCG = 10−1 and εIdiv = 10−4 which is almost equal to
the number of CG iterations. That confirms the aforementioned assumption that in the
pressure solve, only the minimum number of iterations are conducted because the diver-
gence of u is already below εCG. A remarkable fact hereby is, that the runtime is increased
depending on both the number of CG iterations and IOP iterations but the number of IOP

2On a x64-based machine with Windows 8.1 Professional, Intel(R) Xeon(R) 6 Core CPU E5-1650 v2
@3.50GHz.
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iterations weight much more for IOP as shown in Fig. 4.7 (i).
ADMMDivSep requires a high number of ADMM iterations as well when choosing a higher
ADMM accuracy than for the pressure solve as shown in Fig. 4.7 (e). For εCG = 10−1 and
εAdiv = 10−4, 8,911 ADMM iterations are required which is only half as many IOP itera-
tions for the same setting. The increased number of ADMM iterations afflicts the runtime
as well as shown in Fig. 4.7 (h). But compared to IOP, ADMM handles the threshold
settings visualized above the diagonal a lot better. Hence, it is confirmed that the outer
accuracy should always be lower or equal than the inner accuracy. Choosing the same inner
as outer accuracy leads to few peaks in the number of ADMM and IOP iterations but does
not strikes down in the runtime.
The issue of selecting similar thresholds for the inner CG and outer ADMM loop does not
occur for ADMMVelSep as shown in Fig. 4.7 (a). If the pressure solve does not modify
u much, both velocity fields u and v approach each other faster and hence, convergence is
reached soon. Independent of the value of εCG, only related to εAabs and εArel, the number
of ADMM iterations is stable between 40 and 200 and goes up to 300 for the high-accuracy
comparison solution as shown in Fig. 4.7 (d). ADMMVelSep needs roughly a 30% more
CG iterations than IOP for ADMM accuracies higher or equal to 10−4, but less iterations
for e.g. εAabs = εArel = 10−2. For the high-accuracy simulation, 24,473 CG iterations
are required with ADMMVelSep which is much more than compared to IOPDivSep. As
mentioned in Section 2.2, ADMM converges best for moderate accuracies.
The high-accuracy simulation needs 87 seconds per time step which makes 6 hours for
the pressure solve for ADMMDivSep when simulating the breaking dam scenario with
tmax = 250. ADMMVelSep requires 65 seconds per time step and IOPDivSep 19 seconds
which leads to a total amount of required time of 4.5h, respectively 1.3h.

The most robust variant in terms of convergence is ADMMVelSep. When choosing a
moderate accuracy, the performance is quite good.
While Fig. 4.7 visualizes the number of CG iterations, the number of ADMM and IOP iter-
ations and runtime per time step, Table 4.2 lists the exact number of CG iterations. Since
some simulations feature slight artifacts due to too weak accuracy, the corresponding table
entries are colored to exclude this parameter setting from being considered as a practical
solution. Magenta colored cells signalize that the corresponding ADMMVelSep simula-

HHH
HHεCG

εA/I 10−5 10−4 5 · 10−4 10−3 5 · 10−3 10−2

iAvel=24,473
10−5 iAdiv=33,838

iIdiv=14,842

iAvel=12,915 iAvel=9,387 iAvel=7,884 iAvel=4,752 iAvel=3,399
10−4 iAdiv=20,170 iAdiv=18,204 iAdiv=16,374 iAdiv=13,822 iAdiv=12,199

iIdiv=9,053 iIdiv=8,731 iIdiv=8,389 iIdiv=6,989 iIdiv=6,199

iAvel=9,176 iAvel=6,704 iAvel=5,650 iAvel=3,568 iAvel=2,611
10−3 iAdiv=12,449 iAdiv=11,809 iAdiv=10,950 iAdiv=9,478 iAdiv=8,419

iIdiv=10,107 iIdiv=5,162 iIdiv=4,680 iIdiv=4,266 iIdiv=3,882

iAvel=4,568 iAvel=3,927 iAvel=3,380 iAvel=2,391 iAvel=1,693
10−2 iAdiv=9,309 iAdiv=5,838 iAdiv=5,206 iAdiv=4,458 iAdiv=4,383

iIdiv=12,872 iIdiv=9,189 iIdiv=7,192 iIdiv=1,993 iIdiv=1,586

iAvel=837 iAvel=851 iAvel=844 iAvel=712 iAvel=620
10−1 iAdiv=9,637 iAdiv=6,700 iAdiv=4,789 iAdiv=2,128 iAdiv=1,295

iIdiv=16,743 iIdiv=12,138 iIdiv=11,167 iIdiv=7,327 iIdiv=5,642

Table 4.2: Total Number of CG Iterations for Different Parameter Settings
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tion features some artifacts while a gray cell color stands for artifacts in ADMMDivSep.
IOPDivSep never features visual artifacts but many parameter settings cannot be consid-
ered due to the imbalanced number of iterations in the inner and outer loop. Despite the
slight artifacts, all simulations exhibit a similar and visually plausible fluid motion.
By evaluating the performance plots in Fig. 4.6 and Table 4.2, a practical setting can be
determine. This practical setting is chosen as low as possible. For ADMMDivSep as well
as for IOPDivSep, εCG = 10−3, εAdiv = 10−2 and εIdiv = 10−2 is chosen as lowest setting in
terms of accuracy where neither IOP shows poor convergence nor does ADMM show arti-
facts. Choosing a parameter setting for each method independently might lead to different
thresholds.

