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Fig. 1. Our simulation method reproduces the intricate and complex two-phase air-water interactions in very large-scale scenarios. It achieves this in a
physics-based manner, resolving both phases at cinematic resolution on a single workstation: the example above (right) has ca. 3 billion particles, simulated
with an average of only 2 minutes per time step. No procedural effects or post-processing spray heuristics were employed. Photograph © PA / Eloy Alonso.

Capturing the visually compelling features of large-scale water phenomena,

such as the spray clouds of crashing waves, stormy seas, or waterfalls, in-

volves simulating not only the water but also the motion of the air interacting

with it. However, current solutions in the visual effects industry still largely

rely on single-phase solvers and non-physical "white-water" heuristics. To

address these limitations, we present Phase-Field-FLIP (PF-FLIP), a hybrid

Eulerian/Lagrangian method for the fully physics-based simulation of very

large-scale, highly turbulent multiphase flows at high Reynolds numbers

and high fluid density contrasts. PF-FLIP transports mass and momentum in

a consistent, low-dissipative manner and, unlike most existing multiphase

approaches, does not require a surface reconstruction step.

Furthermore, we employ spatial adaptivity across all critical components

of the simulation algorithm, including the pressure Poisson solver. We aug-

ment PF-FLIP with a dual multiresolution scheme that couples an efficient

treeless adaptive grid with adaptive particles, along with a fast adaptive Pois-

son solver tailored for high-density-contrast multiphase flows. Our method

enables the simulation of two-phase flow scenarios with a level of physical

realism and detail previously unattainable in graphics, supporting billions
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of particles and adaptive 3D resolutions with thousands of grid cells per

dimension on a single workstation.
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1 Introduction
Visual simulation of large-scale fluid phenomena —such as water-

falls, stormy seas, giant waves, or asteroid impacts— is arguably one

of the most challenging and fascinating topics in computer graphics

[Wang et al. 2024]. However, existing single-phase liquid simulators

face significant difficulties in producing animations that fully con-

vey the awe-inspiring scale and intensity inherent in these natural

phenomena. Simply increasing the physical scale and resolution

of a standard single-phase simulation is insufficient to address this

challenge. For example, a single-phase simulation of an asteroid

hitting the ocean gives the appearance of a rock being thrown into

a pond in slow motion, conveying the impression of a much smaller

scale, as illustrated in Figure 2. This occurs because natural fluid

flows at large scales are inherently two-phase phenomena. They are

governed by complex and highly nonlinear interactions between

water and air that result in striking visual differences between small-

and large-scale air-water flow phenomena. Typical examples, such

as those in Figure 1, make clear that the (turbulent) motion of the air,
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made visible through spray and mist droplets, contributes at least as

much—if not more—to the overall visual impression of large-scale

water flows as the motion of the water itself.

Cinematic simulations of large-scale two-phase flows have so

far relied on the use of numerous single-phase heuristics [Gissler

et al. 2017; Ihmsen et al. 2012], complex (post)processing pipelines

[Stomakhin et al. 2023; Stringhetti 2024], and labor-intensive manual

or artistic interventions, often relying on distributed computing

clusters to achieve cinematic resolutions. In this work, we present a

fully physics-based method that produces such scenes from simple

simulation setups on a single work station. To achieve this, our

work addresses three central challenges: (i) two-phase simulation,

(ii) spatial adaptivity, and (iii) efficient iterative pressure solvers.

Necessity of Two-Phase Simulation. Water simulations in Graphics

often neglect the air phase, assuming constant zero air pressure.

In these free surface methods, the governing Navier-Stokes equa-

tions are thus solved only for the water phase. This simplification,

however, becomes insufficient for large-scale phenomena where the

violent motion of large masses of water induces strong movements

of the surrounding air and aerodynamic forces, which scale with

the square of the relative air-water velocity, become dominant. The

resulting high Weber numbers inhibit surface tension from stabiliz-

ing the liquid, leading to fragmentation into spray droplets. These

droplets do not simply follow ballistic trajectories; instead, they

form intricate, dynamic patterns driven by the complex interplay

of gravity, inertial forces and—crucially—the turbulent air velocity

field [Sirignano 2010]. Accurately capturing these phenomena re-

quires both modeling the coupled liquid-air velocity and a numerical

method powerful enough to resolve scales ranging from tiny spray

droplets to large gravity-driven waves. Despite the immense visual

importance of large-scale two-phase flows, much of the impressive

recent progress in the field of fluid simulation [Aanjaneya et al. 2017;

Ando et al. 2013; Ferstl et al. 2014; Fu et al. 2017; Liu et al. 2016;

Nabizadeh et al. 2022; Qu et al. 2019; Shao et al. 2022] has so far

been limited to single-phase cases.

When two-phase flows have been addressed, it has typically

been in the context of smaller-scale, surface-tension driven flows

[Boyd and Bridson 2012; Hong and Kim 2005] or medium-scale, real-

time scenarios [Li et al. 2020, 2024]. In movie production, however,

the lack of sufficiently scalable and fully physics-based two-phase

solvers is one of the reasons why the special-effects industry still

largely relies on heuristics, post-processing pipelines and manual

intervention to produce convincing large-scale water animations

[Stringhetti 2024].

Phase-Field FLIP. Choosing the appropriate computational rep-

resentation for a simulated effect is a classic challenge. For liquids,

grid-based (Eulerian) approaches have been successfully combined

with Lagrangian methods, e.g., in the classic FLIP (Fluid Implicit

Particles) approach [Bridson 2015], or for simulating multi-material

flows [Hu et al. 2019b].

We leverage the versatility of hybrid particle-grid representations

by introducing Phase-Field FLIP (PF-FLIP), a variant of FLIP for the

efficient simulation of high density-contrast two-phase flows. PF-

FLIP provides a simple and efficient interface-capturing scheme

that eliminates the need for surface maintenance steps, as required

in Volume of Fluid (VOF) or Level-Set methods [Sussman et al.

1994], or the evolution of PDEs, as in classical Phase-Field methods

[Jacqmin 1999]. Our approach requires surface reconstruction only

for rendering of the video frame, i.e. every 5 to 10 time steps. Its

Lagrangian advection inherently conserves mass, avoiding the need

for numerical safeguards [Jain 2022] required in traditional methods,

and preventing inconsistencies often encountered in popular multi-

phase schemes like VOF, which typically rely on separate advection

schemes for velocity and interface geometry.

High density ratios, such as 1000 : 1 for water and air, present a

significant challenge for many traditional two-phase fluid solvers.

One key idea of PF-FLIP is to turn this into an advantage by leverag-

ing the stark density difference to reliably separate phases, even in

the presence of FLIP-typical particle-induced noise. The 1000-fold

higher density of water compared to air ensures a high "signal-to-

noise" ratio, where noisy density fluctuations in the water phase

remain clearly distinguishable from the noisy background of the air

phase.

Spatial Adaptivity. Most existing multiphase fluid simulation

methods rely on uniform grids or constant-size particles [Boyd

and Bridson 2012; Li et al. 2022; Mihalef et al. 2009; Song et al. 2005;

Yan and Ren 2023] sufficient for grid resolutions of several hundred

cells per dimension. Achieving cinematic realism for large-scale sim-

ulations, however, requires both larger simulation domain sizes and

substantially larger resolutions. As the computational cost scales

with spatial dimensions and time, this yields a fourth-order scaling
in terms of resolution. Spatial adaptivity, which focuses resources

on high-priority regions, is thus essential to avoid an explosion in

resource requirements.

Adaptivity encompasses spatial sparsity and multiresolution tech-

niques. Spatial sparsity computes and stores data only in "active"

regions [Ferstl et al. 2016; Hu et al. 2019a; Liu et al. 2016; Museth

2013; Shao et al. 2022; Wang et al. 2020]. Multiresolution, as em-

ployed in our algorithm, takes adaptivity and flexibility a step further

by representing different simulation regions at varying resolutions,

based on their complexity (as measured by a user-defined refinement

criterion). Modern CPUs and GPUs rely on large caches, high core

counts, and wide SIMD units for performance gains, making regu-

larity and coherence in memory access critical. Adaptive schemes

should therefore retain the efficiency of uniform grids locally, even

within a globally irregular adaptive structure. Tree-based meth-

ods achieve this by associating leaf nodes with uniform sub-grids

(blocks) but introduce administrative overhead and parallelization

challenges.

As an efficient tree-less alternative, we introduce Multiresolution
Sparse Block Grids (MSBG), a hardware-friendly scheme using sim-

ple linear indexing of large blocks. In Section 8.1, we show that

MSBG outperforms the industry standard VDB by up to an order

of magnitude and demonstrates excellent scalability, solving a test

PDE with 100 billion unknowns at an effective resolution of 32768
3

in under two minutes on a single workstation.

For Eulerian-Lagrangian methods, it is moreover crucial that

adaptivity targets both representations. We use a dual scheme: the

grid adapts to particle sizes, while particle size and sampling den-

sity are dynamically adjusted based on refinement criteria from
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Fig. 2. Motivating example: A 50-meter asteroid hits the ocean at high speed. Left: Standard single-phase solver [Bridson 2015]. Middle: With secondary spray
particles [Ihmsen et al. 2012]. Right: Our two-phase simulation. Single-phase simulations give the impression of a small rock thrown into a pond in slow
motion. Without air resistance, the water "splash rim" rises unrealistically high and spray particles diffuse unnaturally. In reality, spray follows intricate
trajectories driven by the turbulent air velocity as captured by our simulation. All simulations used the same resolution of 10243 (pressure) and 3072

3 (spray
density).

the grid. Previous methods for Lagrangian adaptivity [Adams et al.

2007; Ando et al. 2012, 2013] require particle neighborhoods. This,

however, removes a key advantage of the FLIP method: its light-

weight, noninteracting particles. To maintain this advantage, we

propose a fast stochastic coarsening scheme that eliminates neigh-

borhood searches altogether, ensuring that the Lagrangian part of

our pipeline remains fully local and highly efficient.

Adaptive Linear System Solvers. A final potential bottleneck re-

mains in the form of the very large linear Poisson problem that needs

to be solved in pressure projection-based Navier-Stokes simulations.

In the context of two-phase flows, the pressure system also becomes

highly ill-conditioned for large density ratios. To address this, we

propose a fully adaptive Poisson solver based on (unsmoothed) alge-

braic aggregation multigrid [Shao et al. 2022]. Leveraging MSBG, we

extend the method to support multigrid multiresolution adaptivity.

A two-stage-red-black hybrid Gauss-Seidel smoother ensures mas-

sive parallelizability while halving the memory footprint compared

to conventional parallel smoothers.

Crucially, our MSBG-block-based multigrid V-cycle enables the

efficient integration of spatially adaptive relaxation [Kowarschik

et al. 2006; Rüde 1993], which we adapt for the specific use case of

high density contrast pressure correction. Furthermore, we extend

adaptive relaxation-based multigrid to function as a preconditioner

for the Conjugate Gradient (CG) method, even accounting for the

inherent asymmetry introduced by adaptive relaxation in the multi-

grid preconditioner.

These innovations collectively result in a pressure Poisson solver

with runtime, even at extreme resolutions and density ratios, com-

parable to other simulation components like particle-grid transfers

and advection —in effect, eliminating the pressure solve bottleneck.

1.1 Summary of Contributions
To summarize, ourwork presents fourmain contributions that, taken

together, significantly improve the state-of-the-art in physics-based

simulation of two-phase flows at very large scales:

• A hybrid Eulerian/Lagrangian method, Phase-Field-FLIP (PF-FLIP),

for simulating highly turbulentmultiphase flows at large Reynolds

numbers and high fluid density contrast without requiring surface

reconstruction.

• Multiresolution Sparse Block Grids (MSBG): A simple, efficient,

and modern-hardware-friendly framework for spatially adaptive

simulations.

• A dual particle-grid adaptivity scheme with a fast stochastic

method for particle coarsening without neighborhood search.

• A novel, adaptive Poisson solver, specifically tailored for two-

phase, high density-contrast pressure projection.

In combination, our contributions provide the building blocks

for very large-scale simulations of two-phase flows. Our overall

algorithm, employs adaptivity across all critical components of the

pipeline—i.e., computational grid, particles, and, crucially, also in

the pressure Poisson solver—ensuring that no bottlenecks with sub-

optimal scaling remain. As a result, the proposed solver surpasses

existing state-of-the-art methods in terms of scale, efficiency, and

the ability to reproduce complex two-phase flow details. We demon-

strate its capabilities through a series of comparisons and large-scale

multibillion-particle simulations, performed on a single worksta-

tion, without using the GPU. A public implementation of the MSBG

framework is available at https://github.com/tum-pbs/MSBG.

2 Related Work
Fluid simulation has been a prominent research area in computer

graphics for more than two decades [Bridson 2015; Losasso et al.

2004; Stam 2023], and we refer to recent surveys for an in-depth

overview [Wang et al. 2024].

Due to the high density ratio of water to air, free surface methods
solve the Navier-Stokes equations only for the water phase, applying

curvature-based forces [Brackbill et al. 1992], or use an embedded

interface via the Ghost Fluid Method (GFM) [Kang et al. 2000; Liu

et al. 2000]. In Graphics, single-phase liquid simulation has reached

a mature state, producing impressive results [Aanjaneya et al. 2017;

Ferstl et al. 2014; Liu et al. 2016; Shao et al. 2022; Wang et al. 2024].

We employ the FLIP method [Zhu and Bridson 2005], which has seen

numerous extensions [Fu et al. 2017; Jiang et al. 2015; Nabizadeh et al.

2024; Qu et al. 2022], however, typically focusing on improvements

for single-phase simulations.
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Fig. 3. Phase-Field-FLIP simulation of a large dam discharge showing violently turbulent water-air interaction induced by a powerful water jet at high speed
(≈ 40𝑚/𝑠). A real photograph of a dam discharge event at similar scale (Three Gorges Dam, China, © Picture Alliance ) is included in the lower right corner.
No effort was made to tune the simulations for the exact conditions of the reference, and no turbulence enhancement or post-processing effects were applied.
The effective resolution is 2048 × 1024

2 for the pressure and 8192 × 4096
2 for the liquid surface and spray density, with ≈ 40s simulation time per time step.

To model the effects of the missing second phase, many previous

works employ secondary spray particles [Ihmsen et al. 2012], or add

an ad-hoc spray velocity field at reduced resolution [Kim et al. 2006].

Another heuristic, popular in the special-effects industry, is to use

two single-phase solvers, and treat the liquid as a solid boundary

for the air solve [Lesser et al. 2022; Stomakhin et al. 2023]. These

heuristics either require extensive manual tuning, or fall short of

fully capturing the large-scale fluid behavior due to the lack of a

physically accurate two-phase velocity field (cf. Figure 2). Nielsen

and Østerby [2013] proposed treating spray as an additional fluid

phase. However, this approach does not address the coupling of the

air with the bulk liquid phase.

Two-Phase Fluid Simulation. Given the importance of coupling

both phases, full two-phase solvers have been extensively studied

in the CFD community, with applications ranging from gas bubbles

[Sirignano 2010], to sloshing in containers [Remmerswaal and Veld-

man 2022]. An overview of CFD approaches is given, for example, in

Yeoh and Tu [2019]. One of the first two-phase solvers in Graphics

was introduced by Hong and Kim [2005], employing a Particle Level

Set (PLS) scheme [Enright et al. 2002], augmented by octree-based

adaptivity to simulate bubbles. Song et al. [2005] proposed using the

Constrained Interpolation Profile (CIP) method for low-dissipation

advection, while Mihalef et al. [2008] used the Coupled Level Set

Volume-of-Fluid (CLSVOF) method [Xiao 2012] for water-air interac-

tions with animated models, later refining it with the Marker Level

Set (MLS) method [Mihalef et al. 2009] to track subgrid bubbles and

droplets. More closely aligned with our approach, Boyd and Bridson

[2012] used FLIP for multiphase fluid simulation. In contrast to our

method, this method requires a relatively costly interface recon-

struction, and the inability to resolve shear layers between phases

leads to a heuristic divergence model with "particle bounce-back" to

impose a free-slip boundary between the phases. Without address-

ing scalability and density contrast-awareness of the pressure solver,

they focused on small-scale scenarios dominated by surface tension

with around 80
3
grid cells. The Material Point Methods (MPM) can

be seen as an extension of FLIP [Zhang et al. 2017] and have been

very successfully improved through spatial adaptivity and GPU-

based implementations [Gao et al. 2018; Wang et al. 2020]. MPM can

flexibly handle a wide range of highly complex materials. Our work

instead trades in generality for increasing the scale of water-air

simulations. Additionally, Lattice-Boltzmann methods have recently

been popularized as an alternative [Li et al. 2020], and were likewise

employed for two-phase [Li et al. 2022] and multiphase simula-

tions [Li et al. 2024]. The underlying algorithm is very amenable to

GPUs, and led to impressive results approaching real-time capability.

