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Abstract

Efficiently and accurately solving partial differential equations is an important task
in many fields of science and engineering. In Eulerian fluid simulation, solving
the pressure equation constitutes a large part of the computational footprint of the
simulation. We therefore investigate the use of Convolutional Neural Networks (CNN)
to accelerate this step. Specifically, we compare different approaches to training a CNN
to provide an initial approximate solution to the numerical pressure solver, with the
aim of reducing the overall iterations and thereby computational time needed. We find
that integrating the solver into the network’s training loop, allowing the network to
observe the solver’s behavior at training time, significantly improves the usefulness of
the network’s pressure predictions as an initial state for the solver. While previously
used physics-informed approaches show better standalone simulation stability, we
show that hybrid simulations using our solver-trained models and the numerical
solver in conjunction notably outperform them. These solver-based hybrid simulations
achieve the same accuracy as traditional simulations, while requiring significantly less
computation time for commonly used target accuracies. Additionally, we show that
physics-informed and solver-based training approaches can be effectively combined to
alleviate the aforementioned stability issues when using our solver-trained models as
standalone pressure predictors.
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1 Introduction

Fluid simulations have a vast range of interesting applications. From special effects
in movies and video games to modeling liquid and gas flow in various engineering
disciplines, to medical applications, the list goes on. At the heart of these simulations
lie the Navier-Stokes equations, a set of partial differential equations that describe the
physical dynamics of fluid flow. To efficiently simulate a fluid, these equations are
commonly split up and solved in parts. One particularly important part is the calcula-
tion of the pressure acting within the fluid, which prevents it from being unnaturally
compressed. In Eulerian fluid simulation (see section 3.1), calculating the pressure field
entails solving a linear system of equations using a numerical solver. As this has to be
done for every individual time step, fluid simulations with high accuracy and fidelity
still take a long time to compute. Due to this, a recent trend in the fluid simulation
community has been to investigate how techniques from machine learning may be used
to accelerate traditional simulation methods. Methods approximating the pressure
calculation step using neural networks have proven to yield good results [Tom+17],
significantly increasing computational performance at the expense of some accuracy.
However, directly replacing the numerical solver by a trained network always leads
to an approximation with fixed accuracy. By contrast, a numerical solver can keep
iterating until it converges to the desired accuracy.

In this work, we therefore investigate how a trained neural network may be used
in conjunction with a numerical solver to provide simulation speed-ups while retaining
the same accuracy guarantees. A network’s pressure prediction can be used as an initial
state for the solver to further improve upon. We thus focus on evaluating the solver’s
iteration behavior given initial pressure guesses by networks trained with different
approaches. In particular, we explore the usefulness of training the neural networks
together with the numerical solver. We start by summarizing relevant research that has
already been performed in this field and discussing similarities and differences to our
experiments (see chapter 2). We then provide a review of the theoretical foundations
of this thesis, Eulerian fluid simulation (see chapter 3) and Convolutional Neural Net-
works (see chapter 4). Our general approach is outlined in chapter 5, before we evaluate
the results of our experiments (see chapter 6). Lastly, we summarize our main findings
(see chapter 7) and give insight into possible follow-up research (see chapter 8).
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2 Related Work

The application of machine learning techniques to the domain of physical simulation
has gained popularity and seen a lot of interesting research in recent years. In relation
to this thesis, two sub-areas are particularly relevant. In this chapter, we will therefore
first highlight recent findings concerning the application of Artificial Neural Networks
(see chapter 4) to the simulation of fluids. Secondly, we will discuss recent research
into the use of Deep Learning for solving partial differential equations (PDEs), such as
the Poisson problem, which arises during the pressure solving step (see section 3.3) of
Eulerian fluid simulation (see chapter 3).

2.1 Neural Networks in Fluid Simulation

Due to their complexity and non-linear nature, fluid dynamics are a challenging prob-
lem that is still difficult to efficiently solve. Especially in computer graphics applications,
a lot of effort has thus been made to find ways in which data-driven approaches can be
used to augment or substitute traditional fluid simulation techniques. In particle-based
fluid simulation, models based on regression forests [Lad+15] and most recently graph
networks [San+20] have been trained to learn the physical forces acting between fluid
particles from pre-computed simulations. Both methods showed impressive capabilities
to generalize to new simulation settings, with the method proposed by Ladicky et. al.
also showing a noticeable performance benefit.