4.2.3 Identical Input Values in Each Time Step

In this section, the performance of 2D simulations of the breaking dam scenario is analyzed.
In practice, parameter εCG is usually set to 10−5. However, since ADMM works the best
if both εCG and εA are set to a similar accuracy and ADMM works best with moderate
accuracy, the threshold εCG must be increased to 10−3 to lower the resource consumption
and therefore enable the evaluation of many different scenarios.
For example, in Section 4.3 is examined if the method’s solutions approach each other for
very high accuracy, i.e. if there exists an agreement solution. To examine this, an original
simulation is run and in every fifth time step, OrigPSSep, ADMMVelSep, ADMMDivSep
and IOPDivSep are run on the same input variables generated by OrigPS. It is ensured
that all methods start with the same initial state and therefore, their output state can
be compared very well. ADMMVelSep, ADMMDivSep and IOPDivSep are run once with
very high accuracy, εCG = 10−12 and εAabs = εArel = εAdiv = εIdiv = 10−9, and with low,
practical, accuracy εCG = 10−3, εAabs = εArel = 10−3 and εAdiv = εIdiv = 10−2. The

(a) CG Iterations (b) ADMM and IOP Iterations (c) Runtimes in s

Figure 4.8: Performance of 2D Breaking Dam with Same Input Values

Method Color Total CG Iter ADMM / IOP Iter Runtime in s

OrigPSHigh blue 321 - 1
OrigPSSepHigh green 290 - 1
ADMMVelSepHigh dark magenta 140,399 808 412
ADMMVelSepLow magenta 6,196 99 18
ADMMDivSepHigh dark red 165,559 1,027 491
ADMMDivSepLow red 8209 142 25
IOPDivSepHigh dark yellow 84,929 592 254
IOPDivSepLow yellow 4,280 102 13

Table 4.3: Averaged Iterations and Runtimes per Time Step for 3D Breaking Dam

required number of CG iterations, ADMM and IOP iterations are displayed in Fig. 4.8 (a)
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and (b). The corresponding runtimes in seconds per time step3 is shown in Fig. 4.8 (c).
The performance of OrigPS and OrigPSSep is obviously better than the performance of
ADMM and IOP since the pressure solve is only called once and does not operate in a
loop. The maximum averaged number of iterations per time step is 320 for OrigPS with
εabs = 10−12. The performance of OrigPSSep is slightly better, which can be inferred from
Table 4.3.
ADMMDivSep is again the most expensive method with twice or a quarter as many CG
iterations as IOPDivSep or ADMMVelSep. From the overall perspective, all plots show the
same characteristic curve as before, consuming most resources for difficult time steps.
Note that ADMMVelSepLow needs less ADMM iterations than IOPDivSepLow needs IOP
iterations but consumes a quarter more CG iterations. These plots confirm that IOPDivSep
is the most efficient method.

4.2.4 Varying Grid Sizes

In order to analyze the behavior of the most important methods, i.e. OrigPS, OrigPSSep,
ADMMVelSep, IOPDivSep and IOPDivSepBC, the grid size is varied in this section as
shown in Fig. 4.9. It Both the total amount of CG iterations for ADMMVelSep and
IOPDivSep increase in an exponential manner, although IOP requires always less CG iter-
ations than ADMM. When it comes to ADMM and IOP iterations, the iterations increase
in a rather linear way and the ADMM iterations are lower than IOP iterations for grids
larger than 96× 96. Since the number of CG iterations does increase almost exponentially,
the 3D simulations in this thesis are restricted to the grid size 96× 96× 1. Increasing the
grid size to 128× 128× 128 leads to four times higher runtime requirements, which is not
feasible in the scope of this thesis.
The number of CG iterations required for OrigPS increase from 76 to 410 while OrigPSSep
uses 72 to 362 iterations. The thresholds are as usual as follows: εCG = εAabs = εArel = 10−3

and εIdiv = 10−2.

(a) CG Iterations (b) ADMM and IOP Iterations

Figure 4.9: Number of Iterations over Grid Size

4.3 Exactness and Similarity of Solutions

Since there is no stopping criterion equally suitable for all three methods, OrigPS, ADMM
and IOP can hardly be compared in terms of performance and exactness of the resulting

3On a x64-based machine with Windows 8.1 Professional, Intel(R) Xeon(R) 6 Core CPU E5-1650 v2
@3.50GHz.
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solution. However, when an agreement solution, to which all solutions converge, is found,
two methods with different stopping criteria and accuracy can indeed be reasonably com-
pared.
The most important methods to be compared are OrigPSSep, ADMMVelSep, ADMMDivSep
and IOPDivSep but for evaluating how close ADMM and IOP can get to OrigPS itself,
ADMMVelStick, ADMMDivStick and IOPDivStick are evaluated as well. Therefore, both
sticky and separating boundary conditions are evaluated.
The first point of interest is, if all three methods are solving the same problem when
running very long, i.e. if there exists an agreement solution to which all methods con-
verge if the accuracies are set high enough, e.g. εCG = 10−12, εAdiv = εIdiv = 10−9 and
εAabs = εArel = 10−9. The next task is then to evaluate how close the methods with prac-
tical accuracy, i.e. εCG = 10−3, εAdiv = εIdiv = 10−2 and εAabs = εArel = 10−3 approach
this agreement solution to figure out the most accurate solution. When two methods with
specified accuracy reach a similar solution, their performance can be reasonably compared.