Complementarily, our focus on a CPU-based algorithm removes

the bottleneck of scarce GPU memory, and simplifies employing

spatially adaptive algorithms, which is key for offline-simulation at

cinematic resolutions in movie-production. Two- and multiphase

flow simulation has also been explored with Smoothed Particle Hy-

drodynamics (SPH): Density Contrast Interfaces [Solenthaler and

Pajarola 2008] handle density ratios of up to 1:100, while Ren et al.

[2021, 2014] employ mixture models from CFD. Despite producing

complex mixtures, the corresponding interface model necessitates

small time steps, which in combination with non-adaptive particles

impedes simulating large scales at very high resolutions.

Fig. 4. Simulation of breaking ocean waves, exhibiting the characteristic
streamers of mist shaped by turbulent wakes in the air behind wave crests.
The fully physics-based high-resolution animation of such effects has been
unattainable with existing simulation methods in graphics.
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Most prior state-of-the-art work on multiphase fluid simulation

in Graphics relies on regular grids or constant-size particles. This

approach suffices for many small-scale scenarios, typically at reso-

lutions of a few hundred grid cells. However, achieving cinematic

realism in large-scale scenarios demands effective resolutions in

the thousands, which is extremely challenging due to the compu-

tational cost of incompressible fluid simulation increasing with

the fourth power of grid resolution (Section 4). Consequently, spa-
tial adaptivity—allocating higher resolution to visually important

regions—becomes indispensable.

Sparsity vs. Multiresolution Adaptivity. It is important to distin-

guish between two types of adaptivity in simulation methods. Many

approaches [Ferstl et al. 2016; Hu et al. 2019a; Liu et al. 2016; Museth

2013; Shao et al. 2022;Wang et al. 2020;Wu et al. 2018; Liu et al. 2018]

provide spatial sparsity, where data is stored and computed only in

active regions, avoiding empty or inactive areas. In contrast, true

multiresolution adaptivity, as employed in this work, allows differ-

ent regions of the simulation domain to be represented at varying

resolutions based on their complexity or "activity" as measured by a

user-defined refinement criterion. This is crucial in fluid simulations,

where the Navier-Stokes equations must be solved not only near the

surface but also within the fluid "bulk," albeit at reduced resolution.

Adaptive grids. For single-phase fluid simulation, various adap-

tive techniques have been proposed. Key approaches include using

octrees for hierarchical refinement of Cartesian grids [Ando and

Batty 2020; Ferstl et al. 2014; Losasso et al. 2004; Popinet 2003],

tetrahedral meshes [Ando et al. 2013; Chentanez et al. 2007], power

diagrams [Aanjaneya et al. 2017] and memory-constrained GPU-

based schemes [Raateland et al. 2022]. While tetrahedral meshes

provide greater adaptivity and naturally avoid T-junctions at reso-

lution transitions, we prioritize hexahedral Cartesian grids for their

simple structure—enabling regular numerical stencils for highly

parallelizable compute kernels and facilitating the construction of

multilevel structures.

An increasingly important feature of adaptive schemes is the

ability to preserve the hardware-friendliness of uniform grids locally,

even within a globally irregular topology. In tree-based schemes,

this can be achieved by assigning a uniform sub-grid (grid block)
to each leaf node instead of a single grid cell. Building on this idea,

Setaluri et al. [2014] introduced SPGrid, a block-based adaptivity

technique later utilized byAanjaneya et al. [2017] for adaptive power

diagrams. While SPGrid’s use of hardware page-address translation

is elegant, it is not operating-system-agnostic (currently limited

to Linux [Setaluri et al. 2014]) and the growing adoption of huge
memory pages to reduce TLB overload [Navarro et al. 2002; Panwar

et al. 2019] conflicts with SPGrid’s reliance on fixed-size traditional

4k memory pages. Also, in virtualization and cloud environments,

direct control over memory pages is often limited. SPGrid natively

supports sparse data storage but requires multiple SPGrids and an

additional octree structure to achieve multiresolution.

Finally, we highlight VDB [Museth 2013], the state-of-the-art

method in the visual effects (VFX) industry to manage volumetric

data, which has also been applied to liquid simulation [Shao et al.

2022]. VDB excels at handling spatial sparsity but lacks support

for multiresolution adaptivity, limiting its effectiveness in scenarios

requiring hierarchical refinement. Although random access is O(1),

it involves traversing a shallow, fixed-depth tree, adding overhead

compared to flat indexing. Additionally, like SPGrid, VDB enforces

relatively small block sizes. In Section 4.2, we introduce a sparse

multiresolution scheme (MSBG) that leverages grid blocking for

maximal simplicity and efficiency on modern CPUs.

Adaptive particles. In our hybrid Eulerian-Lagrangian method,

enabling adaptivity solely for the grid is insufficient; adaptivity for

particles is also required. This is typically achieved through particle

splitting and merging [Adams et al. 2007; Ando et al. 2012, 2013]. For

single-phase SPH, Winchenbach et al. [2017] proposed continuously

adapting particle sizes rather than relying on fixed size levels. While

splitting is purely local, merging requires searching a particle’s

neighborhood. This is not an issue in SPH, where neighborhood

information has to be gathered anyway, but for FLIP it undermines

FLIP’s advantage of noninteracting particles. Nevertheless, prior

work on adaptively sampled FLIP particles has employed neighbor-

hood search-based merging [Ando et al. 2012, 2013], thus not fully

exploiting the efficiency of the FLIP principle.

In FLIP-based liquid simulation, Ferstl et al. [2016] introduced

Narrow Band FLIP (NB-FLIP), which confines particles to a narrow

band around the liquid surface, reducing computational costs away

from the interface. NB-FLIP has become the industry standard for

liquid simulation in VFX production and is implemented in the

leading commercial software Houdini. However, its use of a single
layer of uniformly sized particles limits adaptivity. Computationally,

NB-FLIP is comparable to our scheme with only one level of particle

refinement. In the context of single-phase liquid simulation, Ando

et al. [2013] proposed an innovative approach to FLIP-based adap-

tivity using tetrahedral meshing. Besides two-phase capabilities, a

difference of our work is the lightweight MSBG-based construction

of the adaptive grid topology from the particle cloud while their

work uses relatively expensive meshing, involving building both an

octree and a BBC (Body-Centered Cubic) mesh which, as stated by

the authors themselves, can become a bottleneck.

Pressure Poisson Solver. Pressure projection is often the primary

computational bottleneck in incompressible fluid simulation, par-

ticularly for multiphase flows as it requires solving an elliptic PDE,

whose discretization produces a large, frequently ill-conditioned

linear system. This challenge has been extensively addressed in both

Graphics and Computational Physics. For a comprehensive overview

ofmultigrid pressure solvers in CG, see Shao et al. [2022]. Two-phase

simulations with high fluid density ratios exacerbate this challenge

due to severely ill-conditioned pressure matrices. Computational

Fluid Dynamics (CFD) pursued various approaches, including geo-

metric multigrid preconditioned Krylov methods [MacLachlan et al.

2008], algebraic multigrid [Raw 1996], operator-dependent intergrid

transfers [Dendy 1982], and deflation-based methods [Tang and

Vuik 2007]. MacLachlan et al. [2008] provides a detailed comparison

of these techniques for two-phase flows with high density ratio.

Our work emphasizes integrating multigrid methods with spa-

tial adaptivity. Adaptive Mesh Refinement (AMR) introduces chal-

lenges for multigrid, such as efficient coarse-grid representation and

smooth error transfer across resolution boundaries. CFD research

addresses this with methods tailored for patch-based [Berger and
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Colella 1989; Martin et al. 2008] and octree-based [Popinet 2003;

Teunissen and Ebert 2018] AMR frameworks. In Graphics, Setaluri

et al. [2014] and Aanjaneya et al. [2017] developed geometric multi-

grid schemes using an octree-derived SPGrid hierarchy, but their

focus on single-phase flows left high-density ratio challenges un-

addressed. Unlike prior AMR methods, which require additional

elliptic solves at resolution boundaries [Martin et al. 2008] or in-

terlevel transfer passes for ghost cell data [Setaluri et al. 2014], our

method seamlessly applies smoothing and grid transfer operators

across resolution levels. Existing multigrid solvers can be very effi-

cient, but they often still dominate simulation costs. For instance,

Setaluri et al. [2014] report pressure correction consuming 90% of

total simulation time in high-resolution scenarios. In Section 6, we

introduce a fully adaptive Poisson solver that matches the efficiency

of the other simulator components, effectively eliminating the pres-

sure solver bottleneck.

3 Phase-Field FLIP
Our goal is to numerically solve the Navier–Stokes equations

𝜕u
𝜕𝑡

= −u · ∇u − ∇𝑝
𝜌
+ 𝜈∇2u + f

𝜌
(1)

∇ · u = 0 (2)

for the 3-dimensional velocity field u of two incompressible, immis-
cible fluids characterized by their densities 𝜌𝑙 , 𝜌𝑔 and kinematic

viscosities 𝜈𝑙 ,𝜈𝑔 , where the subscripts 𝑙 and 𝑔 denote liquid and gas

phase with 𝜌𝑙 ≫ 𝜌𝑔 . For simplicity, we use the terms ’gas’ and ’air’

interchangeably. 𝑝 is fluid pressure, 𝑡 is time and f denotes external
forces. For two-phase flow, a phase function𝜙 : Ω = Ω𝑙∪Ω𝑔 → [0, 1]
distinguishes gas and liquid phases within the domain Ω. The den-
sity 𝜌 is calculated with 𝜌 (x) = 𝑙𝑒𝑟𝑝 (𝜌𝑙 , 𝜌𝑔, 𝜙 (x)), where 𝑙𝑒𝑟𝑝 de-

notes linear interpolation. The viscosity 𝜈 (x) is computed analo-

gously.

Numerical modeling of two-phase flows presents numerous chal-

lenges due to the discontinuities at an interface of rapidly changing

topology. Numerous interface-tracking methods have been pro-

posed, e.g., with explicit representations via a mesh [Wojtan et al.

2009], and interface-capturing schemes, where the interface is im-

plicitly defined [Mirjalili et al. 2017]. The latter are popular for

their ability to effectively handle complex and dynamic topologi-

cal changes, and can be divided into sharp interface methods such

as volume of fluid (VOF) [Hirt and Nichols 1981; Scardovelli and

Zaleski 1999], level-set (LS) schemes [Osher and Sethian 1988; Suss-

man et al. 1994], and diffusive interface or phase-field (PF) methods

[Anderson et al. 1998; Jacqmin 1999]. Here, we use the term "phase

field" in its most general sense. to distinguish it from sharp-interface

approaches while some authors use the term more specifically to

denote the Cahn-Hilliard free energy-based phase field approach

[Jacqmin 1999].

VOF methods conserve mass but require relatively complex geo-

metric interface reconstructions. LS methods, on the other hand,

typically do not conserve mass and require iterative surface re-

initialization. Phase-field (diffusive interface) methods conceptually

assign a finite "thickness" to the interface, which helps avoid numer-

ical problems associated with discontinuous interface representa-

tions. Classical, Eulerian phase-field methods are based on modeling

fluid free energy density [Jacqmin 1999] and typically require solv-

ing a fourth-order PDEwith regularization terms to evolve the phase

field 𝜙 . This is often further complicated by specific precautions to

ensure mass conservation [Jain 2022]. In this work, we present an

alternative hybrid Eulerian-Lagrangian approach, Phase-Field-FLIP,
which does not require any interface maintenance or reconstruction

step.

3.1 Overview of FLIP and Notation
The FLIP method [Brackbill and Ruppel 1986; Zhu and Bridson 2005]

is a hybrid technique that combines the advantages of particle-based

(dissipation-free and mass-conserving advection) and grid-based

methods (efficient discretization of spatial derivatives for pressure

projection). FLIP particles are comparably inexpensive because they

do not interact, i.e. no neighborhood search is necessary. The effi-

ciency of the extremely lightweight but "blind" FLIP particles comes

at the cost of additional noise. However, this is not a disadvantage

for the highly turbulent, splashy scenarios we target, as these al-

ready exhibit a significant level of "natural" noise. For brevity, we

will not repeat the structure of the basic FLIP- algorithm and refer

to the work of Zhu and Bridson [2005] instead.

Conventions and Notation. We use subscripts 𝑝 ,𝑞 for particles and

subscripts 𝑖 , 𝑗 for grid cells. The grid follows a standard staggered

MAC layout [Harlow et al. 1965], where pressure and velocity are

sampled at cell centers and cell face centers, respectively. The sub-

script 𝑎 refers to a coordinate axis direction (e𝑎 , where 𝑎 ∈ {1, 2, 3}
in 3D), and faces are referred to by cell index and axis. For example

𝑢𝑎𝑖 denotes the cell face velocity sampled at x𝑖 + 1

2
e𝑎 , i.e. at the

center of the cell 𝑖 plus face offset for axis 𝑎. For brevity, we often

refer interchangeably to a continuous field, for example u and its

discrete representation on the grid, for example u𝑎𝑖 .

3.2 Particles-to-grid Transfer (P2G) in PF-FLIP
For the PF-FLIP algorithm, we assign a type to each particle to

associate it either with the air or the liquid phase. At the beginning

of each time step we then transfer mass

𝑚𝑎𝑖 =
∑︁
𝑝

𝑤𝑎𝑖,𝑝𝑚𝑝 , (3)

and momentum

P𝑎𝑖 =
∑︁
𝑝

𝑤𝑎𝑖,𝑝𝑚𝑝u𝑝 , (4)

from the particles to the grid cell faces, where the particle mass

𝑚𝑝 =

{
𝜌𝑙𝑉𝑝 if 𝑝 is a liquid particle,

𝜌𝑔𝑉𝑝 if 𝑝 is an air particle,

(5)

depends on the particle type (liquid or air) which is fixed throughout

the simulation, thus ensuring mass conservation.𝑤𝑎𝑖,𝑝 are the cell

face centered splatting kernel weights as defined below. In rare

cases, particles may be deleted, e.g. when "stuck" in solid obstacles,

but this does not result in any significant mass loss in practice. A

re-seeding of particles is generally not necessary. We assume unit

volume 𝑉𝑝 = 1 for the particles, except when dealing with spatially

adaptive particle sizes (Section 5).
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Fig. 5. PF-FLIP can resolve realistic large scale water-air interactions. The example above shows breaking ocean waves simulated with our method.

We will later reuse the accumulated splatting kernel weights for

the phase field, so in order to obtain a sufficiently smooth field, we

do not rely on the trilinear weighting commonly employed in FLIP.

Instead, similar to SPH [Monaghan 1992], we use a higher-order

polynomial kernel

𝑤𝑎𝑖,𝑝 = (max(1 − ((| |x𝑖 + e𝑎/2 − x𝑝 | |/𝑟𝑝 )2, 0))3, (6)

with spherical support that is cubic in the squared distance, thus

avoiding square root calculations. x𝑖 denotes the center of cell 𝑖

and 𝑟𝑝 is the particle radius. Dividing face momentum by face mass

gives the (preliminary) cell face velocities ũ∗
𝑎𝑖

= P𝑎𝑖/𝑚𝑎𝑖 .

3.3 Obtaining the Phase Field
We obtain the phase field essentially for free as a by-product of

the particle-to-grid transfer of the velocity field by simply reusing

the splatting kernel weight accumulators as raw mass densities, 𝜌 ,

which are already conveniently available at the cell faces 𝜌𝑎𝑖 =𝑚𝑎𝑖

—exactly where they are needed for the variable-coefficient Poisson

equation in the subsequent pressure projection step.