In Eulerian fluid simulation, neural networks have been utilized to improve sim-
ulation accuracy and efficiency. Xie et. al. [Xie+18] used Generative Adversarial
Networks [Goo16] to introduce convincing details into low-resolution simulations,
making it possible to compute an inexpensive coarser simulation as a base and then
upsample it. Wiewel et. al. [WBT19] also showed how neural networks can be used to
accelerate simulations. They proposed a Long-Short-Term-Memory (LSTM) network
[see Nie15, page 204] to predict temporally coherent pressure sequences, arriving at a
neural network based solution with noticeable speed-up compared to a traditional fluid
solver. Similarly, Tompson et. al. [Tom+17] trained a Convolutional Neural Network
to infer the pressure, although they focused on the pressure for each time step in
isolation, leaving time integration to traditional schemes. By employing a loss based on
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2 Related Work

the physics governing fluid flow, they managed to fully replace the numerical solver
by a trained model, yielding simulations that trade some accuracy for a significant
computational speed-up.

Our approach likewise aims to accelerate Eulerian fluid simulation by training a
Convolutional Neural Network to infer pressure fields, reducing the computational
time usually spent on the pressure solving step. However, unlike the highlighted works,
our goal is not necessarily to completely replace the numerical solver. Instead, we
investigate how a trained pressure predictor can be used in conjunction with the solver.
Our method thereby does not sacrifice accuracy for speed, but endeavors to retain the
same accuracy guarantees a traditional solver provides.

2.2 Learning Partial Differential Equation Solvers

The pressure equation that is solved during Eulerian fluid simulation is a Poisson
problem, a partial differential equation (PDE) of the shape ∆ϕ = f , where ϕ and
f are scalar fields. PDEs arise in many different areas of physics and engineering.
Consequently, there has been a lot of research on the application of machine learning
techniques to them. Long et. al. used neural networks with convolutional operators to
discover the underlying PDE formulations in observed simulations [Lon+18]. Apart
from PDE analysis, there have also been several works aiming to train neural networks
to solve them [RPK17; SS18; Özb+19]. As in fluid simulation, their aim is generally
to train an accurate neural network substitute for a numerical PDE solver. Recently,
however, some works have emerged that investigate how to improve a traditional PDE
solver’s performance using trained models. Um et. al. explored a learned corrector,
which, applied after a numerical solver, further improves its accuracy [Um+19]. Hsieh
et. al. likewise trained a neural network to modify the updates of an existing solver to
further improve them and require less iterations overall [Hsi+19]. They thereby arrive
at a 2-3x speed-up while maintaining accuracy and convergence guarantees.

In both of these works the solver is also used directly in the loss function, giving
them a strong relation to our investigations in this thesis. However, while they focus on
using networks to further improve the solver’s output, we instead examine how best to
train them to predict a useful initial guess that can be used as input for the solver.
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3 Numerical Fluid Simulation

This chapter summarizes the principles of fluid simulation used as a basis for this
thesis. We chose to focus on Eulerian fluid simulation, where all relevant quantities
are stored in grid form. This regular data structure is very well suited for use with
Convolutional Neural Networks (see 4). Additionally, we only look at incompressible
flow here, i.e. fluid simulations that attempt to keep a constant density. For a more
comprehensive review of numerical fluid simulation techniques, we refer to [BM07].

3.1 The Eulerian Viewpoint

To simulate a continuous quantity (such as a fluid) on a computer, it must be split up
into discrete elements. An image, for example, is usually processed as a grid of pixels.
The resolution may be high enough so as not to be able to distinguish the individual
pixels, but current computers cannot simulate a truly continuous color field.
When simulating a fluid, therefore, it must also be discretized. In Eulerian fluid
simulation, this is done by splitting the simulation domain, i.e. space, into evenly sized
grid cells. Every such grid cell measures the fluid’s quantities (e.g. velocity, pressure,
density, color, etc.) at that fixed point in space. The flow of the fluid is achieved by
shifting the quantities between those grid cells. For example, as the fluid flows upwards,
lower cells’ density will decrease while the density of upper grid cells increases.

3.2 The Navier-Stokes Equations

The Navier-Stokes equations are the physical foundation of fluid simulation. They
describe the motion of a fluid, such as water or smoke, in the form of two partial
differential equations that must hold throughout the fluid for it to behave believably.
The overall goal of the simulation is therefore to ensure that the fluid’s velocity field u
changes in such a way that the Navier-Stokes equations remain satisfied.
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3 Numerical Fluid Simulation

3.2.1 Momentum Equation

The momentum equation describes how the fluid moves over time as a result of the
internal and external forces acting on it.