OrigPS, ADMMVelStick, ADMMDivStick and IOPDivStick To evaluate the similarity
between the original pressure solve OrigPS and ADMM and IOP, the methods OrigPS,
ADMMVelStick, ADMMDivStick and IOPDivStick are run with the high accuracies (εCG =
10−12, εAdiv = εIdiv = 10−9 and εAabs = εArel = 10−9). The results are shown in Fig. 4.10
(b). The differences in the resulting velocities are in the range of 10−7 to 10−9 which
is a very good result. It means that all methods are solving the same problem. In- or
decreasing the accuracies leads to more or less similar results. The differences are in order
of max(εCG, εAdivorεIdivormax(εAabs, εArel). Therefore, the solutions can get arbitrarily
similar by varying the accuracies - all three methods converge to an agreement solution.
It can be observed that ADMMDivStick differs the most from OrigPS and ADMMVelStick
is the closest.

OrigPSSep, ADMMDivSep, ADMMVelSep, IOPDivSep It is of interest to know if
OrigPSSep does also converge to the agreement solution even though it introduces diver-
gence and does not iteratively reduce the divergence as ADMMDivSep and IOPDivSep. As
shown in Fig. 4.10 (d), OrigPSSep does not converge to the same solution as ADMMDivSep,
ADMMVelSep and IOPDivSep when all are running with a very high accuracy. The dif-
ferences in the resulting velocity fields are in the range of 100 and do not decrease if lower
accuracies are chosen for ADMMDivSep, ADMMVelSep and IOPDivSep as displayed in Fig.
4.10 (f). While in (d), all three methods differ equally far from OrigPSSep, ADMMDivSep
differs a bit more when run with a low accuracy ind (f). Nevertheless, OrigPSSep delivers
a completely different solution compared to simulations with ADMM and IOP. The differ-
ences especially rise after the first hit onto the wall aroung t = 37, before that, no cell was
classified as detaching.

ADMMDivSep, ADMMVelSep, IOPDivSep In this paragraph, an evaluation regarding
the convergence to an agreement solution of ADMMDivSep, ADMMVelSep and IOPDivSep
is conducted. Especially the difference between using the velocity and the divergence as
stopping criterion in ADMM must be examined. Since ADMMVelSep and IOPVelSep
provide the closest solutions as shown in Fig. 4.10 (a), the divergence was justifiably ruled
out as stopping criterion in 4.1 for ADMM. The differences of all solutions reside in the
range of 10−8 to 10−9, IOPDivSep and ADMMVelSep differ in the range of 10−9, which
is exactly the threshold εIdiv and εArel = εAabs. ADMMDivSep converges slower to the
agreement solution but it does converge since the difference is getting smaller with higher
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accuracy. In Fig. 4.10 (c), all three methods are run with lower, practical accuracy. The
difference ranges in 10−2 and 10−3 which is exactly max(εIdiv, εAdiv, εAabs, εArel).
IOPDivSep and ADMMVelSep are again the closest solutions. Since ADMMVelStick is
also the closest to OrigPS, ADMMVelSep is now selected as agreement solution although
IOPDivSep would be perfectly suitable as well. In Fig. 4.10 (e), the practical ADMM
and IOP simulations are compared to the agreement solution. As expected, ADMMDivSep
differs the most from the agreement solution. ADMMVelSep is the most accurate solution
except for one time step around t = 70. IOPDivSep provides the most accurate result for
this time step.

To investigate the source of the velocity differences between the practical execution of
ADMM and IOP, some difference fields of the resulting velocity fields are visualized in
Fig. 4.11, enlarged by the factor of 200 to make the differences clearly visible. The time
steps t = 70, t = 125 and t = 195 are selected to be investigated deeper, since most
difference plots show high differences around t = 195, the deviation of ADMMVelSepLow
to the agreement solution in Fig. 4.10 (e) occurs at t = 70 and because t = 125 shows

(a) Agreement Solution (b) OrigPS

(c) Similarity of Lower Accuracies (d) OrigPSSep with Others High

(e) Similarity of Lower Accuracies to Agreement So-
lution

(f) OrigPSSep with Others Low

Figure 4.10: Similarities
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high differences between ADMMDivSep and the agreement solution. Velocities in the x-
directions are painted red, while velocities in the y-directions have a green color. Velocities
where both directions are equally represented have therefore a yellow color.
In the first time step, t = 70, the fluid has crawled half up the right wall and may start to
detach. The differences in the velocity fields in Fig. 4.11 (a) and (d) are very similar. The
fluid cell with index (35, 92) (grid size 96×96×1) shows a large negative velocity into the x-
direction which explains the peak in Fig. 4.10 (c) and (e). This shows that lower accuracy
ADMM simulations classify the neighboring solid cell as detaching while the agreement
solution leaves it as solid wall with zero velocity. IOPDivSep seems to classify it correctly
even with low accuracy. The difference between ADMMDivSep and the agreement solution
is particularly high in time step t = 125 where the fluid is just forming a wave towards
the left wall. The difference is equally distributed over the right part of the velocity field.
Note that this occurs in the main fluid body and not in single drops detaching from the
wall. The comparison plots usually look like this frame, the other two time steps represent
exceptional time steps which can also be seen in Fig. 4.10. When the main fluid part has