The raw densities exhibit irregularities in higher spatial frequen-

cies due to the FLIP-typical noise in the particle distribution (Fig-

ure 6), but we can leverage the large density ratio (𝜌𝑔 =
𝜌𝑙
1000

) to

easily separate phases even under noisy conditions. To this end, we

normalize, compress and clamp the raw values:

𝜙 (𝜌) =

0 if 𝜌 < 𝜌𝑚𝑖𝑛,

min(
√︂
(max(𝜌−𝜌𝑚𝑖𝑛,0)

𝛼𝜙𝜌0𝜌𝑙
), 1) else.

(7)

𝜌0 denotes the density obtained by applying the weighting kernel to

perfectly uniformly distributed particles. The parameter 𝛼𝜙 (default

value: 1) controls the trade-off between noisiness (higher values)

and "stiffness" (lower values) of the phase field, similar in effect

to "artificial surface tension". While not critical for solver stability,

this parameters offer a potential knob for artistic control of the

interface. 𝜌𝑚𝑖𝑛 is 𝜂𝜙𝜌𝑔𝜌0, with a scaling factor 𝜂𝜙 = log(𝜌𝑙/𝜌𝑔) —
large enough to avoid misidentifying spurious air density peaks as

liquid. We tag cells with phase field values below 0.5 as "air," while

others are "liquid." We set 𝜙 = 1 for liquid-liquid cell faces and 𝜙 = 0

for air-air faces, eliminating all remaining phase field fluctuations

away from the interface. The interface thickness 𝜖𝜙 of our phase field

is given by the particle base radius 𝑟0 which we set equal to the grid

spacing 𝑟0 = Δ𝑥 . Note that this allows for sharper interfaces than
those imposed by classical phase field methods, which typically use

Fig. 6. 2D slice of a phase field 𝜙 as computed by Eq. (7). The PF-FLIP simu-
lation algorithm does not require surface reconstruction; the iso-contour
shown here with linear interpolation is only depicted for illustration. The
air phase appears uniformly black because density fluctuations have 1000×
smaller amplitude than in the liquid phase.
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Fig. 7. 1D example of raw mass density 𝜌 from particles and the correspond-
ing phase field 𝜙 (𝜌 ) providing a reliable separation.

a thickness of more than one grid cell (often employing 3 cells and

more).

The resulting phase transition is stable, and robust to particle-

induced noise, as illustrated in Figure 7. Unlike classical phase-field
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methods, the inherently Lagrangian nature of our approach avoids

numerical interface diffusion, and does not require sharpening or

re-initialization steps [Arrufat et al. 2021; Jain 2022; Sussman et al.

1994]. It also naturally ensures consistent transport of mass and

momentum,which is not necessarily the case for classical phase-field

or level-set based simulation methods because those generally use

different advection schemes for the velocity field and the interface

geometry —often requiring complicated numerical countermeasures

[Arrufat et al. 2021; Raessi and Pitsch 2012]. Figure 6 shows an

example of a phase field as computed by Eq. (7). The high-frequency

particle density fluctuations from FLIP manifest as irregularities

in the phase field, but due to the high density contrast, the field

achieves a robust separation of the phases.

Finally, we note that our method differs from existing "variable-

density" FLIP-solvers [Bridson 2015], which are essentially single-

phase simulators with continuously varying density within the

phase. In contrast, PF-FLIP explicitly distinguishes the phase field

from the (raw) density field, ensuring stable separation of two

distinct phases even under FLIP-induced noise. The phase field

𝜙 ∈ [0, 1] is then used to compute the actual physical density (and

viscosity) trough interpolation across an interface of finite thickness,

following the principle of classical phase-field methods.

3.4 Escaped Particles and Surface Tension
Previous FLIP-based two-phase methods [Boyd and Bridson 2012]

rely on "particle bounce-back" heuristics to prevent uncontrolled

mixing of air and water particles. This is avoided in PF-FLIP because

our velocity field adheres to the physically more accurate no-slip

condition between phases. We can resolve this condition due to

the high resolution capabilities of our method —thus eliminating

velocity discontinuities at the interface. If particles are still found on

the "wrong" side of the interface, this can be physically interpreted as

subgrid-scale droplets or bubbles. Similarly to earlier work [Enright

et al. 2002; Mihalef et al. 2007], we treat such escaped particles, 𝑝∗,
at position x∗, as candidates for conversion into droplets (𝜙 (x∗) <
1

2
− 𝛿𝜙 ) or bubbles (𝜙 (x∗) > 1

2
+ 𝛿𝜙 ), respectively. 𝛿𝜙 controls the

rate of droplet or bubble production, with a default value of 0.2.

Escaped droplets are subsequently simulated as purely Lagrangian

point masses as outlined in Section 7. Bubble particles are simply

deleted in our current implementation because we found that their

visual contribution is negligible in our large-scale scenarios. When

droplet particles merge with the liquid body again, we re-convert

them to FLIP-simulation particles.

Neglecting Surface Tension. Surface tension is computationally

expensive to handle in two-phase flow solvers [Popinet 2009], but

it primarily affects small-scale phenomena, such as capillary waves

in the millimeter range, which are not visually significant for our

target use case of large-scale flows where we simply neglect it for

efficiency.

3.5 Two-Phase Pressure Projection
The velocity field 𝑢∗ from the P2G step after adding gravity force

is generally not divergence-free. To satisfy Eq. (2) we perform a

standard pressure projection step by subtracting the inverse density

weighted pressure gradient, obtaining u = u∗ − Δ𝑡 1𝜌 ∇𝑝.

Taking the divergence on both sides and using ∇ · u = 0 gives the

variable coefficient pressure Poisson equation [Gibou et al. 2002]

Δ𝑡∇ · (𝛽 (x)∇𝑝 (x)) = ∇ · u∗ (x) + 𝑐𝑑𝑖𝑣 (x), (8)

with face coefficients
𝛽 (x) = 1/𝜌 (x). (9)

Here, the dependence on x highlights the spatially varying coeffi-

cient structure which crucially distinguishes multiphase pressure

projection from its simpler single-phase counterpart with constant

density. 𝑐𝑑𝑖𝑣 (x) is a divergence correction term to ensure volume

conservation by locally maintaining the target particle density 𝜌0
[Losasso et al. 2008]. Discretizing Eq. (8) on the MAC grid yields a

linear system of equations, in 1D for simplicity, giving

𝛽𝑖+ 1

2

( 𝑝𝑖+1 − 𝑝𝑖
Δ𝑥

) − 𝛽𝑖− 1

2

( 𝑝𝑖 − 𝑝𝑖−1
Δ𝑥

) = 1

Δ𝑡
(𝑢∗

𝑖+ 1

2

− 𝑢∗
𝑖− 1

2

) . (10)

Note that the coefficients 𝛽 of the Laplacian matrix L of the re-

sulting system L𝑝 = 1

Δ𝑡D(𝑢
∗), with D being a discrete divergence

operator, are sampled at the cell faces. Importantly, the PF-FLIP algo-

rithm gives these coefficients by construction, while other schemes

rely on interpolation from cell-center sampled values [Xiao 2012] or

require a signed distance field for ghost-fluid extrapolation [Boyd

and Bridson 2012].

L is symmetric and positive definite, making iterative solvers

such as the preconditioned conjugate gradient (CG) algorithm a

natural choice. However, L becomes ill-conditioned in the presence

of high fluid density ratios, severely slowing convergence even with

multigrid solvers [MacLachlan et al. 2008]. We will address this

challenge with a custom linear solver in Section 6.

3.6 Grid-to-particles Transfer
After obtaining the divergence-free grid velocity u𝑎𝑖 , we subtract
the preliminary velocity field ũ∗

𝑎𝑖
(a copy of which was saved before

adding external forces), yielding the overall velocity change during

the time step

Δu = u − ũ∗, (11)

which can now be interpolated from the grid at the particle position

and added to the velocity stored on the particles. FLIP methods

usually "mix in" a small amount (1 − 𝛼𝐹𝐿𝐼𝑃 ), of grid-interpolated
velocity 𝑢𝑎𝑖 [Bridson 2015]. Using an interpolation operator 𝐼 , it

introduces artificial viscosity for damping noise as follows:

u𝑝new = 𝛼𝐹𝐿𝐼𝑃
(
u𝑝old + 𝐼 (Δu, x𝑝 )

)
+ (1 − 𝛼𝐹𝐿𝐼𝑃 )𝐼 (u, x𝑝 ). (12)

3.7 Viscosity and Advection
Variable, phase-specific viscosity is important in multiphase flows,

as it governs velocity gradients in turbulent water-air boundary

layers, such as wind over breaking waves. Bridson [2015] observed

that the artificial viscosity induced by the 𝛼𝐹𝐿𝐼𝑃 parameter directly

determines physical viscosity:

𝜈 = (1 − 𝛼𝐹𝐿𝐼𝑃 )
Δ𝑥2

6Δ𝑡
. (13)

We take advantage of Eq. (13) to solve the full multiphase Navier-

Stokes equations, including spatially varying viscosity. This is pos-

sible at the same computational cost as the inviscid Euler equations,

by adjusting the FLIP weight based on particle type (liquid or air)
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during the G2P step. While efficient, this approach is constrained

to a specific range of viscosities between a minimum base viscosity

needed to suppress FLIP noise and a maximum dictated by the in-

herent limitation of explicit schemes in handling large viscosities.

However, for our case of large-scale scenarios involving water and

air at high resolutions and large CFL numbers, Eq. (13) provides a

good approximation.

Finally, the particles are advected through the new, divergence-

free velocities u𝑎𝑖 using third-order Runge-Kutta integration with

locally adaptive time stepping [Bridson 2015]. The liquid velocity is

extrapolated into the air phase by a few cells to ensure that liquid

particles are advected with the corresponding velocities.

4 Adaptivity
The computational cost of fluid simulation in 3D scales with 𝑂 (𝑛4)
for grid resolution𝑛, andmultiphase flows further aggravate the scal-

ing by the higher complexity of the pressure solve. Hence, resolving

the turbulent details around the interface in natural flows neces-

sitates computational adaptivity, i.e., sparse and multiresolution-

capable numerical representations. In this context, block-based

methods, which represent the grid as a union of uniform sub-grids,

are essential for maintaining the regular data access patterns re-

quired to fully utilize the computing capabilities of modern hard-

ware. Existing block-based methods such as VDB [Museth 2013],

SPGrid [Setaluri et al. 2014] or block-octrees [Teunissen and Ebert

2018] typically keep the block size small (𝑛 = 4
3
or 𝑛 = 8

3
grid cells)

to minimize the waste of unused cells within blocks. Indeed, if we

assume that fluid interfaces are smooth 2D manifolds embedded

in 3D space, then the "unused cell overhead" for blocks of size 𝑛

is 1 −𝑂 (𝑛2)/𝑛3, which quickly approaches 100% when block size

increases, as shown in Figure 8 (a).

4.1 Block Size Does Matter
We make several key observations that, in contrast to existing work,

motivate using significantly larger blocks (𝑛 = 16, 𝑛 = 32).

Fractal interfaces. Visually interesting fluid interfaces in nature

are fractals of dimension 𝑑 ≈ 2.5 [Sreenivasan 1991], not smooth

2D manifolds. For these 2.5D interfaces, the empty-cell overhead

(1 − 𝑂 (𝑛2.5)/𝑛3 ) is significantly lower than for 2D interfaces, as

shown by the difference in curves (a) and (b) in Figure 8.

Block boundary overhead. In 3D, the fraction of boundary cells

per total cells (𝑛3 − (𝑛 − 2)3)/𝑛3 = 1 − (1 − 2

𝑛 )
3
decreases rapidly

with increasing block size (curve c in Figure 8). This is important as

stencil-based operations that dominate simulation time (i.e. multi-

grid smoothing) require costly operations at block boundaries.

Hardware efficiency. Modern hardware, with larger CPU caches,

wider SIMD lanes, and larger virtual memory pages, benefits from

larger blocks. Unlike a decade ago, blocks of 16
3
or 32

3
now fit easily

in L2 or L3 CPU cache, enabling more efficient hardware utilization

than smaller blocks.

Reduced block count. Naturally, larger blocks drastically reduce

the number of blocks for a given simulation domain size.

The last aspect is particularly important: a small number of blocks

makes it feasible to use dense linear arrays as a global block index.

The curve (d) in Figure 8 shows the memory overhead 1/(0.01𝑛3) of
a dense index for a sparsely populated domain with 1% occupancy

and a single 4-byte data "channel". Notably, for blocks of size 16
3
,

the dense index requires only 2% of the total memory usage (and

this relative overhead decreases further with each additional data

channel). Naturally, compared to tree-based and other more sophis-

ticated alternatives, dense linear indices are attractive due to their

unmatched simplicity and hardware friendliness.

Besides mere sparsity, another key aspect of adaptivity is han-

dling spatially varying resolution. A common approach in block-

based spatial structures is to recursively decompose grid blocks into

smaller subblocks, maintaining a constant number of cells per block.

This is typically implemented using tree-based decompositions in

high-performance computing [Dubey et al. 2014; Olson and Mac-

Neice 2005; Teunissen and Ebert 2018; Zhang et al. 2021]. Despite

their wide-spread use, tree-based methods introduce algorithmic

complexity and overhead. Tree depth affects random access times,

and efficient parallelization of operations is challenging [Sundar

et al. 2008]. Stencil-based operations are further complicated by the

non-uniform block neighborhood structure.

4.2 MSBG
In light of the preceding considerations, we propose a novel data

structure based on a dense linear array with large blocks. The dense

linear array stores pointers to blocks, whose geometric size is kept

constant while varying only the resolution of each block. Note that

this is in contrast to conventional tree-based schemes that adapt the

blocks’ size while keeping the resolution constant. In this context,

the distinction between (geometrical) block size and block resolution

is important. The former is chosen once for each simulation, while

the latter is spatially adapted during the course of a simulation. For

brevity, we will often call finely resolved blocks large, in contrast to

small blocks with a coarse resolution.

We denote the resulting data structures as Multiresolution Sparse
Block Grids (MSBG) in the following. They enable multi-resolution

adaptivity in an extremely simple way, and allow for fast, massively

parallel global operations. The resolution of the blocks is varied

with a block refinement map 𝑀 , the calculation of which is driven

by an application-specified refinement criterion (Section 5.4).

While varying the resolution of fixed-size blocks limits the num-

ber of refinement levels to the binary logarithm of the base res-

olution, this is not a constraint in practice: in three dimensions,

computational cost decreases by a factor of eight with each coarser

resolution level. In this study, all results are based on a maximum

of three or four refinement levels. Unless noted otherwise, the base

block resolution is set to 16. The block boundary overhead (curve

(c) in Figure 8) increases at coarser MSBG resolution levels. How-

ever, this limitation is offset by the fact that most grid cells are still

contained in MSBG blocks at the finest resolution levels, due to the

factor-of-eight reduction in the number of active cells with each

coarser level.

The discretization of differential operators for gradients, diver-

gence, and the treatment of solid obstacles follows previous work
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Table 1. Comparison between MSBG and Block-Octree

MSBG Block-Octree

Construction, e.g.
from particles

𝑂 (𝑛) , Easy
parallelization

𝑂 (𝑛 log𝑛) , non-trivial
parallelization

Random access 𝑂 (1) 𝑂 (𝑙𝑜𝑔 (𝑛) )

Stencil access Uniform access

to 6 neighbor blocks

Non-uniform access to

variable number of up to 24

neighbor blocks

Grading Fast Parallelization challenging

Adaptivity Only restricted

by block raster

Less flexible because

"terminal siblings" have

same resolution

Supports multi-
color techniques Yes No

Code complexity Low High

Refinement depth log
2
(base-resolution) Unlimited

[Losasso et al. 2004; Weber et al. 2015], with a straightforward adap-

tation to MSBG. An example of pressure gradients is shown in

Figure 9(c), where the constant Δ𝑔 = 3

4
[Losasso et al. 2004].

4.3 Capabilities of MSBG
Next, we highlight a range of advantages that result from the design

of the MSBG data structure. Table 1 provides an overview of MSBG

compared to block-based octrees representing the state of the art

in adaptive grid methods [Teunissen and Ebert 2018]. Its uniformly

constant blocks size makes MSBG computationally more efficient

and improves adaptivity by capturing refinement areas more tightly.