∂u
∂t

= −(u · ∇)u− 1
ρ
∇p + ν∆u + g (3.1)

Mathematically, this means it expresses the change of the velocity field u over time t,
i.e. ∂u

∂t , as a sum of four terms: advection, pressure, viscosity and external forces.

Advection As a fluid moves, it carries its attributes with it. For example, if a part of
the fluid were to be colorized with a splash of ink, this color would move along with
the fluid’s velocity field u. This phenomenon is known as advection. A quantity q’s
advection may be expressed as ∂q

∂t + (∇q)u, i.e. the sum of its change over time and its
change in space. Somewhat unintuitively, the velocity u itself should also be advected.
If a portion of the fluid moves due to having velocity, then it should conserve that
velocity, carrying it to its new location. The advection term of the momentum equation
therefore describes how the velocity field u changes due to its own movement.

Pressure Areas of a fluid that have high pressure p should move towards low pressure
areas. This force should therefore point in the direction where the pressure decreases
the most. This can be expressed as the negative gradient of the pressure field −∇p. As
higher concentrations of fluid require more force to be pushed, the term is multiplied
by the inverse density 1

ρ . In the context of incompressible flow, the pressure p can be
seen as "whatever it takes to keep the fluid from being compressed". Therefore, p is a
helper quantity that has to be chosen such that the incompressibility constraint (see
3.2.2) holds true.

Viscosity Different fluids have varying degrees of viscosity. Viscous fluids such as
honey resist deformation. This means there is an internal force resisting large spatial
differences between the velocity in one place and the immediately surrounding area.
This can be modeled by the Laplace operator ∆, which measures how far a quantity is
from the average around it. The kinematic viscosity ν is a parameter that can be chosen
to adjust how viscous the fluid should be. Viscosity is mostly relevant for very specific
effects, such as simulation of honey. Furthermore, numerical errors (see 3.3) lead to a
similar effect without the need to explicitly simulate viscosity [see BM07, page 9]. We
therefore disregard the viscosity term in the following.
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3 Numerical Fluid Simulation

External Forces The external forces term g is simply a sum of all external influences
on the fluid. The most important part of this is gravity, but e.g. forces resulting from
user interaction would also be included here.

3.2.2 Incompressibility Constraint

For an incompressible fluid, the overall density of the fluid should remain constant
throughout the simulation. Thus, the density must not globally decrease or increase
when advected using the fluid’s velocity field u. For this to hold, u must be divergence-
free.

∇u = 0 (3.2)

The divergence ∇u describes how much the velocity vectors point inwards or outwards
in any given point. If they all point towards the same location, the fluid flows into
this position without flowing back out again, creating a sink. A velocity field with
zero divergence therefore has no sources or sinks. Hence, quantities advected by it are
shifted around without globally increasing or decreasing.

3.2.3 Numerical Solution

To solve complex partial differential equations such as the Navier-Stokes equations
numerically, a widely used method is splitting [see BM07, pages 12-14]. Consider an
example partial differential equation (PDE):

dq
dt

= f (q) + g(q) (3.3)

Discretizing the time t into steps of size h, we can approximate this as:

q̃ = qn + h · f (qn)

qn+1 = q̃ + h · g(q̃)
(3.4)

This splitting introduces an error on the order of h, but it enables specialized methods
to be used to solve every component individually. Applying splitting to the momentum
equation (3.2.1) yields the following algorithm for simulating the fluid’s velocity field u
for one time step:
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3 Numerical Fluid Simulation

1. Advect the velocity field u

2. Apply external forces g to u

3. Use pressure p to make u divergence-free

a) Compute ∇u

b) Use a numerical solver to obtain p (see 3.3)

c) Correct u by subtracting h · 1
ρ∇p (see 3.2.1)

Advection is usually performed using the Semi-Lagrangian method [Sta99]. Here,
for each grid point, an imaginary particle is traced back using the negative velocity.
The values at the traced position are those that will end up at the grid point due to
advection. External forces can simply be added per ũ = u + h · g (see 3.2.3).
Lastly, the velocity field needs to be made divergence-free (so as to satisfy 3.2.2),
before it can be advected again. Since this correction is performed using −h · 1

ρ∇p, it

follows that p must be found such that ∇(ũ− h · 1
ρ∇p) = 0. In other word, p must be

determined so that u is divergence-free after being corrected with the gradient of p.