(a) ADMMVelHigh,
ADMMVelLow, t = 70

(b) ADMMVelHigh,
ADMMVelLow, t = 125

(c) ADMMVelHigh,
ADMMVelLow, t = 195

(d) ADMMVelHigh,
ADMMDivLow, t = 70

(e) ADMMVelHigh,
ADMMDivLow, t = 125

(f) ADMMVelHigh,
ADMMDivLow, t = 195

(g) ADMMVelHigh,
IOPDivLow, t = 70

(h) ADMMVelHigh,
IOPDivLow, t = 125

(i) ADMMVelHigh,
IOPDivLow, t = 195

Figure 4.11: Differences of Resulting Velocity Fields
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splashed against the left wall at t = 195, another high difference occurs, this time in all
three comparisons. This time step seems to be quite difficult since all difference plots in Fig.
4.10 show higher peaks shortly before t = 200. The main difference occurs in the 16th row
from the bottom in the x-direction of the velocity. After fluid has splashed against a solid
wall, the methods seem to have difficulties in resolving the pressure in an accurate way.
The difference for ADMMDivLow in Fig. 4.11 (e) shows additionally higher differences in
the y-direction around the center of the fluid.
Overall, the fact that ADMMDivSep differs from ADMMVelSep and IOPDivSep confirms
the observation of the phase shifted residual when using the divergence as stopping criterion.
As mentioned before, ADMMDivSep sometimes shows artifacts due to the lack of boundary
conditions compliance.

4.4 Acceleration of ADMM and IOP

To accelerate the performance of ADMM and IOP, the approach to pass information about
solid wall boundary conditions from the ADMM and IOP loop to the pressure solve was
made. However, since the solid wall boundary criteria are already met, the second proximal
operator ensureBCs will not have any effect in the velocity field which redundantizes the
second velocity field v in ADMM. Passing solid wall boundary conditions to the pressure
solve means basically to apply OrigPSSep several times and to reduce therefore the intro-
duced divergence until the specified threshold is met. The only suitable stopping criterion
in this case is the divergence. ADMM and IOP obviously deliver the same solution. Since
only one velocity field is needed, this combination of IOPDivSep and OrigPSSep is now
called IOPDivSepBC where BC stands for boundary conditions.
Nevertheless, the choice of thresholds for the outer and the inner loop must be respected
as well. Higher IOP accuracy compared to the inner CG accuracy leads to a high number
of total CG iterations as visualized in Fig. 4.12 (a) which strikes down on the runtime
identically. Since this inefficient behavior of IOP is known from Section 4.1 and 4.2.2, the
maximum number of IOP iterations is set to 1000, otherwise, the number of iterations above
the diagonal would be even higher. In Table 4.4, the corresponding data to the number of
iterations in Fig. 4.12 (a) is shown.

(a) Different Accuracies for IOPDivSepBC (b) εCG = 10−3, εIdiv = 10−2

Figure 4.12: Total Number of CG iterations per Time Step

While IOPDivSep requires 1400 CG iterations to achieve the accuracy of εCG = 10−5

and εIdiv = 10−5 and approximately 3900 CG iterations for εCG = 10−3 and εIdiv = 10−2,
IOPDivSepBC needs only 305 or 192 respectively which is a huge difference and makes the
simulation very feasible. OrigPSSep introduces divergence which is perfectly eliminated in
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H
HHHHεCG

εA/I 10−5 10−4 5 · 10−4 10−3 5 · 10−3 10−2

10−5 iIBC = 305

10−4 iIBC = 253 iIBC = 251 iIBC = 248 iIBC = 245 iIBC = 239

10−3 iIBC = 1152 iIBC = 218 iIBC = 182 iIBC = 183 iIBC = 192

10−2 iIBC = 1127 iIBC = 1112 iIBC = 1054 iIBC = 241 iIBC = 119

10−1 iIBC = 1067 iIBC = 1068 iIBC = 1067 iIBC = 1061 iIBC = 1040

Table 4.4: Total Number of CG Iterations for Different Parameter Settings

IOPDivSepBC. The visual results of IOPDivSepBC are shown in Fig. 4.13 by the means of
the 3D breaking dam simulation as in the beginning of this chapter. The generated simula-
tion is visually very plausible and no differences can be detected compared to Fig. 4.2. To

(a) IOPDivSep, t = 66 (b) IOPDivSep, t = 100 (c) IOPDivSep, t = 120 (d) IOPDivSep, t = 160

Figure 4.13: 3D Breaking Dam Simulations with Sticky and Separating Boundaries with
Boundary Information in CG

evaluate these results accurately, OrigPSSep, IOPDivSep and IOPDivSepBC are applied
to the same input values as performed before in Section 4.3. The performance comparison
of all three methods is demonstrated in Fig. 4.12 (b). While OrigPSSep needs 122 total
CG iterations as shown in Table 4.3, IOPDivSepBC needs 213 which is almost twice as
much. Averaged over all time steps, 2 IOP iterations are needed which coincides with the
number of the CG iterations. Compared to IOPDivSep which needs 4290 CG iterations,
the performance is drastically improved.
Since all methods produce visually plausible results with no identifiable differences, the sim-
ilarity of OrigPSSep, IOPDivSepBC and IOPDivSep is evaluated, see Fig. 4.14. OrigPSSep

(a) OrigPSSep vs. IOPDivSepBC (b) IOPDIvSep vs. IOPDivSepBC

Figure 4.14: Difference in the Velocity Fields (velocity in cell units)
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and IOPDivSepBC exhibit a quite large difference as shown in Fig. 4.14 (a). This might
result from removing the divergence at fluid-solid faces. Since the difference is almost equal
for low and high accuracies for IOPDivSepBC, the eliminated divergence is a reasonable
explanation. The difference between IOPDivSep and IOPDivSepBC is even bigger as shown
in Fig. 4.14 (b). Independently of the chosen thresholds, the difference is highest around
t = 175 and develops in the same pattern. However, it is very interesting to see that IOP-
DivSepBC produces very similar results. The differences lie in the range of 10−3 to 10−4

which is exactly the lowest accuracy of both simulations.
Including information about boundary conditions in the pressure solve leads to efficient
methods for simulating fluids with separating boundaries without introducing divergence.
But note that including information about the boundary conditions makes the separation
of the two sub-problems impossible and can therefore not be solved by applying ADMM.