Multi-resolution Multi-color schemes. One particularly distinctive

feature of MSBG is its ability to support Multiresolution multi-color
schemes, such as block-based red-black multigrid smoothers and

fast lock-free 8-color particle splatting. Such algorithms are not sup-

ported by, e.g., octrees due to their nonuniform block sizes. Specif-

ically, we employ an adaption of a recently proposed eight-color

splatting scheme [Fang et al. 2018] to achieve lock-free splatting

during the P2G step of PF-FLIP from Section 3.2, enabling maximum

parallelism of multiresolution particle-grid transfer. We also com-

pute the splatting weights for all faces of a MAC grid cell in parallel

using SIMD/AVX-vector instructions. In practice, this yields P2G

transfer rates of several hundred million particles per second.

Spatiotemporally coherent memory access. The contiguous blocks
of MSBG ensure within-block cache efficiency, but we further en-

hance spatio-temporal memory coherence by conceptually ordering

active blocks along a space-filling curve via Morton coding. Un-

like SPGrid [Setaluri et al. 2014], which integrates Morton coding

into cell address calculations (requiring potentially expensive bit

interleaving), we retain simple linear indexing and sort active block

indices by their Morton codes before traversal. This requires com-

puting the Morton code only once per block, taking advantage of

the additional level of indirection offered by our dense array of block

pointers. Block-based sorting, like other operations on global grid

topology, is extremely fast in MSBG due to the use of relatively few

but large blocks.

Dynamic task based scheduling. At the same time, a naive paral-

lelization of operations on a MSBG grid can lead to load balancing

issues due to the non-uniform number of grid cells per block. To

address this, we adopt dynamic task based scheduling [Robison et al.

2008], as provided by the TBB multithreading library [Pheatt 2008].

5 Adaptive Particles and Dual Adaptivity
As PF-FLIP employs particles in addition to the underlying grid, it is

crucial to support particle-based adaptivity alongside the grid-based

adaptivity provided by MSBG. In the context of SPH methods, adap-

tivity is typically achieved through particle splitting (coarse-to-fine

transition) and merging (fine-to-coarse transition) [Adams et al.

2007]. We adopt a similar approach for particle splitting; however,

instead of merging, we introduce a fast probabilistic coarsening

technique. We assign a particle level 𝑙𝑝 to each particle 𝑝 that deter-

mines its radius as 𝑟𝑝 = 𝑟02
𝑙𝑝
. Note that we consider the particle

level 𝑙𝑝 orthogonal to the grid level 𝑙𝑖 = 𝑀 [𝑏𝑖 ], of a given grid cell

within a block 𝑏𝑖 . Here,𝑀 denotes the block refinement map of the

MSBG grid.

5.1 Probabilistic Coarsening
Existing adaptive particle methods handle the fine-to-coarse transi-

tion by merging several smaller particles into larger ones [Adams

et al. 2007; Ando et al. 2013], a process that requires a particle neigh-

borhood search. While this is not an issue for SPH methods, where

neighborhood lists have to be collected anyway, we aim to retain

the essence of FLIP as a neighborhood-search-free method.

To this end, we propose a simple and fast probabilistic coarsening

scheme. It is based on the observation that coarsening a uniform

particle distribution by a factor of two in each spatial dimension

results in a uniform distribution with a particle density eight times

lower, which can be obtained by randomly removing 7/8 of the

particles. More formally, once a particle is marked for coarsening, we

remove it with probability 𝑝𝑟𝑜𝑏
del

= 1− 1/(2𝑙new−𝑙old )3. Oscillations
near the coarse-to-fine transition zone are prevented by a simple

hysteresis scheme using a deferred-coarsening counter.

5.2 Refinement Criteria
As the default particle refinement criterion, we employ the com-

monly used distance to the liquid–air interface. Since PF-FLIP does

not maintain a distance field for the surface, we generate a reduced-

resolution auxiliary SDF
˜𝑑 (x) from the downsampled and thresh-

olded phase field with a simple, first-order accurate, marching algo-

rithm. This is sufficient because, unlike previous work, we use the

distance field solely for particle refinement.

Optionally, the magnitude of the curl of the velocity can also be

employed [Popinet 2003] to capture flow details away from the sur-

face, particularly in the air phase, where turbulence is typically more

intense than in the bulk liquid (Figure 12, left column). However, for

the examples presented in this study, we found the distance-based

refinement to be sufficient for all cases.

5.3 Equalizing Spatially Varying Numerical Viscosity
Numerical methods for solving the Navier-Stokes equations intro-

duce numerical diffusion, or artificial viscosity, depending on the
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Fig. 8. (Left) Theoretical overhead of adaptive data structures as a function of block size: (a),(b) Wasted cells per block near the interface for smooth and
fractal interfaces respectively. (c) Block boundary overhead. (d) Storage overhead of a dense block index assuming a float channel with 1% occupancy. (Right)
Overview of the MSBG data structure with refinement levels stored in the per-block refinement map, the linear block index and individual blocks constituting
the final MSBG data structure.

grid spacing Δ𝑥 . In multiresolution methods with varying Δ𝑥 , this
leads to unphysical spatial variations in viscosity—an issue often

overlooked in the adaptive mesh refinement literature. A notable

exception is Ando et al. [2013], and we likewise leverage FLIP’s

controllable numerical viscosity (Eq. (13)) to adjust 𝛼𝐹𝐿𝐼𝑃 . In our

two-phase framework, we account for both phase-specific physi-

cal viscosity and numerical viscosity variations from adaptive grid

spacing. In contrast to Ando et al., we base corrections on local

grid spacing instead of particle size. This decouples particle radius

from cell size, which is crucial for large time steps with high CFL

numbers, where particles may cross grid resolution boundaries.

5.4 Dual Particle-Grid Adaptivity
The resulting algorithm for coupled particle-grid adaptivity pro-

ceeds with the following steps:

(1) Compute the block refinement map 𝑀 : For each particle 𝑝 , deter-

mine all blocks 𝐵𝑖 that intersect the particle’s bounding box (en-

larged by a CFL-dependent epsilon) and set𝑀 [𝑖] ← min(𝑙𝑝 , 𝑀 [𝑖])
using a fast atomic minimum operation.

(2) Regularize the block refinement map to enforce a 2:1 grading

constraint, ensuring that the resolution levels of neighboring

blocks differ by no more than one.

(3) Initialize the MSBG grid with the new refinement map and

allocate grid data channels.

(4) Transfer data from the particles to the MSBG grid as follows:

For each particle 𝑝 , determine its containing grid block 𝑏𝑖 , grid

level 𝑙 = 𝑀 [𝑏𝑖 ] and cell-within-block 𝑐𝑖𝑘 . Using the linear, dense
global MSBG block index, this computation requires only shift

and logical-and operations on the particle coordinates. Next,

loop over all neighboring grid blocks 𝑏 𝑗 and cells 𝑐 𝑗𝑙 within

the particle’s radius 𝑟𝑝 = 𝑟02
𝑙𝑝
. This corresponds to the usual

27-cell neighborhood when the particle level matches the grid

level, i.e., 𝑙𝑝 = 𝑙 . We also allow 𝑙𝑝 = 𝑙 + 1 for a smooth transition

of coarse particles into regions where the grid is finer by one

level. At each touched cell, splat the particle’s weighted mass

and velocity contributions to the staggered cell locations.

(5) On the MSBG grid, compute auxiliary fields, such as
˜𝑑 , required

for evaluating the particle refinement criterion.

(6) For each particle 𝑝 , use the refinement criterion interpolated at

its position x𝑝 to determine the new particle level, e.g. 𝑙new =

⌊|𝛽𝑏𝑤 ˜𝑑 (x𝑝 ) |/𝑚0⌋ where𝑚0 is the MSBG base block resolution

and 𝛽𝑏𝑤 controls the width of refinement bands. If 𝑙new < 𝑙𝑝 ,

split the particle into 8 smaller particles 𝑝′, randomly jittered

within the octants of the grid cell containing 𝑝 , and set 𝑙𝑝′ ←
𝑙new. If 𝑙new > 𝑙𝑝 , increment a deferred-coarsening counter 𝐷𝑝

andmark 𝑝 for coarsening if𝐷𝑝 ≥ 3. Reset𝐷𝑝 = 0 if 𝑙new ≤ 𝑙𝑝 . If

𝑝 is marked for coarsening, remove the particle with probability

𝑝𝑟𝑜𝑏𝑑𝑒𝑙 = 1 − 1/(2𝑙new−𝑙𝑝 )3.
(7) Advance the PF-FLIP simulation one time step and advect the

particles to their new positions using MSBG for adaptive-grid

velocity interpolation.

Fig. 9. a) Particle density and size are adapted depending on the distance
to the fluid interface. b) Velocity field as sampled by particles with grid cell
size adapted to particle size (2D slice of 3D simulation, vorticity magnitude).
c) Pressure gradient discretization at coarse-fine transition: 𝑝1−𝑝

ℎΔ𝑔
. Thin and

bold lines depict cell and MSBG block boundaries, respectively.

6 Adaptive Poisson Solver
Pressure correction is typically the computational bottleneck in in-

compressible fluid simulation, particularly for high density-contrast
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Fig. 10. Multiresolution multigrid: MSBG maintains multigrid levels inde-
pendently from MSBG resolution levels

multiphase flows, as this step requires solving a large and highly

ill-conditioned Poisson problem L𝑥 = 𝑏 (cf. Section 3.5 ). Our mul-

tiresolution discretization scheme ensures favorable properties for

the Laplacian system matrix L, such as symmetry and a simple

7-point stencil. However, for multiphase flows with high density

ratios, the ill-conditioned, nearly discontinuous coefficient structure

of L leads to a deterioration in convergence speed, even when using

powerful methods such as multigrid-preconditioned CG [MacLach-

lan et al. 2008]. To address the aforementioned challenges, we pro-

pose a novel, fully adaptive variant of the multigrid preconditioned

conjugate gradient method, specifically designed to solve pressure

correction equations arising from highly irregular two-phase flows

with large fluid density contrasts.

6.1 Algebraic Aggregation Multigrid
Shao et al. [2022] successfully employed algebraic aggregation multi-

grid, essentially a cell-centered Galerkin coarsening approach, to

construct a multigrid hierarchy for fast but fixed-resolution single-

phase fluid simulations. We extend this method to multiresolution

adaptive grids by introducing a novel adaptive smoother and inte-

grating it into a specialized conjugate gradient algorithm for efficient

two-phase pressure projection. In the following, we will not reit-

erate the full details of the standard multigrid method, such as the

structure of a basic V-cycle, as these are well documented in the

literature (e.g., [Briggs et al. 2000; Mandel 1988; Trottenberg et al.

2000]). Instead, we focus on the aspects that differentiate our method

from previous approaches. In Galerkin coarsening, grid operators

are computed algebraically from the fine grid ones via

L2ℎ = 𝑅2ℎ
ℎ
Lℎ𝑃ℎ

2ℎ
, (14)

where ℎ is the spacing of the finer grid. 𝑃 and 𝑅 = 𝑃𝑇 denote

Restriction and Prolongation operators, respectively [Trottenberg

et al. 2000]. See Figure 10, bottom left, for a 1D illustration.

Multiresolution adaptive Galerkin coarsening. Algorithm 1 details

the efficient, matrix-free, and massively parallel construction of our

multiresolution-adaptive Galerkin multigrid hierarchy, based on the

MSBG block structure. For each cell 𝑗 of block 𝑖 at multigrid level

𝐿 > 0, three face-coefficients F [𝑖, 𝐿] [ 𝑗, 𝑎] of the symmetric 7-point

stencil are computed (𝑎 ∈ {1, 2, 3} denoting face normal directions

e𝑎). Face coefficients at the finest level are obtained directly from

the phase-field via. Eq. (9). The diagonal elements of the (implicitly)

assembledmatrices are the sum of the off-diagonal (face) coefficients.

The resolution transition scaling constants 𝜎𝐶𝐹 = 1/(4Δ𝑔) and
𝜎𝐹𝐶 = 2𝜎𝐶𝐹 follow from the symmetry-preserving multiresolution

discretization of the pressure gradient (Section 4.2, Figure 9(c)) and

the Galerkin coarsening principle Eq. (14).

Algorithm 1: Parallel Multiresolution Galerkin Multigrid

Coarsening

Input: Face coefficients F at finest level 𝐿 = 0 Output: Face
coefficients for all coarse levels

for 𝐿 ← 1 to𝑀 − 1 ⊲ Multigrid levels

do
for 𝑖 ← 1 to 𝑁 ⊲MSBG Blocks in parallel

do in parallel
𝑙 ← 𝑙𝑒𝑣𝑒𝑙 (𝑖, 𝐿) ⊲Actual resolution level at this multigrid level

if 𝑙 = 𝑙𝑒𝑣𝑒𝑙 (𝑖, 𝐿 − 1) then
F[𝑖, 𝐿] ← F[𝑖, 𝐿 − 1];
⊲No finer child block, simply copy block by reference

continue
for 𝑎 ← 1 to 3 ⊲Face normal directions (x,y,z)

do
⊲Determine scaling factor for resolution transition

switch 𝑙 − 𝑙𝑒𝑣𝑒𝑙 (neighborBlock(𝑖, 𝑎), 𝐿 − 1) ) do
case 0 do

𝑠 ← 2
𝑙 ⊲Fine-fine

case 1 do
𝑠 ← 2

𝑙𝜎𝐶𝐹 ⊲Coarse-fine

case -1 do
𝑠 ← 2

𝑙𝜎𝐹𝐶 ⊲Fine-coarse

𝑛 ← 𝑛02
−𝑙 ⊲Block resolution

for 𝑗 ← 1 to 𝑛3 ⊲Loop over all cells in block

do
𝑠𝑢𝑚 ← 0 ;

⊲Loop over 2x2 fine cells of coarse cell face in direction 𝑎

for k← (1, 1) to (2, 2) do
𝑗 ′ ← cellIndexInFineBlock( 𝑗, k, 𝑎)
𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + F[𝑖, 𝐿 − 1] [ 𝑗 ′, 𝑎]

F[𝑖, 𝐿] [ 𝑗, 𝑎] ← 𝑠 𝑠𝑢𝑚
4

6.2 Leveraging MSBG
We leverage the MSBG block structure to efficiently represent two

resolution hierarchies: the MSBG hierarchy, defined by the resolu-
tion level 𝑙 , and the multigrid hierarchy, defined by the multigrid
level 𝐿. For the coarsest levels, which are coarser than MSBG’s

block index, we use additional, uniform grids. Figure 10 illustrates

our extension of basic multigrid construction from uniform to spa-

tially adaptive multiresolution grids using a 1D example. While

our multigrid hierarchy shares similarities with the multiresolution

pyramids proposed by Setaluri et al. [2014], there are key distinc-

tions. First, MSBG does not require maintaining an additional octree,

as in SPGrid-based solvers. Second, the inherent multiresolution

structure of MSBG facilitates multigrid relaxation across resolution
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Fig. 11. (a) Multi-color techniques such as red-black (checkerboard) cannot
be efficiently applied to octrees (as indicated by the "?") (b) Active elements
during the first half of one parallel half-sweep (𝐼𝑟𝑏 = 𝑖𝑟𝑏 = 0 in Algorithm
2) of our SIMD accelerated, two-stage MSBG block based hybrid red-black-
Gauss-Seidel-Jacobi smoother. Shown are blocks of SIMD vectors at two
different resolution levels 0 and 1.

boundaries, eliminating the need for additional inter-level transfer

passes to accumulate and propagate ghost cells.

6.3 Block-based Relaxation
The smoother is a critical component of multigrid schemes. Com-

monly, a fixed number (1–3) of weighted Jacobi or Gauss-Seidel re-

laxation steps are applied before residual restriction (pre-smoothing)

and after error prolongation (post-smoothing) [Briggs et al. 2000].

For massively parallel implementations, Jacobi-type smoothers are

often preferred due to the parallel nature of updates. However, this

comes at the cost of slower convergence compared to Gauss-Seidel,

where updated values are immediately visible to neighboring cells.

Moreover, Jacobi-type smoothers require additional memory for a

temporary destination grid.