3.3 Pressure Solvers

To make the velocity divergence free, p has to be determined so that:

∇(ũ− h · 1
ρ
∇p) = ∇ũ− h

ρ
∆p

∇ũ =
h
ρ

∆p
(3.5)

As the simulation is performed on a grid, the differential operators can be discretized
using finite differences (with δx and δy denoting the horizontal and vertical distance
between grid points respectively):

∇u ≈
(ui+1,j − ui−1,j

2δx
+

ui,j+1 − ui,j−1

2δy

)
∆p ≈

( pi+1,j − 2pi,j − pi−1,j

2δx
+

pi,j+1 − 2pi,j − pi,j−1

2δy

) (3.6)

This yields a linear equation for every grid cell (i, j). Equation 3.5 therefore can be
expressed as Ap = d, where d is the pre-computed divergence vector and A is a
coefficient matrix defining the linear system of equations.
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3 Numerical Fluid Simulation

These equations can be further modified to include boundary conditions, e.g. to ensure
that the pressure at a wall is always equal to that of its neighboring fluid cells, thereby
making sure that no velocity into walls occurs.
There are several well established methods of numerically solving a linear system of
equations (e.g. Jacobi, Gauss-Seidel, etc. [see Saa03, pages 105 ff.]). For this thesis, we
focus on the conjugate gradient method.

3.3.1 The Conjugate Gradient Method

This section will briefly summarize the Conjugate Gradient (CG) algorithm. For an
in-depth explanation, we refer to [She+94]. The CG algorithm can be used to solve a
linear system of equations

Ax = b (3.7)

as long as A is a symmetric, positive-definite (i.e. qAq > 0 for any vector q 6= 0) matrix.
Under these conditions, solving Ax = b becomes equivalent to finding the minimum of
the function [see She+94, page 54]:

f (x) =
1
2

xAx− bx + c (3.8)

Due to A being positive-definite, f (x) takes the shape of a paraboloid bowl. The CG
algorithm starts at an initial guess x0 somewhere on this solution paraboloid. It then
takes a series of steps x0, x1, ..., xn until it is sufficiently close to the solution x, i.e. the
minimum of the paraboloid. Every such step is defined by a step size α and a search
direction.

x

x0

Figure 3.1: Iteratively getting closer to the minimum of the solution paraboloid (figure
adapted from [She+94]).
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3 Numerical Fluid Simulation

Steepest Descent An obvious approach to choosing the search direction is to use the
negative gradient − f ′(xi), as it represents the direction in which f (x) decreases the
most. Deriving equation 3.8 and taking into account A’s symmetry, we arrive at:

f ′(x) =
1
2

ATx +
1
2

Ax− b = Ax− b

− f ′(xi) = b− Axi

(3.9)

Intuitively, b− Axi also describes how far away the current guess xi is from satisfying
Axi = b. It is therefore also called the residual ri = b− Axi. Taking the residual ri as
the search direction, the step size α, i.e. how far along the negative gradient to go, must
be determined next.
The optimal step size α minimizes f (x) along the search direction, since the eventual
goal is to find the global minimum of f (x). Therefore, the minimum of the parabola
resulting from the intersection of the search direction with the solution paraboloid
must be found.

x

x0

x1

Figure 3.2: Finding the minimum along the intersection parabola of the search direction
and solution paraboloid (figure adapted from [She+94]).

This minimum can be found at the point along the search line where ri+1 · ri = 0, i.e.
where the previous residual and the new one are orthogonal to each other [see She+94,
pages 6-7]. From ri+1 · ri = 0 it can be derived [see She+94, page 6] that:

α =
riri

ri Ari
(3.10)

Using the calculation rules for α, ri and xi+1 = xi + αri, the Steepest Descent algorithm
can be formulated as in Algorithm 1. The calculation rule for r has been adapted for
performance reasons [see She+94, page 8].
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3 Numerical Fluid Simulation

x = x0; r = b− Ax;
i = 0;
while max(|r|) > tolerance ∧ i < imax do

α = dot(r, r)/dot(r, Ar);
x = x + α · r;
r = r− α · Ar;
i = i + 1;

end
Algorithm 1: The Steepest Descent Algorithm

Conjugate Search Directions Ideally, the search directions should be chosen so that
the algorithm never has to take more than one step in each direction. In this case, the
initial error e0 = x0 − x can be expressed as a linear combination of the step vectors:

e0 = −
n−1

∑
j=0

αjdj (3.11)

Geometrically, e0 is the vector from the target to the initial guess and the search
directions dj are the base vectors it is made up of. Every step should thus remove one
term of the linear combination, making ei become a simpler linear combination with
every iteration. For this to work, the next error ei+1 after a step i has to be orthogonal
to the search direction di used in that step. If ei+1 is orthogonal to di, no part of ei+1

points in the same direction as di. Therefore, di is no longer a base vector making up
ei+1. From di · ei+1 = 0, it follows that α = − diei

didi
[see She+94, page 22]. Calculating this,

however, requires knowledge of ei, which can only be calculated if the true solution x
is already known.