4.5 Alternative Cell Classification Based on Pressure

As aforementioned in Section 3.2, the classification of solid cells can be conducted by means
of the velocity or pressure. In this thesis, solid cells are classified as free-surface in ADMM
and IOP when the normal velocity component at fluid-solid faces is positive after the pres-
sure solve. The classification is based on the velocity to allow for pressure solvers that only
return velocity values and no pressure values. In OrigPSSep, the pressure equations are
first solved and a hypothetical pressure update is performed where all solid cells are set to
air cells. Those solid cells that feature positive normal velocity components at fluid-solid
faces, are then classified as free-surface.
Another possibility is to classify solid cells as free-surface when the pressure in adjacent
fluid cells is negative or zero. In Fig. 4.15, the resulting simulations of OrigPSSep,
ADMMVelSep, IOPDivSep and IOPDivSepBC are shown and compared to the original
classification based on velocities. It seems that a classification based on the velocity leads

(a) OrigPSSep, use u (b) ADMMVelSep, use u (c) IOPDivSep, use u (d) IOPDivSepBC, use u

(e) OrigPSSep, use p (f) ADMMVelSep, use p (g) IOPDivSep, use p (h) IOPDivSepBC, use p

Figure 4.15: 2D Breaking Dam Scene with Varying Solid Cell Classification, t = 85
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to slightly better detaching fluid as shown in the first row in Fig. 4.15 (a)-(d). A classifi-
cation based on pressure does produce very similar results, see Fig. 4.15 (e)-(h).

4.6 Obstacles and Robustness

To evaluate the robustness of OrigPSSep, ADMMVelSep, IOPDivSep and IOPDivSepBC,
additional scenarios are simulated and evaluated in this section. Thereby, the choice of
thresholds is validated.
The first scenario in Section 4.6.1 is called stair since three cuboids are placed in the
simulation domain which function as stair steps. To test the fluid’s detaching behavior, a
floating plane is placed in the middle of the domain which the fluid hits from below. The
second scenario in Section 4.6.2 describes two fluid blocks flowing down from two levitating
planes in the upper part of the domain. A sphere is placed in the middle so that the fluid is
flowing around it. The floor is peppered with small cubes. The fluid is then flowing through
the aisles between the cubes. As a last scenario, the stair scenario is simulated again with
enhanced difficulty. It turns out to be challenging to simulate a fluid block which reaches
up until the top of the closed domain. This scenario is examined in Section 4.6.3.

4.6.1 3D Simulation of the Stair Scenario

The first scenario is a stair step scene with a fluid block placed on the top step and over-
lapping the step into the air. The time step δt is set to 0.5, tmax is increased to 350 and
the three-dimensional grid size is set to 96 × 96 × 96. The thresholds are set as follows:
εCG = εAabs = εArel = 10−3 and εIdiv = εIdivBC = 10−2.
In the middle of the right wall of the domain, a solid plane is placed such that the fluid

is splashing against it from below. This scene serves well for evaluating the detaching be-

(a) t = 0 (b) t = 45 (c) t = 68 (d) t = 90

(e) t = 133 (f) t = 170 (g) t = 225 (h) t = 349

Figure 4.16: 3D Stair Scene by Original Pressure Solve
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havior concerning the floating plane, by showing how fast the fluid flushes down the stairs
and how much fluid will stick to the top stair. Potential artifacts can be detected where
two stair steps meet. When the fluid has calmed down in the end, potential mass loss can
be observed.

In Fig. 4.16, the whole stair scene is described in eight images by simulating it with
OrigPS. At t = 45, the first part of the fluid hits the right wall to splash onto the floating

(a) OrigPSSep,t = 90 (b) OrigPSSep,t = 133 (c) OrigPSSep,t = 170 (d) OrigPSSep,t = 349

(e) ADMMVelSep,t = 90 (f) ADMMVelSep,t = 133 (g) ADMMVelSep,t = 170 (h) ADMMVelSep,t = 349

(i) IOPDivSep,t = 90 (j) IOPDivSep,t = 133 (k) IOPDivSep,t = 170 (l) IOPDivSep,t = 349

(m) IOPDivSepBC,t = 90 (n) IOPDivSepBC,t = 133 (o) IOPDivSepBC,t = 170 (p) IOPDivSepBC,t = 349