Exploiting the regular block structure of MSBG, we propose a

variant of a hybrid Gauss-Seidel smoother [Baker et al. 2011] that

employs red-black ordered, parallel half-passes of Jacobi relaxations

at the block-level. It additionally uses Gauss-Seidel (in-place) iter-

ations for the unknowns within blocks, likewise with a red-black

ordering. These in-place updates are computed at the level of entire

SIMD-words, that is, 8 floats for the Intel AVX CPU instruction

set. This scheme, illustrated in Figure 11 (b), improves convergence

speed due to the partial Gauss-Seidel nature of the updates. It also
reduces the memory footprint by a factor of two compared to stan-

dard Jacobi, as red-black-ordered MSBG blocks can be updated in

place without requiring an additional destination buffer. Similar to

the P2G transfer, this block-"colored" algorithm inherently relies on

the globally uniform block structure of MSBG and is not applicable

to tree-based data structures (Figure 11(a)).

Due to the partial Jacobi nature of our hybrid smoother, it is nec-

essary to apply a weighting factor 𝜔 [Adams et al. 2003] to dampen

the relaxation updates in order to guarantee overall convergence.

Here, we chose 𝜔 = 6

7
, which is optimal in three spatial dimensions

[Trottenberg et al. 2000].

6.4 Adaptive Relaxation
The smoother described in the previous section in combination

with Galerkin coarsening significantly improves overall multigrid

convergence. To address the remaining convergence issues of highly

irregular flows, we leverage ideas from fully adaptive multigrid
[Kowarschik et al. 2006; Rüde 1993] to perform adaptive relaxation.

The central idea is to adaptively focus the smoothing effort locally

on regions with high residual errors. To this end, we maintain a

dynamic list of active MSBG blocks. Initially, this list includes all

relaxation-relevant blocks 𝑏𝑖 for a given multigrid level 𝐿—those

with 𝑙 (𝑖, 𝐿) ≤ 𝐿, along with a one-block-wide transition zone at the

next coarser level. Blocks are iteratively selected from the active list

—a fast lockless FIFO queue—for relaxation. If a block’s maximum

effective residual error exceeds a threshold 𝜃 after relaxation, it is

reinserted into the list. Neighboring blocks are also added if border

cell residuals exceed the threshold. Unlike Kowarschik et al. [2006];

Rüde [1993], we do not continue relaxing until the active set becomes

empty. Instead, we terminate the loop after a fixed number (10–20)

of adaptive relaxation steps, as this is sufficient for our purpose of

employing the algorithm within a preconditioner rather than as a

standalone multigrid solver.

We again leverage the MSBG block structure to keep track of and

process active blocks efficiently and in parallel. The procedure is

detailed in Algorithm 2, and Figure 12 illustrates how this process

rapidly reduces the active smoothing area, significantly lowering

the total computational effort. Overall efficiency is further enhanced

because, after a few iterations, the set of remaining active blocks

often fits entirely into the CPU’s last-level cache, eliminating the

RAM bandwidth bottleneck (typically associated with relaxation-

type small-stencil sweeps) during later iterations.

To further enhance cache efficiency, we perform multiple relax-

ation sweeps on a block once its active data channels are loaded into

cache memory. This approach amortizes the cost of transferring data

from RAM to the CPU cache and assembling the block’s local "halo

buffer", which contains boundary data from neighboring blocks.

Unlike previous methods [McAdams et al. 2010], we do not fix the

number of block-local sweeps. Instead, we adaptively determine

it by monitoring the block-local residual, available as the absolute

value of the local update during relaxation. The loop terminates

when the residual is reduced by 1/3, approximating the optimal re-

duction factor for a Gauss-Seidel smoother in 3D Poisson problems

[Mohr and Wienands 2004]. Importantly, this exact value, like other

parameters in Algorithm 2, is not critical for overall convergence,

as our adaptive smoother functions solely within a preconditioner.

Defining an Effective Residual in the Context of High-Contrast
Phase-Fields. Our algorithm also differs fromKowarschik et al. [2006]

in how the effective residual error is defined. While their work uses

the scaled residual—the residual divided by the matrix diagonal— we

found this approach to be ill-suited for solving the linear systems

arising in two-phase fluid flow. In such cases, the matrix diagonal is

orders of magnitude larger in the air phase than in the water phase

of the simulation domain. This disparity effectively compresses the

dynamic range of the residual error in the air phase by a factor

of 1000, making it unlikely for air blocks to ever exceed the error

threshold for inclusion in the active relaxation list. We therefore
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Algorithm 2: Parallel Two-Stage-Red-Black Adaptive
Multigrid Relaxation
Input :Multigrid level 𝐿, effective residual threshold 𝜃

𝑛,𝑛′ ← 0 ⊲ Number of active blocks (current, new)

𝑆0, 𝑆, 𝑆
′ ← {0} ⊲ Block status flags arrays

Function RelaxBlock(𝑖, 𝑅):
for 𝑖𝑟𝑏 ← 0 to 1 ⊲Inner red-black scheme

do
for each cell 𝑗 of block 𝑖 where color( 𝑗 ) = 𝑖𝑟𝑏 do

𝛿 ← 𝜔 (𝑏 𝑗 − L 𝑗u)/L 𝑗 𝑗 ⊲Weighted Gauss-Seidel; 𝜔 = 6

7

𝑅 [ 𝑗 ] ← 𝛿

𝑢 𝑗 ← 𝑢 𝑗 + 𝛿

return max(𝑅)
Procedure ActivateBlock(𝑖, 𝑅):

if AtomicCompareExchange(𝑆 ′ [𝑖 ], 1, 0) = 0 then
𝐵′ [AtomicIncrement(𝑛′ ) ] ← 𝑖

⊲Activate affected neighbor blocks

for each face 𝑓𝑘∈ [1,6] of block 𝑖 do
𝑖2 ← NeighborBlock(𝑖, 𝑘 )
if 𝑆0 [𝑖2 ] and max𝑗 ∈𝑓𝑘 𝑅 [ 𝑗 ] > 𝜃 then

if AtomicCompareExchange(𝑆 ′ [𝑖2 ], 1, 0) = 0 then
𝐵′ [AtomicIncrement(𝑛′ ) ] ← 𝑖2 ;

for each block 𝑖 do in parallel
if 𝑙𝑒𝑣𝑒𝑙 (𝑖, 𝐿) ≤ 𝐿 or ((IsResolutionBoundaryBlock(i) and
𝑙𝑒𝑣𝑒𝑙 (𝑖, 𝐿) = 𝐿 + 1)) then

𝐵 [AtomicIncrement(𝑛) ] ← 𝑖 ⊲Initial list of active blocks
𝑆0 [𝑖 ] ← 𝑆 [𝑖 ] ← 1

for 𝑖𝑖𝑡𝑒𝑟 ← 1 to 𝑁𝑖𝑡𝑒𝑟,𝑚𝑎𝑥 do
if n=0 then break;
SortByMortonCode(𝐵) ⊲ Improve coherence of memory access

for 𝐼𝑟𝑏 ← 0 to 1 ⊲Outer red-black scheme

do
for 𝑗 ← 1 to 𝑛 do in parallel

𝑖 ← 𝐵 [ 𝑗 ]
𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏 ← BlockCoords(𝑖 )
if (𝑥𝑏 + 𝑦𝑏 + 𝑧𝑏 ) mod 2 = 𝐼𝑟𝑏 then continue;
𝑟0← RelaxBlock(𝑖, 𝑅) ; 𝑘 ← 1 ⊲R is a local buffer

repeat
𝑟, 𝑅 ← RelaxBlock(𝑖, 𝑅) ; 𝑘 ← 𝑘 + 1

until 𝑟/𝑟0 < 1

3
or 𝑘 ≥ 𝑘𝑚𝑎𝑥 ;

if 𝑟 > 𝜃 then ActivateBlock(𝑖, 𝑅) ;

for 𝑗 ← 1 to 𝑛 do 𝑆 [𝐵 [ 𝑗 ] ] ← 0
swap(𝑛,𝑛′ ) ; swapRef(𝐵, 𝐵′ ) ; swapRef(𝑆, 𝑆 ′ )

propose using an alternative metric for the effective residual, namely

the maximum change over all variables of a block after the local

block relaxations, multiplied by the diagonal—effectively "contrast-

equalizing" the phases.

Adaptive error threshold. Previous work on adaptive relaxation

proposed using a fixed user-defined residual error threshold 𝜃 but

provided no guidance on selecting an appropriate value. Relying on

a prescribed, fixed 𝜃 is problematic in our case, as we use adaptive

relaxation-based multigrid as a preconditioner for CG, where the

dynamic range of the effective residual error may vary widely (often

Fig. 12. Adaptive multigrid relaxation. 2D slices along XY, XZ and YZ of a
3D simulation are shown (blue: water, yellow: air, orange: active set). Left
column: Vorticity magnitude. Middle: Residual error and active relaxation
blocks after 2 smoothing steps (~10% of all blocks). Right: Active blocks after
6 steps (~1% of all blocks).

decreasing exponentially) with each CG iteration. We therefore

take a different approach and propose determining 𝜃 adaptively
by computing the log-histogram of the initial effective residual

and applying fast histogram segmentation. In practice, we found

that a simple choice of setting 𝜃 to the mean plus two standard

deviations of the log-histogram works well. Using MSBG, histogram

construction can be performed very efficiently at the block level,

using only the per-block maxima of the residuals.

Flexible Preconditioned Conjugate Gradient Method. One reason
why adaptive relaxation has not been considered in the context of

multigrid-preconditioned CG probably lies in the fact that CG re-

quires the preconditioner to preserve symmetry. This constraint ne-

cessitates performing exactly the same number of relaxation sweeps

during pre- and post-smoothing [McAdams et al. 2010; Tatebe 1993],

a requirement that is inherently violated by adaptive relaxation.

To resolve this issue, we employ the flexible preconditioned conju-
gate gradient method [Bouwmeester et al. 2015]. It has been shown

to be robust even when the preconditioner is not symmetric pos-

itive definite (SPD), and is implemented efficiently by replacing

the standard Fletcher–Reeves update step with the more robust

Polak–Ribière variant. While it requires storing an additional vec-

tor, this overhead is offset in our overall algorithm thanks to the

block-based red-black scheme (Section 6.3), which eliminates the

need for a temporary destination buffer during parallel iterations.

In combination, our contributions to improved adaptivity on the

Poisson solver side, namely,

• Multiresolution Galerkin-multigrid

• Adaptive relaxation with improved residual metric and adap-

tive error threshold

• Adaptive multigrid as a preconditioner for CG

• A memory-efficient parallel multiresolution smoother

resolved the pressure-solver bottleneck in all our examples, regard-

less of simulation resolution or flow complexity.
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Fig. 13. Asteroid impact with 600 million particles simulated on a laptop. Effective resolution: 10243 for pressure, and 3072
3 for spray. Avg. simulation time per

time step: ≈ 70s. Bottom right: 2D-slice of the phase field shaded by velocity curl magnitude.

7 Spray and Rendering
To simulate spray effects, we largely follow previous work: escaped

FLIP particles (Section 3.4) are converted into purely Lagrangian

droplet particles, which move under the influence of gravity and

drag forces induced by the air velocity field [Gissler et al. 2017; Song

et al. 2005]. We integrate the corresponding ODE using RK2 with

locally adaptive time stepping. Additional spray particles are emit-

ted near the interface in areas of steep velocity gradients [Ihmsen

et al. 2012]. For increased physical realism, we employ per-particle

droplet radii, 𝑟𝑝 , which are sampled from a log-normal distribu-

tion [Babinsky and Sojka 2002] on droplet emission, subsequently

evolved according to a physics-based evaporation ODE [Sirignano

2010], 𝑑𝑟𝑝/𝑑𝑡 ∼ −1/𝑟 .
We found it crucial for realism to simulate and render spray

particles at a significantly higher resolution than that provided by

the base pressure solver. To achieve this, we employ a spray density
field (at 16 bit float precision) with a resolution two to four times

higher than the pressure and velocity fields. Spray particles are

simulated at the increased resolution of this field and rasterized into

it to yield a volumetric density for rendering. Here, we leverage

MSBG to efficiently handle sparse grids with up to tens of thousands

of voxels per dimension (Section 8.1).

We used a (MSBG based) volumetric ray tracer with approximate

multiple scattering to render the spray density field and the water.

The rendered surface is reconstructed from the liquid particles using

standard particle skinning and surface smoothing [Bhatacharya

et al. 2011]. Note, that spray particle rasterization and water surface

reconstruction are only necessary at render time, i.e. every 5-10

time steps. High-curvature areas of the air-water interface were

rendered with foam-like scattering coefficients. Apart from this, no

post-processing effects or procedural textures are applied.

8 Results
We first evaluate the performance of the key components of our

method, the MSBG framework for spatial adaptivity and the adap-

tive Poisson solver, in comparison to state-of-the-art methods. We

then perform comparisons to reference simulations from Graph-

ics and CFD, and highlight the capabilities of PF-FLIP on MSBGs

with a range of large-scale simulation examples at very high grid

resolutions.

Unless stated otherwise, all tests and simulations were conducted

on a single AMD workstation (Ryzen Threadripper) with 32 cores

and 256 GB of RAM. To demonstrate the method’s performance

on less powerful hardware, we also include an example (Figure 13)

executed on a laptop (Intel Core i7, 14 cores, 32 GB of RAM). We

emphasize that our solver does not rely on GPU acceleration, which

is important for our target use case of very large-scale scenarios

whose memory requirements can exceed the limited RAM capacities

(compared to CPUs) of even high-end GPUs.

8.1 Adaptive Grids with MSBG
Performance across representative operations. In order to evaluate

the performance of MSBG, we conducted tests across representa-

tive operations that typically determine the performance of many

physics-based simulation schemes: particle-to-grid transfer (P2G),

stencil-based iterative evolution of a partial differential equation

(PDE) and interpolation of grid quantities at point positions (G2P).

In these tests, 1.6 billion particles were rasterized (P2G) as spheres

with a radius of 3 grid cells on a sparse grid with an effective resolu-

tion of 10, 0002 × 5, 000 cells, resulting in 10.6 billion active voxels,

which were subsequently filtered using ten iterations of Laplacian

diffusion (PDE). An illustration of this setup is shown in Figure 14.

Next, one billion point queries were performed with linear inter-

polation of the filtered grid values (G2P). To ensure realistic test

conditions, the particles were taken from a snapshot of a complex,

high-resolution simulation (the asteroid impact scenario shown in

Figure 13). Table 2 presents the results in comparison to the VFX

industry standard VDB [Museth 2013], which serves as the state-of-

the-art baseline (we used OpenVDB version 11). Compared to VDB,

MSBG achieves performance improvements by a factor of 3.7 to 9.6.

At the same time, the memory footprint increases only moderately

by 11%, despite the MSBG blocks in this example being twice as

large (eight times the 3D volume) as the VDB blocks (16
3
vs. 8

3
).
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This provides strong evidence supporting the theoretical considera-

tions presented in Section 4.1, which justify our decision to employ

significantly larger blocks than those used in prior methods.

Table 2. MSBG Performance across operations representative of physical
simulations in graphics: particle- to-grid transfer (P2G), stencil-based it-
erative evolution of a PDE, and interpolation of grid quantities at point
positions (G2P). Performance is measured in units of million particles per
second (P2G, G2P) or million grid cells per second (PDE). The test scenario
is shown in Figure 14.

Test VDB MSBG Improvement

P2G (Mparts/s) ↑ 16.7 62.6 × 3.7
PDE (Mcells/s) ↑ 948 9097 × 9.6
G2P (Mparts/s) ↑ 634 4051 × 6.4
Memory usage (GB) ↓ 37.3 41.4 × 0.9

Fig. 14. The test scenario for the results reported in Table 2 involves raster-
izing 1.6 billion particles as spheres with a radius of 3 grid cells on a sparse
grid with an effective resolution of 10, 0002 × 5, 000, resulting in 10.6 billion
active voxels, subsequently filtered by Laplacian diffusion.