x

x0

e0

Figure 3.3: Geometrical representation of the initial error vector e0. (figure adapted
from [She+94]).
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3 Numerical Fluid Simulation

The CG algorithm gets around this issue by requiring A-orthogonality, or conjugacy,
instead of orthogonality:

Conjugate(dj, di) ⇐⇒ dj Adi = 0 (3.12)

With A-orthogonality as the requirement and ri = −Aei, the formula for the step size α

becomes:
α = − di Aei

di Adi
=

diri

di Adi
(3.13)

The only remaining issue is thus obtaining search directions conjugate to ei+1. This is
usually done through a process called Gram-Schmidt-Conjugation [see She+94, pages
25-26]. It requires a set of linearly independent base vectors u0, u1, ..., ui in order to
obtain the search directions d0, d1, ..., di. Normally, all previous d would need to be kept
in memory to obtain di+1. However, the CG algorithm uses the residuals as the base
vectors for Gram-Schmidt-Conjugation, greatly simplifying the process. The reason
for this is that ri+1 is automatically A-orthogonal to all search directions except di [see
She+94, pages 30-31]. As such, ri+1 can be used as the new search direction di+1 after
the part that is not A-orthogonal to di has been subtracted [see H+52, page 411]:

di+1 = ri+1 −
ri+1Adi

di Adi
· di (3.14)

As di+1 only depends on ri+1 and di, CG’s space and memory complexity is reduced
significantly compared to using Gram-Schmidt-Conjugation with normal base vectors
(such as the coordinate axes).
With the update schemes for step size α and search direction d defined, the complete
Conjugate Gradient algorithm can be expressed as in Algorithm 2.

x = x0; r = b− Ax;
d = r; i = 0;
while max(|r|) > tolerance ∧ i < imax do

α = dot(d, r)/dot(d, Ad);
x = x + α · d;
r = r− α · Ad;
d = r− d · dot(r, Ad)/dot(d, Ad);
i = i + 1;

end
Algorithm 2: The Conjugate Gradient Algorithm
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3 Numerical Fluid Simulation

3.3.2 Convergence

The Conjugate Gradient algorithm can solve a linear system of equations defined by
a n× n matrix in n steps, if round-off error is disregarded [see She+94, pages 32-33].
Depending on the spectrum, i.e. Eigenvalues of that matrix A, it can also be much
faster. This can be measured by means of the condition number

κ(A) =
|λmax|
|λmin|

, (3.15)

with λmax and λmin referring to the maximum and minimum Eigenvalues of A respec-
tively. A low condition number κ leads to faster convergence, a larger κ implies more
iterations will be needed.
In Eulerian fluid simulation, A arises from the discretized Navier-Stokes equations
and the simulation domain. Thus, κ(A) is fixed and cannot be optimized to speed up
convergence. Pre-conditioning [see BM07, page 32] can be used if κ(A) is large. This
involves finding a matrix M that is a good approximate of A−1. This way, MAx = Mb
can be solved instead of Ax = b, which is simpler due to MA ≈ I.
Besides A, the other important factor in the convergence of CG is the initial guess x0.
We consider two criteria for the quality of an initial guess x0:

1. The initial residual r0 = b− Ax0.
This measures how far x0 is away from fulfilling Ax0 = b.

2. The iterations needed by CG to reach a desired accuracy when using x0 as the
starting point.

Finding a good initial guess is often dependent on the specific problem being solved.
For incompressible fluid flow, the two most common approaches are choosing the
solution of the previous time-step as the initial state, or simply using an all-zero initial
guess [see BM07, page 33]. Using the previous time-step is effective for resting or
slow-moving fluids, but does not help much for more turbulent fluids. Their pres-
sure fields can change drastically between time steps, making this approach not suitable.

In this work, we therefore investigate a different strategy: Training an artificial neural
network to predict a pressure field which can then be used as an initial guess for the
CG solver.
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4 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a specialized type of Artificial Neural
Network (ANN) that is often used in image recognition and processing. As Eulerian
fluid simulation utilizes a grid, i.e. a regular, image-like data structure, CNNs are
very well suited to the task of learning pressure fields for these simulations. In this
chapter, we briefly review the core concepts and terminology related to CNNs. A more
thorough, in-depth explanation may be found in [Nie15].