Figure 4.17: 3D Stair Scene by Original Pressure Solve
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4.6.1 3D Simulation of the Stair Scenario

plane at t = 68. Around t = 90, the fluid should start detaching from the levitating plane
and be detached completely at t = 133. The fluid forms a nice wave on the right wall at
t = 170 and levels out at t = 349. As expected, the fluid is sticking to the solid objects
when simulated with OrigPS. The fluid should detach starting from t = 90, but it is gluing
to the levitating plane. Even at t = 225, many fluid drops are dangling from the plane and
stick there until the end of the simulation.
In Fig. 4.17, the stair scene is simulated with OrigPS, ADMMVelSep, IOPDivSep and
IOPDivSepBC. All four methods produce visually plausible results where no unnatural be-
havior can be identified. At time steps t = 90, t = 133 and t = 170, the result looks nearly
identical for each method and it is impossible to examine if one of the methods produces
better detaching simulations than the others. Compared to OrigPS where the fluid flows
vertically down the top step at t = 170, the simulations with separating boundaries produce
nice fluid waves flowing down the stairs at that very time step.
At t = 349, where the fluid has almost evened out, the fluid volume can be estimated.
OrigPSSep as well as IOPDivSepBC feature slightly increased fluid volume. This might
stem from the fact that for both methods, the pressure solve is applied with flags which
include solid cells. However, in the classification of solid cells, a flag grid where all solid
cells are exchanged by air cells is assumed. On the other hand, ADMM and IOP exhibit
mass loss during the simulation.
The performance of the stair scenario is displayed in Fig. 4.18 and the corresponding av-
eraged data is listed in Table 4.5. Although the stair scenario is more complex due to the
additional obstacles, fewer number of iterations are required for ADMM and IOP compared
to the breaking dam. OrigPS, OrigPSSep and IOPDivSepBC feature a similar performance.
Each plot features again a characteristic curve showing which time steps consume the most
computational resources. Here, time steps from t = 0 until t = 40 and t = 160 until the
end are particularly expensive. Therefore, calm fluid is not simulated more efficiently than
splashy movements.

(a) Total Number of CG Iterations (b) ADMM and IOP Iterations (c) Runtimes

Figure 4.18: Iterations and Runtimes for the 3D Breaking Dam Simulation

Method Color Total CG Iter ADMM / IOP Iter Runtime in s

OrigPS blue 20 - 5
OrigPSSep green 20 - 5
ADMMVelSep magenta 783 128 420
IOPDivSep yellow 370 88 297
IOPDivSepBC gray 34 1.99 17

Table 4.5: Averaged Iterations and Runtimes per Time Step for 3D Stair Scene
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4.6.2 3D Simulation of the Sphere Scenario

Another very challenging scenario is presented in Fig. 4.19. The simulation is applied
on a 96 × 96 × 96 grid with δt = 0.5, tmax = 350, εCG = εAabs = εArel = 10−3 and
εIdiv = εIdivBC = 10−2.
Two fluid blocks are placed onto two levitating planes on the left and right upper walls with
a gap between them. Shortly below the gap, a sphere is placed on which the fluid strikes
down during the simulation. 16 cubes are positioned on the floor. With this scenario, the
robustness of all methods is challenged even more. The first important aspect is how the
fluid is dropping down the levitating planes. Then, the fluid must detach from the sphere
in a plausible way. Furthermore, the gaps between the cubes have to be filled without
artifacts. The detaching behavior is once more tested when the fluid is splashing onto the
levitating planes from below. In the end, the mass loss can be investigated again.
When simulating this scenario with OrigPS, the floating sphere is hit at t = 23. The fluid

is wrapping around the sphere tightly. At t = 45, the fluid hits the ceiling and the floor
simultaneously only to detach from the ceiling around t = 64. The fluid is now dispersed
at the floor and flows through the aisles between the cubes towards the walls. The fluid
crawls up the walls at t = 84 due to its acceleration and hits the sphere as well as the
levitating planes from below. The fluid should detach from the planes at t = 126 but it
sticks to them until t = 212. It especially stays attached to the corners when the waves are
flowing high until it eventually flats out at t = 349. Note that the fluid is flowing down the
planes vertically and wraps around the sphere. Until the end, the sphere’s top is covered
with fluid that does not flow down.
In Fig. 4.20, OrigPS, OrigPSSep, ADMMVelSep, IOPDivSep and IOPDivSepBC are com-
pared. All methods with separating boundary conditions allow the fluid to detach from the
ceiling earlier than OrigPS. At t = 64, the fluid has already detached as shown in (a),(e), (i)

(a) t = 0 (b) t = 45 (c) t = 64 (d) t = 84

(e) t = 126 (f) t = 160 (g) t = 212 (h) t = 349

Figure 4.19: 3D Sphere Scene Simulated by the Original Pressure Solve
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4.6.2 3D Simulation of the Sphere Scenario

and (m). Furthermore, the fluid does not wrap around the sphere but is refracted towards
the side and spread through the domain. The fluid therefore hits the walls sooner. This
might also stem from the way the fluid is leaving the levitating planes. While the fluid
flows down vertically in Fig. 4.19 (d), it flows down in a curved way in Fig. 4.20 (d),(h),
(l) and (p) and (t). Therefore, the entrance angle of hitting the sphere is different. While
the fluid is detached from the floating planes in Fig. 4.20(b),(f), (j) and (n), a big portion

(a) OrigPSSep, t = 64 (b) OrigPSSep, t = 126 (c) OrigPSSep, t = 160 (d) OrigPSSep, t = 349

(e) ADMMVelSep, t = 64 (f) ADMMVelSep, t = 126(g) ADMMVelSep, t = 160(h) ADMMVelSep, t = 349

(i) IOPDivSep, t = 64 (j) IOPDivSep, t = 126 (k) IOPDivSep, t = 160 (l) IOPDivSep, t = 349

(m) IOPDivSepBC, t = 64 (n) IOPDivSeBC, t = 126 (o) IOPDivSeBC, t = 160 (p) IOPDivSeBC, t = 349