Memory bandwidth utilization. A key requirement for any spatial

adaptivity method is that the efficiency gained through adaptivity

is not negated by the administrative overhead of managing internal

data structures. In this context, a spatial adaptivity scheme can be

considered optimal if operations on an adaptive grid can be per-

formed at nearly the same speed per active cell as on a uniform

grid. The performance of uniform grids, in turn, is mostly deter-

mined by RAM bandwidth due to relatively low arithmetic intensity

(measured in FLOPS per byte transferred) of typical computational

kernels (PDE). Consequently, the effective RAM transfer rate (ex-

pressed as a percentage of the peak machine bandwidth) for a given

kernel serves as an effective metric for evaluating the efficiency of

adaptivity schemes.

Table 3 compares MSBG to two prominent state-of-the-art meth-

ods, VDB and SPGrid, using the aforementioned metric applied to

a seven-point stencil Laplacian kernel, which is representative of

many computations in graphics. A simple streaming copy serves as

the baseline proxy for peak machine bandwidth. The SPGrid result

was derived from Table 1 in [Aanjaneya et al. 2017]. As shown, SP-

Grid is approximately four times more efficient than VDB but cannot

fully utilize the available bandwidth. In contrast, MSBG achieves

performance close to the peak machine bandwidth.

Table 3. Memory bandwidth utilization of a seven-point stencil Laplacian
kernel in percent peak machine bandwidth vs. streaming copy baseline.
MSBG nearly saturates machine bandwidth.

Streaming copy Laplacian kernel

Method VDB SPGrid MSBG

Bandwidth utilization 100% 11% 39% 90%

Fig. 15. A 32𝑘3 MSBG grid with 100 billion active voxels as a narrow band
surface reconstruction from 32𝑘 bunnies each consisting of the 32𝑘 point
samples of the Stanford dataset. Effectively, a mean curvature flow PDE
was evolved on the MSBG grid at a speed of 10 billion unknowns per second
per iteration.

100-billion-voxels. As a final example to showcase the potential

of MSBG we took the 32𝑘 point samples of the original Stanford

bunny dataset and rasterized them as a cloud of 32𝑘 small bunnies,

giving 32𝑘 ×32k= 1𝐵 particles in total, onto a 32𝑘3 MSBG grid (base

block resolution 32) as a narrow-band signed distance field, yielding

approximately 100 billion active out of 35 trillion virtual voxels. Then

a smooth surface was reconstructed from the particles through ten

iterations of a mean curvature flow PDE on the MSBG grid. To fit

100 billion voxels into main memory, we used a single MSBG data

channel with half-precision and exploited MSBGs block-multicolor-

based PDE-stencil-operators for solving the mean curvature flow–a

second order PDE with wide stencil–in parallel via an eight-color

scheme without the need for an additional temporary data channel.

The surface, shown in Figure 15, was rendered at 4K resolution in

≈ 30 seconds using a MSBG-based ray tracer.

8.2 Basic Phase-Field Tests
In order to evaluate the basic accuracy and physical soundness

of Phase-Field FLIP in comparison with results from established

two-phase flow literature, we conducted two classical benchmark

tests.

Table 4. Relative phase field error of the shear flow advection test.

Model Relative error

[De Rosis and Enan 2021] 0.0490

[Li et al. 2022] 0.0500

Ours 0.0314
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Fig. 16. (a) Shear flow advection test, (b) Rayleigh-Taylor Instability at high
density ratio (A = 0.9).

Advection of phase field in prescribed velocity field. In this test,

we simulated the passive advection of a spherical shape in a pre-

scribed, time-dependent velocity field that induces a typical shear

flow—commonly used in previous studies [De Rosis and Enan 2021;

Fakhari et al. 2019; Li et al. 2022]. For a detailed description of the test

setup, we refer to the work of Li et al. [2022]. Figure 16 (a) shows ren-

derings of the test sphere at the start of the simulation (𝑡 = 0), at the

point of maximum deformation (𝑡 = 𝑇 /2), and at the end of the test

following reverse advection (𝑡 = 𝑇 ). Table 4 presents the resulting

relative error, computed as (∑𝑖 (𝜙 (𝑥𝑖 , 0) − 𝜙 (𝑥𝑖 ,𝑇 ))2/𝜙2 (𝑥𝑖 , 0))1/2,
and compares it with previously published results. As expected, our

hybrid Lagrangian-Eulerian advection method yields lower error

than existing purely Eulerian phase field transport schemes.

3D Rayleigh-Taylor instability. In this test, we adopted the same

setup as described by He et al. [1999], featuring a simulation of

the Rayleigh-Taylor instability with a high density contrast. The

Atwood number is𝐴 = (𝜌𝑙 −𝜌𝑔)/(𝜌𝑙 +𝜌𝑔) = 0.9, and surface tension

is neglected. The grid resolution is 256× 64× 64. We set the domain

length to 𝐿 = 0.05, viscosity to 𝜈𝑙 = 𝜈𝑔 = 4 × 10
−5
, gravitational

acceleration to 𝑔 = 9.81 (all in SI units) and simulation parameters

𝛼𝜙 = 0.5 and𝐶𝐹𝐿 = 0.5. Figure 16 (b) shows the development of the

spike-tip position, which is in good agreement with the reference.

In later stages of the simulation, because of the absence of surface

tension, thin sheets of the interface begin to break up into ligaments

and droplets. This is not observed in the corresponding simulation

by He et al. [1999], highlighting the ability of our relatively sharp

(𝜖𝜙 = Δ𝑥) phase field to resolve fine interface structures near the

Nyquist limit of the grid.

8.3 Adaptive Poisson Solver
To evaluate the performance of our pressure solver against state-

of-the-art methods, we simulated a highly challenging scenario—

the asteroid impact—using both prior methods and our approach.

This scenario features complex dynamic fluid-solid interactions,

high density contrast two-phase fluid-fluid interface geometry, and

intense turbulence, as illustrated in Figure 13.

For this test, the effective grid resolution was set to 1536
3
, with

approximately 1.6 billion particles. The comparison was evaluated

based on the number of Preconditioned Conjugate Gradient (PCG)
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Fig. 17. Number of preconditioned CG iterations and CPU time (logarithmic
y-axis) per time step for the pressure Poisson solve in the asteroid impact
scenario. Our adaptive multigrid scheme outperforms the closest competitor
from previous work roughly by a factor of three.

iterations and the total CPU time required per time step, averaged

over 10 steps during the most challenging phase of the simulation

in terms of relative speeds between the air, water and solid phases.

The results, shown in Figure 17, highlight significant differences

among the tested methods: Incomplete Cholesky [Bridson 2015],

Geometric Multigrid (e.g., [Setaluri et al. 2014]), Galerkin Multigrid

[Shao et al. 2022] with additional boundary relaxations [McAdams

et al. 2010], and our fully adaptive multigrid method. The results are

presented on a logarithmic scale on the y-axis to clearly illustrate

the wide range of results across the methods.

Incomplete Cholesky, as a baseline, exhibited the highest iteration

count, exceeding 10
3
. In contrast, Geometric Multigrid significantly

reduced iteration count and CPU time, achieving approximately

an order of magnitude improvement over Incomplete Cholesky.

Galerkin Multigrid [Shao et al. 2022], when combined with addi-

tional boundary relaxations [McAdams et al. 2010], further reduced

computational cost by about a factor of four. Finally, our fully adap-

tive multigrid solver proved to be the most efficient approach, im-

proving iteration count and CPU time roughly by an additional

factor of three.

ComparisonWith High-Performance CFD-Solvers. Next, we present
a comparison with CFD solutions to demonstrate both the physical

soundness of our overall method and the performance potential of

our adaptive pressure solver. We re-simulated the "difficult scenario"

from the work of MacLachlan et al. [2008] which evaluated fast pres-

sure solvers for high-density-contrast incompressible two-phase

flow by simulating rising and disintegrating bubbles. This bench-

mark was designed to be particularly challenging because of its

deliberate exclusion of surface tension, resulting in highly complex

and dynamic interface geometries. It is therefore also well suited

for our target of large-scale simulations, where the influence of sur-

face tension is likewise negligible. The residual error tolerance was

intentionally set to a low value of 𝜖𝑡𝑜𝑙 = 10
−8

for this benchmark

(in contrast to the 10
−4

used for other examples).
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Table 5. Comparison with CFD pressure solvers for a two-phase flow bench-
mark. CG Iterations per time step for BoxMG and DIC as reported in Figure
7 a) inMacLachlan et al. [2008] during the "difficult" phase of the simulation.

Method Iterations
per step

Stencil
size

Pre-processing
cost per step

Adaptive mesh
refinement

Ours ≈ 30 4 Low Native/MSBG

BoxMG-CG ≈ 40 4/14 High Difficult

DIC-CG > 300 4 Medium Medium

Table 5 compares our method with the two best performing meth-

ods in the study of MacLachlan et al.: Deflation IC (DIC) and Box-

Multigrid (BoxMG). Our solver requires fewer iterations per time

step than the best performing method (BoxMG) in the aforemen-

tioned study, while also incurring lower computational cost per

iteration due to its smaller, 4-point stencil. In contrast, BoxMG

requires 14-point stencils on all but the finest resolution levels. An-

other advantage of our approach is its faster per-step preprocessing.

Specifically, our method requires only a simple sweep over the

multigrid hierarchy to calculate three coefficients per cell (see Al-

gorithm 1), whereas BoxMG involves more expensive sweeps with

nested loops to compute 14 coefficients for a symmetric 27-point

stencil. Most importantly, our method can be naturally extended to

a multiresolution adaptive scheme, as demonstrated in the present

work using MSBG. In contrast, extending Box-MG to an adaptive

framework would be inherently more difficult and less efficient due

to its 27-point stencil structure in 3D.

Table 6. Timing breakdown of an average simulation step of our method for
the scenario shown in Figure 25, compared to the SPGrid-based solver from
Setaluri et al. [2014] for their highest resolution example and a recent two-
phase method in CFD [Zeng et al. 2022] for a dam-break simulation. Our
method successfully avoids the pressure bottleneck of other methods which
spend a disproportionate amount of time solving the Poisson equation. (A
dash indicates not available / applicable.)

Method P2G Pressure Advect Other

Ours 27% 30% 13% 30%

Setaluri et al. - 91% 5% 4%

Zeng et al. - 83% - 17%

To demonstrate the full potential of our method, we reran the

same benchmark scenario at a resolution ten times higher than

the highest reported in MacLachlan’s original study, that is, 2000
3

compared to 200
3
at approximately the same number of iterations

per time step. Figure 18 shows a zoom-in of the complex interface

dynamics of a fragmenting air bubble.

Eliminating the Pressure-Solver Bottleneck. For prior state-of-the-
art methods, pressure correction often accounts for the vast majority

of total simulation time, particularly at high grid resolutions and

large phase density contrasts. In contrast, in all our examples, the

pressure solve accounted for no more than about one-third of the

total runtime, regardless of grid resolution or flow complexity (cf.

Table 6).

Fig. 18. Top row: Rising and disintegrating bubbles as of the CFD-benchmark
from [MacLachlan et al. 2008] ("difficult scenario"). Bottom row: 2D slices
(zoomed-in) at 𝑡 = 0.0266 seconds, showing the phase field (blue=water,
yellow=air) and the vorticity magnitude of the velocity field. (a) Grid res-
olution of 2003 as used by MacLachlan et al. (our re-simulation) (b) Our
adaptive simulation at ten times the original resolution.

8.4 Full Simulation Results
We simulated a variety of examples to demonstrate the effectiveness

of our method in animating complex, large-scale two-phase flow

scenarios at very high, cinematic resolutions. Where possible, we

also included real photographs for qualitative comparison. We did

not, however, make an effort to precisely match the conditions of

the photographs. For an impression of the animated versions we

also strongly encourage viewing the accompanying video.

Simulation times were typically on the order of 30 to 100 seconds

per time step with 2–7 time steps per frame at CFL numbers of 3–4

(Table 7). Viscosity-parameters 𝛼𝐹𝐿𝐼𝑃 were set to 0.985 and 0.96 for

liquid and air, respectively. Resolutions are expressed as effective
resolution, referring to the equivalent resolution of a uniform grid

that would be required to resolve the phase interface at the reso-

lution of the finest MSBG level. All simulations are physics-based,

without vorticity confinement or any other artificial turbulence

enhancement.

Dam break with obstacle. First, we set up a classic dam break

scenario similar to [Li et al. 2022, 2024], where we enlarged the

relative width of the simulation domain to provide more room for

splashing and water-air interaction. The effective resolution was

also increased from 800× 4002 (Li et al. [2024]) to 16003. Small-scale

(3 meters) and large-scale (400 meters) simulations were conducted

with both a standard single-phase free-surface and our proposed

two-phase solver. Figure 19 shows snapshots from the resulting
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Fig. 19. Dam break scenario. Small-scale (left column) vs. Large-scale (right
column) simulations. Single-phase simulations are almost identical regard-
less of scale, while our two-phase method can reproduce characteristic
features of violent large-scale flows (d), such as "explosive" jets of spray.

Fig. 20. Fully simulating the surrounding air velocity field is crucial for
visually convincing large-scale water simulations: An ocean wave break-
ing on the beach was simulated with our proposed method. Shown is the
two-phase velocity field (vorticity). Upper left corner: The same simulation
rendered in 3D. Effective resolution: 4096 × 1024 × 512.

simulations. Single-phase simulations essentially look the same re-

gardless of scale (except for time scaling, i.e. large scale looks like

small scale in slow-motion) because of missing non-linear effects of

the air phase interactions. In contrast, our two-phase simulation in

(d) conveys the sense of a large-scale dam break. It faithfully repro-

duces characteristic large-scale flow features such as explosion-like

jets and streamers of spray formed by vortex tubes of the turbulent

air velocity (encircled in purple).

Numerical Wave Tank and Two-Phase Turbulence. In the next ex-

periment, we generated large solitary ocean waves in a numerical

wave tank driven by a standard piston-type wavemaker [Wang et al.

2019]. The resulting two-phase velocity field, shown in Figures 20

and 22 (top), highlights the capability of our method to resolve the

liquid-air boundary layer and to reproduce realistic two-phase tur-

bulence phenomena in the vicinity of a complex, highly dynamic

liquid-air interface. This is crucial for realistic detail of complex

spray movement (encircled areas in Figure 20), and, to the best of

our knowledge, has not been demonstrated before in Graphics at

high resolutions without procedural heuristics.

Wave and Obstacle at Extreme Resolution. To test the scalability

of our method up to the limits of machine resources (256 GB of

memory), we further increased the adaptive grid resolution to 6𝑘 ×
2𝑘 × 1.6𝑘 for the pressure (and 18𝑘 × 6𝑘 × 5𝑘 for the spray density

field) with more than 3 billion particles. A solid obstacle was also

placed in the middle of the wave tank. A snapshots of the resulting

simulation is shown in Figure 1. The average simulation time was

approximately 2 minutes per time step with a total duration of 3.5

days.

Dam Discharge. For this experiment, we modeled the discharge

flow of a large hydrodynamic dam, inspired by the Three Gorges

Dam in Sandouping, China. Water flows at a velocity of 40m s
−1

through a floodgate with a diameter of 5m, inclined at an angle of 18

degrees to the horizontal. The floodgate is located at a height of 9m

above a reservoir pool with an initial water depth of 3m. Figure 3

highlights the intense two-phase water-air turbulence caused by the

resulting water jet, ejected at very high speed through the floodgate.

The total size of the simulation domain is 𝐿 = 200m, resolved at

a resolution of 2048 cells for the pressure and 8192 cells for the

rendered water surface and spray density fields, respectively.

Tsunami Wave Hitting a Complex Coast Line. The next exam-

ple demonstrates the robustness of PF-FLIP in handling complex

solid geometry alongside an intricate liquid-air interface. In this

scenario, we simulated a tsunami wave impacting a procedurally

generated fractal coast, which exhibits geometric detail across all

spatial frequencies. The initial wave speed is 𝑣0 = 30m s
−1

. Effective

Resolution is 4096×10242. Figure 24 shows a snapshot of the simula-

tion, with the included reference photograph highlighting the high

level of physical realism achieved by our method in reproducing

the characteristic spray clouds driven by the turbulent air phase of

the two-phase velocity field.