4.1 Artificial Neural Networks

A neural network is a collection of units called neurons. Loosely based on the anatomy
of the brain, these neurons are interconnected and can transmit signals from one to
another. Each neuron weights all signals it receives as input, sums them up and itself
produces an activation or output signal. Mathematically, this can be expressed as:

a = σ(z) = σ(w · x + b) (4.1)

Here w, b, a and x are the weights, bias, activation and inputs of the neuron, respectively.
Before the weighted sum z is transmitted as output, the activation function σ is applied.
As σ, a variety of functions can be chosen. The important part is that it is a non-linear
function, so that the output of the neuron is not merely a linear combination of its
inputs.
These neurons are chained together, often in a layer structure, to form the neural
network. Such an ANN starts with an input layer and, by consecutively evaluating its
layers, produces a corresponding output. In this way, an ANN is theoretically able to
calculate any function [see Nie15, page 127ff.]. Depending on which function should
be learned by the network, the right values for the weights w and biases b must be
found. These parameters are the trainable part of the network and are obtained through
optimization, i.e. they are randomly initialized and gradually adjusted throughout
training. During the training process, the network is given input data samples from a
training dataset. The network’s output for this data is calculated and, depending on it,
the weights and biases are adjusted.
For this, it is necessary to define when the network’s output is considered good or bad.
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4 Convolutional Neural Networks

This is done by means of a loss function. In supervised learning, this loss function
compares the network’s output to the pre-computed solution for each training data
sample, e.g. via a difference. In unsupervised learning, no pre-computed solution exists
and the loss is instead determined by a mathematical measure based on the network’s
output itself. In either case the network’s training goal is to minimize the loss function
by adjusting its parameters.

4.1.1 Optimization

To minimize the loss function, we must derive it with respect to the network’s weights
and biases. This derivative indicates how the loss changes depending on the parameters.
This in turn tells us how they should be adjusted to minimize the loss. As the loss
function L is a scalar function depending on multiple trainable parameters W, this
derivative is the gradient:

∇L =

 ∂L
W0

...
∂L
Wn

 (4.2)

The intuition behind a gradient is that it is the vector pointing in the direction where
the function increases the most. It then becomes clear that iteratively following the
negative gradient leads us to minimize the loss. This is the fundamental idea behind the
Stochastic Gradient Descent algorithm that is used to train neural networks. Of course,
there are many more advanced variations of it. At their core, though, they all depend
on the gradient. Unfortunately, the gradient of the loss function is not straightforward
to compute efficiently. The backpropagation algorithm, which was popularized in the
field of neural networks in [RHW86], was therefore a critical discovery.

Backpropagation The backpropagation algorithm is what enables training of neural
networks as it is done today by providing an efficient way of approximating the gradient
of the loss function. The algorithm starts computing the gradient at the output layer of
the network. This is then backpropagated through the network, layer by layer, until
the first layer is reached and the gradient has been determined for each weight. As an
example, consider a neuron in the output layer l.

a(l) = σ(z(l)) = σ(w(l) · a(l−1) + b(l)) (4.3)

For a given training input, we can compute the network’s output and thus this neuron’s
activation a(l) and the current loss L0. Because L0 is directly based on the activations
of the output neurons a(l), it is possible to calculate ∂L0

∂a(l)
, i.e. how the loss changes
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4 Convolutional Neural Networks

depending on the activation. Using this and the chain rule from calculus, the gradient
for the output neuron can be rephrased:

∂L0

∂w(l)
=

∂z(l)

∂w(l)

∂a(l)

∂z(l)
∂L0

∂a(l)
(4.4)

All terms on the right side can be calculated by deriving L and Equation 4.3. In this
manner, we can therefore calculate the gradient for every neuron in the output layer.
For the next layer, l − 1, the same procedure can be used if ∂L0

∂a(l−1) is known. This, too,
can be obtained by using the chain rule:

∂L0

∂a(l−1)
=

∂z(l)

∂a(l−1)

∂a(l)

∂z(l)
∂L0

∂a(l)
(4.5)

Using ∂L0
∂a(l−1) , the gradient of layer l − 1 can then be computed as in Equation 4.4. This

process can then be repeated for every layer, until the full gradient of L with respect to
every parameter is known. Of course, in practice, these equations become somewhat
more complicated, since the influences in Equation 4.4 and Equation 4.5 need to be
summed up for all connected neurons. For a more thorough and complete explanation
of the backpropagation algorithm, we therefore refer to [Nie15, page 39ff.].