Figure 4.20: Sphere Scene by OrigPSSep, ADMMVelSep, IOPDivSep and IOPDivSeBC
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of fluid is still gluing to the planes in Fig. 4.19(b), even until t = 160 in (c). In (c), waves
press the fluid high into the corners so that it is sticking a bit too long in there in the
OrigPS simulation which is not the case for OrigPSSep, ADMMVelSep and IOPDivSep.
Only IOPDivSepBC shows a similar behavior but to a less extent. Compared to OrigPS,
OrigPSSep shows increasing volume in t = 349. IOPDivSepBC provides an increased fluid
volume. This might stem from allowing positive velocity at fluid-solid faces in each time
step. ADMMVelSep and IOPDivSep show a slight mass loss. The mass loss might stem
from the relatively low accuracies of ADMM and IOP.
Simulating the sphere scenario leads to lower iteration numbers compared to the breaking
dam, similar as for the stair scene. The most challenging frames are again in the beginning
and the end of the simulation, see Fig. 4.21. This time, even OrigPS, OrigPSSep and
IOPDivSepBC need fewer iterations simulating the sphere scenario as shown in Table 4.6.

(a) Total Number of CG Iterations (b) ADMM and IOP Iterations (c) Runtimes

Figure 4.21: Iterations and Runtimes for the 3D Breaking Dam Simulation

Method Color Total CG Iter ADMM / IOP Iter Runtime in s

OrigPS blue 18 - 5
OrigPSSep green 16 - 9
ADMMVelSep magenta 569 106 311
IOPDivSep yellow 269 71 164
IOPDivSepBC gray 31 1.98 17

Table 4.6: Averaged Iterations and Runtimes per Time Step for 3D Sphere Scene

4.6.3 3D Simulation of the Stair Scenario with Increased Difficulty

When increasing the height of the fluid block in the stair scene in Fig. 4.16 until the fluid
touches the ceiling, the robustness of all methods is challenged heavily as shown in the
2D simulation in Fig. 4.22. The results in Fig. 4.22 are run with the practical setting of

(a) OrigPS (b) OrigPSSep (c) ADMMVelSep (d) IOPDivSep (e) IOPDivSepBC

Figure 4.22: 2D Stair Scene with Fluid Touching the Ceiling at t = 20
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εCG = εIdiv = εAabs = εArel = 10−3 and εIdiv = 10−2.
When simulating the scene with OrigPS in Fig. 4.22 (a), the fluid is gluing unnaturally to
the stair steps and the ceiling. On the other hand, OrigPSSep in Fig. 4.22 (b) shows how
the introduced divergence can effect the whole simulation at its worst case scenario. The
pressure solve is calculated on the basis that all the ceiling cells are classified as solids. Later
on, in the pressure update, those cells are treated as air cells since the fluid is currently
detaching. The velocity is allowed to be positive in the direction of the surface normal.
But apparently, the fluid block experiences a huge acceleration away from the left wall and
ceiling. Fortunately, ADMMVelSep, IOPDivSep and IOPDivSepBC in Fig. 4.22 (c), (d)
and (e) provide much better results. The fluid is neither sticking to the ceiling, nor gluing
to the left wall. The fluid forms a nice wave flowing down the stairs. The only slight visual
peculiarities are at the upper corners of the fluid block: the left corner is detaching a little
from the left wall and the right corner is lifted up a bit. This might also stem from the
forces dragging the fluid down the stairs.
While both OrigPS and OrigPSSep are visually implausible, ADMM, IOP and the acceler-
ated method IOPDivSepBC produce nice results. Increasing the accuracies of OrigPS and
OrigPSSep does not change the dominant fluid motion. Classifying solid cells based on the
pressure does not affect the fluid motion in OrigPSSep either.
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Chapter 5

Conclusion and Outlook

Despite the high demand for fast and visually plausible fluid simulations, common fluid
solvers feature often insufficiently separating solid wall boundary conditions. This results
in visually implausible fluid behavior where the fluid is sticking unnaturally long to solid
objects.
The goal of this thesis was hence to enable flexible solid wall boundary conditions for simple
pressure solvers. The main contribution was to investigate multiple approaches, especially
a method based on proximal operators (ADMM), to provide separating solid wall boundary
conditions based on a normal CG pressure solver.

5.1 Summary and Discussion

After giving a thorough overview on related work in Section 1.3, the basics of fluid simula-
tion, ADMM and IOP were discussed in Chapter 2. As a next step, the implementation of
ADMM and IOP as pressure solve was explained and elaborated in Chapter 3. One of the
difficulties was to split the original pressure solve properly into the two sub-problems, i.e.
solving the incompressibility conditions and ensuring the boundary conditions. Further-
more, separating boundary conditions were implemented in the original CG solver which
unfortunately introduces divergence at fluid-solid faces. To profit from the accuracy of the
ADMM and IOP implementations and the efficient adjusted CG solver, a hybrid method
was developed.
In Chapter 4, the four implemented methods were extensively evaluated, discussed and
compared.