Ocean Wave-Train Breaking on the Beach. Finally, we present a
simulation of a large, kilometer-sized ocean scene with multiple

wave trains shoaling and breaking on an artificial beach. Here, in

order to create more complex and natural wave patterns, we inclined

the wave generator to let waves interact with their own reflections

from the domain boundary. Figure 21 illustrates the setup. The effec-

tive resolution was set to 3072 × 1536 × 1024, with approximately 2

billion particles. Each time step required, on average, 60 seconds of

CPU time. The resulting simulation snapshots, shown in Figures 4, 5,

25, and 23, demonstrate the ability of our solver to faithfully capture

key visual features of large-scale water-air flows. These features in-

cludewind-blownmist streamers over wave crests, the characteristic

"explosion-like" jets and spray plumes of highly turbulent air-water

interactions associated with plunging wave lips, and the charac-

teristic "wave tubes." Owing to the solver’s physics-based nature
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this complex behavior is generated from simple simulation setups

without requiring procedural detail enhancements, post-processing

heuristics, or artistic intervention.

Table 7. Statistics for our large scale simulations. The number of active
pressure cells is number of FLIP particles divided by 8.

Figure Effective resolution Max particles Min. per

Pressure Spray-density FLIP/Spray Step/frame

1 6144×2048×1600 18432×6144×4800 3.1/1.0 B 1.9/9.5
3 2048×10242 8192×40962 1.1/0.5 B 0.7/4.0
4,5,25 3072×1536×1024 12288×6144×4096 2.0/0.1 B 1.0/5.7
22 4096×1024×512 12288×3072×1536 1.0/0.2 B 0.6/6.1
24 4096×10242 12288×30722 1.2/0.5 B 0.8/7.0

Fig. 21. Simulation setup with inclined wave generator.

9 Limitations
While our method demonstrates significant improvements and capa-

bilities, it is not without limitations. One inherent constraint, shared

with most Cartesian grid-based adaptivity schemes, is that resolu-

tion boundaries currently cannot cross the liquid-air interface. We

note that, in principle, it is possible to lift this restriction [Ando and

Batty 2020] and we plan such an extension in future work. Further-

more, the maximum depth of refinement is restricted to the binary

logarithm of the MSBG base block resolution, that is, log
2
(16) or

log
2
(32). We have not found this limiting in practice, as in 3D each

level of refinement reduces computational costs significantly, by a

factor of eight.

Finally, as with other FLIP-based methods, our approach can

exhibit relatively high levels of noise in field quantities arising from

high-frequency noise in the particle distribution. While this is not

critical for our large-scale, highly turbulent target scenarios, which

inherently exhibit a high level of "natural" noise, it could impede

the effectiveness of our method for very small-scale, surface-tension

dominated scenarios, especially at low density ratios.

10 Conclusions and Outlook
We have introduced Adaptive Phase-Field-FLIP, a method that com-

bines a novel FLIP variant for two-phase flow, an efficient dual

multiresolution scheme for grids and particles, and a highly efficient

Fig. 22. Large ocean wave. Adaptive PF-FLIP is capable of resolving the air-
water boundary layer, flow separation, free shear layer and the turbulent
wake behind the wave crest in 3D. (a) Shown is part of a 2D slice (vorticity
magnitude) from a 3D simulation with an effective resolution of 4096 ×
1024 × 512 cells and a total simulation domain size of 500 meters. (b) 3D
rendering of the same wave during breaking.

Fig. 23. Breaking wave. Turbulent wave tube. Detail zoom-in of the large-
scale simulation shown in Figure 25

.

adaptive Poisson solver. This approach addresses the key challenges

of large-scale, high-resolution, and highly turbulent two-phase fluid

simulation with large density ratios. By leveraging the proposed

MSBG (Multiresolution Sparse Block Grids) framework and integrat-

ing adaptivity across all critical simulation components, including

the Poisson solver, our method achieves unprecedented efficiency
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Fig. 24. Large waves hitting the coast at high speed. Comparison between our simulation and a real photograph for qualitative reference. Photograph © AP
Photo / Ben Birchall.

Fig. 25. Breaking ocean waves simulated with our method (2 billion particles). Our method faithfully captures key visual features of large-scale air-water flows,
such as wind-blown mist streamers over wave crests and the characteristic ’explosion-like’ jets and spray plumes of highly turbulent air-water interactions.

and scalability. This enables the fully physics-based simulation of

intricate two-phase phenomena like turbulent air wakes of breaking

waves, at cinematic resolutions on a single work station.

Looking ahead, a number of interesting directions exist for future

exploration. As discussed in Section 9, we aim to extend spatial

adaptivity to cases where resolution boundaries intersect the liquid

surface. Another interesting line of research enabled by our work

would be the integration of simulated turbulent wind fields which

could open up the possibility to simulate realistic storm scenarios

with ocean waves driven by physical wind dynamics. In future

work we would also like to improve our spray model, possibly by

incorporating droplet atomization models from the field of CFD.

Finally, we see potential for employing adaptive PF-FLIP in the

context of CFD applications, such as large-scale numerical wave

tanks or the study of wave-structure interactions in coastal and

offshore engineering.

References
Mridul Aanjaneya, Ming Gao, Haixiang Liu, Christopher Batty, and Eftychios Sifakis.

2017. Power diagrams and sparse paged grids for high resolution adaptive liquids.

ACM Transactions on Graphics (TOG) 36, 4 (2017), 1–12.

Bart Adams, Mark Pauly, Richard Keiser, and Leonidas J. Guibas. 2007. Adaptively

sampled particle fluids. ACM Trans. Graph. 26, 3 (July 2007), 48–es.

Mark Adams, Marian Brezina, Jonathan Hu, and Ray Tuminaro. 2003. Parallel multigrid

smoothing: polynomial versus Gauss–Seidel. J. Comput. Phys. 188, 2 (2003), 593–610.
Daniel M Anderson, Geoffrey B McFadden, and Adam A Wheeler. 1998. Diffuse-

interface methods in fluid mechanics. Annual review of fluid mechanics 30, 1 (1998),
139–165.

Ryoichi Ando and Christopher Batty. 2020. A practical octree liquid simulator with

adaptive surface resolution. ACM Transactions on Graphics (TOG) 39, 4 (2020), 32–1.
Ryoichi Ando, Nils Thurey, and Reiji Tsuruno. 2012. Preserving fluid sheets with

adaptively sampled anisotropic particles. IEEE transactions on visualization and
computer graphics 18, 8 (2012), 1202–1214.

Ryoichi Ando, Nils Thürey, and Chris Wojtan. 2013. Highly adaptive liquid simulations

on tetrahedral meshes. ACM Transactions on Graphics (TOG) 32, 4 (2013), 1–10.
T Arrufat, M Crialesi-Esposito, D Fuster, Y Ling, L Malan, S Pal, R Scardovelli, G

Tryggvason, and S Zaleski. 2021. A mass-momentum consistent, volume-of-fluid

method for incompressible flow on staggered grids. Computers & Fluids 215 (2021),
104785.

E Babinsky and PE Sojka. 2002. Modeling drop size distributions. Progress in energy
and combustion science 28, 4 (2002), 303–329.

Allison H Baker, Robert D Falgout, Tzanio V Kolev, and Ulrike Meier Yang. 2011. Multi-

grid smoothers for ultraparallel computing. SIAM Journal on Scientific Computing
33, 5 (2011), 2864–2887.

Marsha J Berger and Phillip Colella. 1989. Local adaptive mesh refinement for shock

hydrodynamics. Journal of computational Physics 82, 1 (1989), 64–84.
Haimasree Bhatacharya, Yue Gao, and Adam Bargteil. 2011. A level-set method for skin-

ning animated particle data. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (Vancouver, British Columbia, Canada) (SCA
’11). Association for Computing Machinery, New York, NY, USA, 17–24.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.



22 • Braun et al.

Henricus Bouwmeester, AndrewDougherty, and Andrew VKnyazev. 2015. Nonsymmet-

ric preconditioning for conjugate gradient and steepest descent methods. Procedia
Computer Science 51 (2015), 276–285.

Landon Boyd and Robert Bridson. 2012. MultiFLIP for energetic two-phase fluid

simulation. ACM Transactions on Graphics (TOG) 31, 2 (2012), 1–12.
Jeremiah U Brackbill, Douglas B Kothe, and Charles Zemach. 1992. A continuum

method for modeling surface tension. Journal of computational physics 100, 2 (1992),
335–354.

Jeremiah U Brackbill and Hans M Ruppel. 1986. FLIP: A method for adaptively zoned,

particle-in-cell calculations of fluid flows in two dimensions. Journal of Computa-
tional physics 65, 2 (1986), 314–343.

Robert Bridson. 2015. Fluid simulation for computer graphics. AK Peters/CRC Press,

Boca Raton, FL.

William L Briggs, Van Emden Henson, and Steve F McCormick. 2000. A multigrid
tutorial. SIAM, Philadelphia, PA.

Nuttapong Chentanez, Bryan E Feldman, François Labelle, James F O’Brien, and

Jonathan R Shewchuk. 2007. Liquid simulation on lattice-based tetrahedral meshes.

In Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer
animation. Eurographics Association, Goslar, DEU, 219–228.

Alessandro De Rosis and Enatri Enan. 2021. A three-dimensional phase-field lattice

Boltzmann method for incompressible two-components flows. Physics of Fluids 33,
4 (2021), 043315.

JE Dendy. 1982. Black box multigrid. J. Comput. Phys. 48, 3 (1982), 366–386.
Anshu Dubey, Ann Almgren, John Bell, Martin Berzins, Steve Brandt, Greg Bryan,

Phillip Colella, Daniel Graves, Michael Lijewski, Frank Löffler, et al. 2014. A survey

of high level frameworks in block-structured adaptive mesh refinement packages. J.
Parallel and Distrib. Comput. 74, 12 (2014), 3217–3227.

Douglas Enright, Stephen Marschner, and Ronald Fedkiw. 2002. Animation and ren-

dering of complex water surfaces. In Proceedings of the 29th annual conference on
Computer graphics and interactive techniques. Association for Computing Machinery,

New York, NY, USA, 736–744.

Abbas Fakhari, Martin Geier, and Diogo Bolster. 2019. A simple phase-field model for

interface tracking in three dimensions. Computers & Mathematics with Applications
78, 4 (2019), 1154–1165.

Yu Fang, Yuanming Hu, Shi-Min Hu, and Chenfanfu Jiang. 2018. A Temporally Adaptive

Material Point Method with Regional Time Stepping. Computer Graphics Forum 37,

8 (2018), 195–204.

Florian Ferstl, Ryoichi Ando, Chris Wojtan, RÃ¼diger Westermann, and Nils Thuerey.

2016. Narrow Band FLIP for Liquid Simulations. Computer Graphics Forum 35, 2

(2016), 225–232.

Florian Ferstl, Rüdiger Westermann, and Christian Dick. 2014. Large-scale liquid

simulation on adaptive hexahedral grids. IEEE Transactions on Visualization and
Computer Graphics 20, 10 (2014), 1405–1417.

Chuyuan Fu, Qi Guo, Theodore Gast, Chenfanfu Jiang, and Joseph Teran. 2017. A

polynomial particle-in-cell method. ACM Transactions on Graphics (TOG) 36, 6
(2017), 1–12.

Ming Gao, Xinlei Wang, Kui Wu, Andre Pradhana, Eftychios Sifakis, Cem Yuksel,

and Chenfanfu Jiang. 2018. GPU optimization of material point methods. ACM
Transactions on Graphics (TOG) 37, 6 (2018), 1–12.

Frederic Gibou, Ronald P Fedkiw, Li-Tien Cheng, and Myungjoo Kang. 2002. A second-

order-accurate symmetric discretization of the Poisson equation on irregular do-

mains. J. Comput. Phys. 176, 1 (2002), 205–227.
Christoph Gissler, Stefan Band, Andreas Peer, Markus Ihmsen, and Matthias Teschner.

2017. Generalized drag force for particle-based simulations. Computers & Graphics
69 (2017), 1–11.

Francis H Harlow, J Eddie Welch, et al. 1965. Numerical calculation of time-dependent

viscous incompressible flow of fluid with free surface. Physics of fluids 8, 12 (1965),
2182.

Xiaoyi He, Raoyang Zhang, Shiyi Chen, and Gary D Doolen. 1999. On the three-

dimensional Rayleigh–Taylor instability. Physics of Fluids 11, 5 (1999), 1143–1152.
Cyril W Hirt and Billy D Nichols. 1981. Volume of fluid (VOF) method for the dynamics

of free boundaries. Journal of computational physics 39, 1 (1981), 201–225.
Jeong-Mo Hong and Chang-Hun Kim. 2005. Discontinuous fluids. ACM Transactions

on Graphics (TOG) 24, 3 (2005), 915–920.
Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo Durand.

2019a. Taichi: a language for high-performance computation on spatially sparse

data structures. ACM Transactions on Graphics (TOG) 38, 6 (2019), 1–16.
Yuanming Hu, Xinxin Zhang, Ming Gao, and Chenfanfu Jiang. 2019b. On hybrid

lagrangian-eulerian simulation methods: practical notes and high-performance as-

pects. In ACM SIGGRAPH 2019 Courses (SIGGRAPH ’19). Association for Computing

Machinery, New York, NY, USA, Article 16, 246 pages.

Markus Ihmsen, Nadir Akinci, Gizem Akinci, and Matthias Teschner. 2012. Unified

spray, foam and air bubbles for particle-based fluids. The Visual Computer 28 (2012),
669–677.

David Jacqmin. 1999. Calculation of two-phase Navier–Stokes flows using phase-field

modeling. Journal of computational physics 155, 1 (1999), 96–127.

Suhas S Jain. 2022. Accurate conservative phase-field method for simulation of two-

phase flows. J. Comput. Phys. 469 (2022), 111529.
Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin.

2015. The affine particle-in-cell method. ACM Transactions on Graphics (TOG) 34, 4
(2015), 1–10.

Myungjoo Kang, Ronald P Fedkiw, and Xu-Dong Liu. 2000. A boundary condition cap-

turing method for multiphase incompressible flow. Journal of Scientific Computing
15 (2000), 323–360.

Janghee Kim, Deukhyun Cha, Byungjoon Chang, Bonki Koo, and Insung Ihm. 2006.

Practical animation of turbulent splashing water. In Proceedings of the 2006 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’06). Eurographics
Association, Goslar, DEU, 335–344.

Markus Kowarschik, Iris Christadler, and Ulrich Rüde. 2006. Towards Cache-Optimized

Multigrid Using Patch-Adaptive Relaxation. In Applied Parallel Computing. State of
the Art in Scientific Computing, Jack Dongarra, Kaj Madsen, and Jerzy Waśniewski

(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 901–910.

Steve Lesser, Alexey Stomakhin, Gilles Daviet, Joel Wretborn, John Edholm, Noh-Hoon

Lee, Eston Schweickart, Xiao Zhai, Sean Flynn, and Andrew Moffat. 2022. Loki: a

unified multiphysics simulation framework for production. ACM Transactions on
Graphics (TOG) 41, 4 (2022), 1–20.

Wei Li, Daoming Liu, Mathieu Desbrun, Jin Huang, and Xiaopei Liu. 2020. Kinetic-

based multiphase flow simulation. IEEE Transactions on Visualization and Computer
Graphics 27, 7 (2020), 3318–3334.

Wei Li, Yihui Ma, Xiaopei Liu, and Mathieu Desbrun. 2022. Efficient kinetic simulation

of two-phase flows. ACM Transactions on Graphics 41, 4 (2022), 114.
Wei Li, Kui Wu, and Mathieu Desbrun. 2024. Kinetic Simulation of Turbulent Multifluid

Flows. ACM Transactions on Graphics (TOG) 43, 4 (2024), 1–17.
Haixiang Liu, Yuanming Hu, Bo Zhu, Wojciech Matusik, and Eftychios Sifakis. 2018.

Narrow-band topology optimization on a sparsely populated grid. ACM Transactions
on Graphics (TOG) 37, 6 (2018), 1–14.

Haixiang Liu, Nathan Mitchell, Mridul Aanjaneya, and Eftychios Sifakis. 2016. A

scalable schur-complement fluids solver for heterogeneous compute platforms.

ACM Transactions on Graphics (TOG) 35, 6 (2016), 1–12.
Xu-Dong Liu, Ronald P Fedkiw, and Myungjoo Kang. 2000. A boundary condition cap-

turing method for Poisson’s equation on irregular domains. Journal of computational
Physics 160, 1 (2000), 151–178.