4.2 Convolutions

Non-specialized ANNs are often arranged in layers, with the output of every neuron
in a layer acting as an input to every neuron in the next. This network architecture
is often referred to as fully-connected and comes with some disadvantages. It leads
to a high number of trainable parameters for even relatively shallow networks and
small layer sizes. As a result, fully-connected networks are prone to overfitting to the
training dataset. This means that the network fine tunes its parameters specifically to
perform well on the training dataset without learning to generalize to unknown data.
Additionally, an unnecessarily high parameter count slows down training drastically.
Particularly for input data with spatial structure, such as the grids in Eulerian fluid
simulation, fully connected networks are not optimal. For example, they treat grid cells
that are far apart in the same way as ones that are close together [see Nie15, page 169].

Convolutional Neural Networks (CNN), popularized in [LeC+98], are a variant of
neural network that specifically takes advantage of the spatial structure of the input
and thereby alleviates the aforementioned issues. The namesake of these networks
is the convolution operation. Instead of connecting every neuron in a subsequent
layer to all neurons of the previous layer, a local receptive field is defined. This is a
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Layer 1 Layer 2 Layer 1 Layer 2

Figure 4.1: Local receptive fields in Convolutional Neural Networks.

small window into the input layer that is also referred to as kernel or filter. During
convolution, this window is slid across the entire input layer (see Figure 4.1). The
increments in which it is moved are called the stride of the convolution. At each
position, the neurons within the kernel are connected to the corresponding neuron in
the next layer. In the example in Figure 4.1, every neuron in layer 2 therefore receives
the activations of 3× 3 neurons from the previous layer as input. Like in section 4.1,
the neuron then multiplies each input value by a weight, adds a bias and finally applies
the activation function. Unlike an ANN, the weights and bias are shared across all the
neurons in the second layer. One particular filter thus only has sk × sk + 1 trainable
parameters, with sk referring to the kernel size. Therefore, every filter learns to apply
one operation, but at different positions throughout the input. As CNNs are heavily
used in image recognition, common terminology is that every filter detects one feature
of the input it is applied to [see Nie15, page 172].
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Figure 4.2: Stacking feature maps in Convolutional Neural Networks.

Most interesting operations on images and other grid-like data consist of many such
features, though. Therefore, in every convolutional layer, multiple features are usually
trained. Each filter, when applied to the input, produces a one dimensional layer of
neuron activations which is also known as a feature map. As illustrated in Figure 4.2,
these feature maps are stacked together in the feature dimension. For a two dimen-
sional input layer, the output would thus have the shape width× height× features.
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4 Convolutional Neural Networks

The stacked output can then be used as the input for the next convolutional layer, and
so on.
As convolutional layers are applied consecutively, the detected features grow more
abstract. Later layers no longer learn features in the input itself, but in the feature
maps of earlier layers. However, if the kernel size remains small in relation to the
spatial dimensions of the input, even later layers can only detect small-scale features.
This would render the CNN unable to learn more global properties of the input, such
as e.g. recognizing images whose upper half is generally brighter than their lower
half. Simply increasing the kernel size would, however, increase parameter count and
thereby training and computation time. To avoid this, CNNs often gradually downscale
their image in the spatial dimension, causing the kernel to cover a proportionally larger
area in the input.

Figure 4.3: The max pooling operation in Convolutional Neural Networks.

The max pooling operation (shown in Figure 4.3) is commonly used for this purpose. It
pools together the activations in a window (commonly 2× 2) by taking their maximum.
The information in the feature map is thereby simplified and the result contains more
global information. In order to produce detailed outputs, the spatially reduced, ab-
stracted feature maps must eventually be upsampled again. For this, the technique of
transpose convolution or deconvolution is usually employed. This operation is essen-
tially a convolution, but in reverse. Consider how in Figure 4.1, nine input neurons are
connected to one output neuron. In deconvolution, this is done the other way around.
The activation of every neuron in the input is distributed to a kernel-sized region in the
output. As with convolution, this operation contains trainable parameters determining
how exactly this distribution occurs.

In summary, convolution enables the CNN to process features that can occur at different
spatial positions in the input data. Pooling then lets the network abstract the informa-
tion and deconvolution allows it to produce detailed outputs from these abstractions.
Because of this, CNNs are a good choice for our aim of predicting a pressure grid from
an input divergence field. The trained models in this work therefore use a convolutional
structure, albeit with some variations (see section 5.1).
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5 Neural Network-Based Pressure
Prediction

The goal of this work is to investigate how to train a Convolutional Neural Network
(CNN) to predict the pressure p̂ that can be used to make the input velocity field u
divergence-free. Of particular interest is the quality of these predictions not just on
their own, but with respect to being used as an initial guess for the CG solver. In
the following, we refer to the trained CNN using the operator C, so that C(u) = p̂.
We focus on 2D cases, hence u ∈ R2×dx×dy and p̂ ∈ Rdx×dy , where dx and dy are the
dimensions of the simulation domain.