Against other predictions in [Bri08], it is possible to implement separating solid wall
boundary conditions within a simple CG solver when classifying solid cells into free-surface
and solid walls after the pressure solve and using this classification in the pressure update.
Borders between fluid and solid cells, which were classified as free-surface, are allowed to
have positive normal velocity components while the normal velocity component is set to
zero otherwise. Since the pressure equations are solved before the classification, the pressure
update operates on a different solid cell classification which introduces divergence at the
fluid cells next to solid cells classified as free-surface. However, the divergence can be elim-
inated by applying the CG pressure solve several times until the desired level of divergence
is undercut. The classification of solid cells is applied only after the first pressure solve
to avoid changing the boundary conditions in each iteration which would cause jittering
artifacts. The performance is very good, solely twice as many iterations are carried out
and the pressure solve takes twice as long. In fact, the adjusted CG pressure solve needs
1.8 times as many iterations and runtime as the original CG pressure solve. Note that one
simulation step consists of an advection step, applying body forces and the pressure solve.
The performance of the fluid simulation besides the pressure solve remains the same. When
choosing a rather less challenging scenario, both variants provide visually very plausible re-
sults.
The classification of the solid cells can be conducted in two different ways. The classification
in this work is based on examining the resulting normal velocity components. Assuming
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5.1. Summary and Discussion

that all solid cells are classified as free-surface and therefore treated as empty air cells,
a hypothetical pressure update is applied to the velocity field. Those cells with positive
normal velocity components are classified as free-surface. The reason for the classification
is based on the velocity in this thesis, is the further goal to replace the CG pressure solver
with a more efficient method that makes the velocity field divergence-free. The pressure
is not necessarily calculated. The classification can also be conducted by evaluating the
pressure. Negative pressure in a fluid cell next to a solid cell indicates that the fluid is about
to detach from the solid wall. Therefore, those solid cells are classified as free-surface. The
comparison of both classification methods show that classifying by means of the pressure
leads to slightly less detaching fluid but overall to the same fluid behavior.
When the classification is conducted based on the velocity directly before the pressure solve,
which would avoid different roles of solid cells in the pressure solve and pressure update,
too many cells are classified as free-surface which in turn leads to tremendous mass loss
due to semi-permeable boundaries.

Splitting the pressure solve into two sub-problems, making the velocity field divergence-
free and ensuring the solid wall boundary conditions, provides a suitable case for applying
ADMM. The incompressibility condition is met by applying the CG pressure solver. Han-
dling the boundary conditions means to set the velocity at fluid-solid faces to zero where the
solid cells are classified as solid wall or where the normal velocity component is below zero.
The simulations with ADMM provide visually plausible results and are perfectly robust to
changes in the scene topology, e.g. when adding obstacles. Unfortunately, the performance
is quite poor. ADMM needs about 38 times more CG iterations per time step than an
original CG pressure solve for accuracies in the range of 10−3.
Another method for implementing separating solid wall boundaries is Iterated Orthogonal
Projection (IOP) which is related to ADMM. Instead of solving both sub-problems on two
different velocity fields and connecting them via a dual variable update, IOP operates on
only one velocity field. The resulting simulations are equally visually plausible and robust,
but the performance is slightly better as far as both methods are comparable. The total
number of CG iterations per time step is approximately 20 times higher than for the origi-
nal CG pressure solver for accuracies in the range of 10−3.
CG, ADMM and IOP do not share a common stopping criterion. Choosing the divergence
as stopping criterion works well for CG and IOP, but not for ADMM. This is due to the
fact that the residual for ADMM decreases in a periodic way and since the divergence is
only measuring how well the incompressibility condition is met, stopping at a minima of
the divergence means stopping when the boundary conditions are poorly met. The usual
residual in ADMM is calculating the difference between both velocity fields and it is phase
shifted to the divergence. The difference of two velocity fields cannot be calculated for IOP
or CG due to the missing second velocity field. Using a velocity field from the previous
iteration leads to measuring a different change.
Simulations with ADMM and IOP converge to an agreement solution, their difference lies
in the range of the chosen accuracy. Adjusting the CG solver as mentioned at the beginning
of this section does not lead to the same agreement solution which means that the solved
problem is a different one.
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5.2 Outlook

The adjusted CG solver already leads to efficient and visually appealing results. Yet,
harnessing ADMM or IOP to simulate fluid comes with high resource consumption. Since
information about solid boundary conditions is not passed to the CG pressure solve, the
pressure solve can be conducted by very efficient solvers that in turn cannot handle solid
wall boundary conditions very well. For example, making the velocity field divergence-
free can be solved in the frequency domain very efficiently if periodic boundary conditions
are provided which is the case here. As stated in [Hen12], an FFT solver could solve the
discrete Poisson equation with N total grid points with a serial complexity of O(N log N)
and parallel complexity of O(log N) time while a CG solver is in O(N3/2) or O(N1/2 log N)
respectively. Therefore, the pressure solve could be exchanged by a FFT solver which would
improve the performance of IOP and ADMM heavily.
Furthermore, the practical parameter settings for IOP and ADMM should be analyzed
independently from each other. IOP provides visually plausible results for lower accuracies
than the chosen setting of εCG = 10−3 and εIdiv = 10−2. But in order to achieve comparable
simulations with both methods, only parameter settings convenient for both methods were
considered. In contrast to IOP, ADMM can also be conducted by choosing a parameter
setting where εCG is less strict then the accuracy for ADMM.
Additionally, further stopping criteria could be analyzed to speed up convergence.
Besides that, examining the adjusted CG solver should be of high priority since it already
produces great results in high performance. The possibility to determine detaching cells
before the pressure solve should be investigated, such that both the pressure solve and the
pressure update operate on the same cell classification.
High value of research lies in the analysis of the behavior of all methods for the scene where
the fluid box touches the top of the domain. Since the original as well as the adjusted
pressure solve show visually implausible results, further investigation about this erratic
behavior and possible solutions is required.
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