Frank Losasso, Frédéric Gibou, and Ron Fedkiw. 2004. Simulating water and smoke

with an octree data structure. ACM Trans. Graph. 23, 3 (Aug. 2004), 457–462.
Frank Losasso, Jerry Talton, Nipun Kwatra, and Ronald Fedkiw. 2008. Two-way coupled

SPH and particle level set fluid simulation. IEEE Transactions on Visualization and
Computer Graphics 14, 4 (2008), 797–804.

Scott P MacLachlan, Jok Man Tang, and Cornelis Vuik. 2008. Fast and robust solvers

for pressure-correction in bubbly flow problems. J. Comput. Phys. 227, 23 (2008),
9742–9761.

Jan Mandel. 1988. Multi-Grid Methods and Applications (Wolfgang Hackbusch). SIAM
Rev. 30, 3 (1988), 519–520.

Daniel F Martin, Phillip Colella, and Daniel Graves. 2008. A cell-centered adaptive pro-

jection method for the incompressible Navier–Stokes equations in three dimensions.

J. Comput. Phys. 227, 3 (2008), 1863–1886.
A. McAdams, E. Sifakis, and J. Teran. 2010. A parallel multigrid Poisson solver for fluids

simulation on large grids. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (SCA ’10). Eurographics Association, Goslar,
DEU, 65–74.

Viorel Mihalef, Samet Kadioglu, Mark Sussman, Dimitris Metaxas, and Vassilios Hur-

musiadis. 2008. Interaction of two-phase flow with animated models. Graphical
Models 70, 3 (2008), 33–42.

V. Mihalef, D. Metaxas, and M. Sussman. 2007. Textured Liquids based on the Marker

Level Set. Computer Graphics Forum 26, 3 (2007), 457–466.

Viorel Mihalef, Dimitris Metaxas, and Mark Sussman. 2009. Simulation of two-phase

flow with sub-scale droplet and bubble effects. Computer Graphics Forum 28, 2

(2009), 229–238.

Shahab Mirjalili, Suhas S Jain, and Micheal Dodd. 2017. Interface-capturing methods

for two-phase flows: An overview and recent developments. Center for Turbulence
Research Annual Research Briefs 2017, 117-135 (2017), 13.

Marcus Mohr and Roman Wienands. 2004. Cell-centred multigrid revisited. Computing
and Visualization in Science 7, 3 (2004), 129–140.

Joe JMonaghan. 1992. Smoothed particle hydrodynamics. In: Annual review of astronomy
and astrophysics. Vol. 30 (A93-25826 09-90), p. 543-574. 30 (1992), 543–574.

Ken Museth. 2013. VDB: High-resolution sparse volumes with dynamic topology. ACM
transactions on graphics (TOG) 32, 3 (2013), 1–22.

Mohammad Sina Nabizadeh, Ritoban Roy-Chowdhury, Hang Yin, Ravi Ramamoorthi,

and Albert Chern. 2024. Fluid Implicit Particles on Coadjoint Orbits. ACM Trans.
Graph. 43, 6, Article 270 (Nov. 2024), 38 pages.

Mohammad Sina Nabizadeh, Stephanie Wang, Ravi Ramamoorthi, and Albert Chern.

2022. Covector fluids. ACM Transactions on Graphics (TOG) 41, 4 (2022), 1–16.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.



Adaptive Phase-Field-FLIP for Very Large Scale Two-Phase Fluid Simulation • 23

Juan Navarro, Sitararn Iyer, Peter Druschel, and Alan Cox. 2002. Practical, transparent

operating system support for superpages. ACM SIGOPS Operating Systems Review
36, SI (2002), 89–104.

Michael B Nielsen and Ole Østerby. 2013. A two-continua approach to Eulerian simula-

tion of water spray. ACM Transactions on Graphics (TOG) 32, 4 (2013), 1–10.
Kevin M. Olson and Peter MacNeice. 2005. An Overview of the PARAMESH AMR

Software Package and Some of Its Applications. In Adaptive Mesh Refinement -
Theory and Applications, Tomasz Plewa, Timur Linde, and V. Gregory Weirs (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 315–330.

Stanley Osher and James A Sethian. 1988. Fronts propagating with curvature-dependent

speed: Algorithms based on Hamilton-Jacobi formulations. Journal of computational
physics 79, 1 (1988), 12–49.

Ashish Panwar, Sorav Bansal, and K. Gopinath. 2019. HawkEye: Efficient Fine-grained

OS Support for Huge Pages. In Proceedings of the Twenty-Fourth International Con-
ference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS ’19). Association for Computing Machinery, New York, NY, USA, 347–360.

https://doi.org/10.1145/3297858.3304064

Chuck Pheatt. 2008. Intel® threading building blocks. Journal of Computing Sciences in
Colleges 23, 4 (2008), 298–298.

Stéphane Popinet. 2003. Gerris: a tree-based adaptive solver for the incompressible

Euler equations in complex geometries. Journal of computational physics 190, 2
(2003), 572–600.

Stéphane Popinet. 2009. An accurate adaptive solver for surface-tension-driven interfa-

cial flows. J. Comput. Phys. 228, 16 (2009), 5838–5866.
Ziyin Qu, Minchen Li, Fernando De Goes, and Chenfanfu Jiang. 2022. The power

particle-in-cell method. ACM Trans. Graph. 41, 4, Article 118 (2022), 13 pages.
Ziyin Qu, Xinxin Zhang, Ming Gao, Chenfanfu Jiang, and Baoquan Chen. 2019. Efficient

and conservative fluids using bidirectional mapping. ACM Transactions on Graphics
(TOG) 38, 4 (2019), 1–12.

Wouter Raateland, Torsten Hädrich, Jorge Alejandro Amador Herrera, Daniel T Banuti,

Wojciech Pałubicki, Sören Pirk, Klaus Hildebrandt, and Dominik L Michels. 2022.

Dcgrid: An adaptive grid structure for memory-constrained fluid simulation on the

gpu. Proceedings of the ACM on Computer Graphics and Interactive Techniques 5, 1
(2022), 1–14.

Mehdi Raessi and Heinz Pitsch. 2012. Consistent mass and momentum transport for

simulating incompressible interfacial flows with large density ratios using the level

set method. Computers & Fluids 63 (2012), 70–81.
M. Raw. 1996. Robustness of coupled Algebraic Multigrid for the Navier-Stokes equa-

tions. In 34th Aerospace Sciences Meeting and Exhibit. American Institute of Aero-

nautics and Astronautics, Reno, Nevada.

Ronald A. Remmerswaal and Arthur E. P. Veldman. 2022. On Simulating Variability of

Sloshing Loads in LNG Tanks. In Proceedings of the ASME 2022 41st International
Conference on Ocean, Offshore and Arctic Engineering (OMAE), Vol. 7: CFD and FSI.

ASME, Hamburg, Germany, V007T08A012.

Bo Ren, Wei He, Chen-Feng Li, and Xu Chen. 2021. Incompressibility enforcement for

multiple-fluid SPH using deformation gradient. IEEE Transactions on Visualization
and Computer Graphics 28, 10 (2021), 3417–3427.

Bo Ren, Chenfeng Li, Xiao Yan,Ming C Lin, Javier Bonet, and Shi-MinHu. 2014. Multiple-

fluid SPH simulation using a mixture model. ACM Transactions on Graphics (TOG)
33, 5 (2014), 1–11.

Arch Robison, Michael Voss, and Alexey Kukanov. 2008. Optimization via Reflection

on Work Stealing in TBB. In 2008 IEEE International Symposium on Parallel and
Distributed Processing. IEEE, Miami, FL, USA, 1–8.

Ulrich Rüde. 1993. Fully adaptive multigrid methods. SIAM J. Numer. Anal. 30, 1 (1993),
230–248.

Ruben Scardovelli and Stéphane Zaleski. 1999. Direct numerical simulation of free-

surface and interfacial flow. Annual review of fluid mechanics 31, 1 (1999), 567–603.
Rajsekhar Setaluri, Mridul Aanjaneya, Sean Bauer, and Eftychios Sifakis. 2014. SPGrid: A

sparse paged grid structure applied to adaptive smoke simulation. ACM Transactions
on Graphics (TOG) 33, 6 (2014), 1–12.

Han Shao, Libo Huang, and Dominik L Michels. 2022. A fast unsmoothed aggregation

algebraic multigrid framework for the large-scale simulation of incompressible flow.

ACM Transactions on Graphics (TOG) 41, 4 (2022), 1–18.
William A Sirignano. 2010. Fluid dynamics and transport of droplets and sprays. Cam-

bridge university press, Cambridge, United Kingdom.

B. Solenthaler and R. Pajarola. 2008. Density contrast SPH interfaces. In Proceedings of
the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Dublin,

Ireland) (SCA ’08). Eurographics Association, Goslar, DEU, 211–218.
Oh-Young Song, Hyuncheol Shin, and Hyeong-Seok Ko. 2005. Stable but nondissipative

water. ACM Transactions on Graphics (TOG) 24, 1 (2005), 81–97.
K_R Sreenivasan. 1991. Fractals and multifractals in fluid turbulence. Annual review of

fluid mechanics 23, 1 (1991), 539–604.
Jos Stam. 2023. Stable Fluids (1 ed.). Association for Computing Machinery, New York,

NY, USA, 779–786.

Alexey Stomakhin, Steve Lesser, Joel Wretborn, Sean Flynn, Johnathan Nixon, Nicholas

Illingworth, Adrien Rollet, Kevin Blom, and Douglas Mchale. 2023. Pahi: A Unified

Water Pipeline and Toolset. In Proceedings of the 2023 Digital Production Symposium
(Los Angeles, CA, USA). Association for Computing Machinery, New York, NY, USA,

Article 11, 13 pages.

Lucas Stringhetti. 2024. Houdini Water Simulation Techniques: A Detailed

Breakdown. The VFX Media. Retrieved November 29, 2024, from

https://www.thevfxmedia.com/articles/houdini-water-simulation-techniques-

from-lucas-stringhetti-a-detailed-breakdown.

Hari Sundar, Rahul S Sampath, and George Biros. 2008. Bottom-up construction and

2: 1 balance refinement of linear octrees in parallel. SIAM Journal on Scientific
Computing 30, 5 (2008), 2675–2708.

Mark Sussman, Peter Smereka, and Stanley Osher. 1994. A level set approach for

computing solutions to incompressible two-phase flow. Journal of Computational
physics 114, 1 (1994), 146–159.

JM Tang and C Vuik. 2007. Efficient deflation methods applied to 3-D bubbly flow

problems. Electronic Transactions on Numerical Analysis 26 (2007), 330–349.
Osamu Tatebe. 1993. The Multigrid Preconditioned Conjugate Gradient Method. In

The Sixth Copper Mountain Conference on Multigrid Methods, Part 2. NASA, Copper
Mountain, Colorado, USA, 621—-634.

Jannis Teunissen and Ute Ebert. 2018. Afivo: A framework for quadtree/octree AMR

with shared-memory parallelization and geometric multigrid methods. Computer
Physics Communications 233 (2018), 156–166.

Ulrich Trottenberg, CorneliusWOosterlee, andAnton Schuller. 2000.Multigrid. Elsevier,
Amsterdam, The Netherlands.

Dong-xu Wang, Jia-wen Sun, Jin-song Gui, Zhe Ma, De-zhi Ning, and Ke-zhao Fang.

2019. A numerical piston-type wave-maker toolbox for the open-source library

OpenFOAM. Journal of Hydrodynamics 31, 4 (2019), 800–813.
Xinlei Wang, Yuxing Qiu, Stuart R Slattery, Yu Fang, Minchen Li, Song-Chun Zhu, Yixin

Zhu, Min Tang, Dinesh Manocha, and Chenfanfu Jiang. 2020. A massively parallel

and scalable multi-GPU material point method. ACM Transactions on Graphics
(TOG) 39, 4 (2020), 30–1.

Xiaokun Wang, Yanrui Xu, Sinuo Liu, Bo Ren, Jiří Kosinka, Alexandru C. Telea, Jiamin

Wang, Chongming Song, Jian Chang, Chenfeng Li, Jian Jun Zhang, and Xiaojuan

Ban. 2024. Physics-based fluid simulation in computer graphics: Survey, research

trends, and challenges. Computational Visual Media 10, 5 (October 2024), 803–858.
Daniel Weber, Johannes Mueller-Roemer, AndrÃ© Stork, and Dieter Fellner. 2015.

A Cut-Cell Geometric Multigrid Poisson Solver for Fluid Simulation. Computer
Graphics Forum 34, 2 (2015), 481–491.

Rene Winchenbach, Hendrik Hochstetter, and Andreas Kolb. 2017. Infinite continuous

adaptivity for incompressible SPH. ACM Transactions on Graphics (TOG) 36, 4 (2017),
1–10.

Chris Wojtan, Nils Thürey, Markus Gross, and Greg Turk. 2009. Deforming meshes

that split and merge. In ACM SIGGRAPH 2009 Papers. Association for Computing

Machinery, New York, NY, USA, Article 76, 10 pages.

Kui Wu, Nghia Truong, Cem Yuksel, and Rama Hoetzlein. 2018. Fast Fluid Simulations

with Sparse Volumes on the GPU. Computer Graphics Forum 37, 2 (2018), 157–167.

Feng Xiao. 2012. Large Eddy Simulation of liquid jet primary breakup. Ph. D. Dissertation.
Loughborough University.

Han Yan and Bo Ren. 2023. High Density Ratio Multi-Fluid Simulation with Peridy-

namics. ACM Transactions on Graphics (TOG) 42, 6 (2023), 1–14.
Guan Heng Yeoh and Jiyuan Tu. 2019. Computational techniques for multiphase flows.

Butterworth-Heinemann, Oxford, United Kingdom.

Yadong Zeng, Anqing Xuan, Johannes Blaschke, and Lian Shen. 2022. A parallel cell-

centered adaptive level set framework for efficient simulation of two-phase flows

with subcycling and non-subcycling. J. Comput. Phys. 448 (2022), 110740.
Fan Zhang, Xiong Zhang, Kam Yim Sze, Yanping Lian, and Yan Liu. 2017. Incompressible

material point method for free surface flow. J. Comput. Phys. 330 (2017), 92–110.
Weiqun Zhang, Andrew Myers, Kevin Gott, Ann Almgren, and John Bell. 2021. AMReX:

Block-structured adaptive mesh refinement for multiphysics applications. The
International Journal of High Performance Computing Applications 35, 6 (2021), 508–
526.

Yongning Zhu and Robert Bridson. 2005. Animating sand as a fluid. ACM Transactions
on Graphics (TOG) 24, 3 (2005), 965–972.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://doi.org/10.1145/3297858.3304064
https://www.thevfxmedia.com/articles/houdini-water-simulation-techniques-from-lucas-stringhetti-a-detailed-breakdown
https://www.thevfxmedia.com/articles/houdini-water-simulation-techniques-from-lucas-stringhetti-a-detailed-breakdown

	Abstract
	1 Introduction
	1.1 Summary of Contributions

	2 Related Work
	3 Phase-Field FLIP
	3.1 Overview of FLIP and Notation
	3.2 Particles-to-grid Transfer (P2G) in PF-FLIP
	3.3 Obtaining the Phase Field
	3.4 Escaped Particles and Surface Tension
	3.5 Two-Phase Pressure Projection
	3.6 Grid-to-particles Transfer
	3.7 Viscosity and Advection

	4 Adaptivity
	4.1 Block Size Does Matter
	4.2 MSBG
	4.3 Capabilities of MSBG

	5 Adaptive Particles and Dual Adaptivity
	5.1 Probabilistic Coarsening
	5.2 Refinement Criteria
	5.3 Equalizing Spatially Varying Numerical Viscosity
	5.4  Dual Particle-Grid Adaptivity

	6 Adaptive Poisson Solver
	6.1 Algebraic Aggregation Multigrid
	6.2 Leveraging MSBG
	6.3 Block-based Relaxation
	6.4 Adaptive Relaxation

	7 Spray and Rendering
	8 Results
	8.1 Adaptive Grids with MSBG
	8.2 Basic Phase-Field Tests
	8.3 Adaptive Poisson Solver
	8.4 Full Simulation Results

	9 Limitations
	10 Conclusions and Outlook
	References