In this chapter, we will present a solver-based approach to learning pressure fields and
compare it with two others that represent more standard methods in this area. For
better comparability, we only vary the loss function (section 5.2) between them, keeping
the network architecture (section 5.1), training and validation dataset (section 5.3), as
well as the training procedure (section 5.4) constant.

5.1 Network Architecture

We use the divergence ∇u as input for our neural networks. Thus, both their input and
output are scalar fields, i.e. ∇u, p̂ ∈ Rdx×dy . For CNNs whose spatial input and output
dimensions are the same, U-Net structures are a natural fit [Ada20]. We therefore
based our network architecture on that proposed in [RFB15]. The overall network layer
structure, including kernel sizes and feature maps, is illustrated in figure 5.1.

The network consists of a contracting path (left) and an expanding path (right). They
are sometimes also referred to as Encoder and Decoder respectively. In the contract-
ing part, the spatial dimension of the data is successively reduced, while the feature
dimension increases. This allows the CNN to learn more global features that span
a larger part of the domain, compared to e.g. a ResNet-based architecture [He+16].
Our Encoder has three levels. In each level, two 5x5 convolutions are applied, each
followed by an activation function. Then, the spatial dimension is reduced. In the
original U-Net, this is achieved via a max pooling operation at the end of each level
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Figure 5.1: A visual summary of the U-Net-based architecture used in this work

[RFB15]. However, recent studies have shown that max pooling can and often should be
replaced by a strided convolution layer [Spr+14]. This introduces some learnability to
the down-sampling layer, making it less rigid. We therefore opted for a 5x5 convolution
with stride 2 instead of max pooling. Each contractive level thus halves the spatial
dimensions and simultaneously doubles the feature dimension.

At the lowest level of the network, the spatial dimension is reduced by a factor of 23

and three more convolutions with 32 features are performed. After this, the network
begins to expand again to gradually return to its initial shape. In this expansive path,
each level starts with an up-sampling layer: The input is linearly interpolated to double
its spatial dimensions. Then, three consecutive, activated 5x5 convolutions are applied,
using half the amount of features of the previous level. Though each level halves the
feature dimension, this still leads to a large number of feature channels in the Decoder.
This is an important characteristic of U-Nets and allows the network to propagate
context information to higher resolution layers [see RFB15, page 3].
After three up-scaling levels, there is one final, activationless convolution to bring the
output into the shape dx × dy × 1. Overall, our network structure has 22 convolutional
layers and 127,265 trainable parameters, i.e. weights and biases.
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5 Neural Network-Based Pressure Prediction

Skip Connections Deep neural networks often suffer from the vanishing gradient
problem. This occurs due to the use of the chain rule in back-propagation. As the
gradient is propagated from the last layers of the network to earlier ones, the chain
rule requires multiplication of partial derivatives at each layer [Ada20]. Since these
are often values in (0, 1), the gradient gets smaller and smaller for every layer it is
back-propagated to.
To counter this, our architecture utilizes (long) skip connections. As visualized in
figure 5.1, each Encoder level’s last output before down-scaling is concatenated to each
Decoder level’s input after up-scaling. This ensures an uninterrupted gradient flow
from later layers to earlier ones. It also helps to reintroduce detailed spatial information
into the Decoder that would otherwise be lost due to down-scaling in the Encoder
[Ada20].

Activation Function As the activation function for each convolution, we chose Recti-
fied Linear Unit (ReLU), i.e. f (x) = max(0, x). Activation functions are necessary to
introduce non-linearity into a network. Otherwise, the CNN would just be a chain of
linear operations and could thus itself only output a linear transformation of its input.
ReLU is computationally more efficient than classic non-linear functions like hyperbolic
tangent or the sigmoid function. Additionally, its activation is not confined to (0, 1),
which helps to further alleviate the vanishing gradient problem.

5.2 Loss Functions

The choice of loss function is one of the most important factors in training a neural
network, since its gradients with respect to the network weights determine how the
weights change in each optimization step. We compare three variations: A basic super-
vised approach (SUP), an unsupervised loss informed by the physical meaning of the
network prediction (PHY), as well as our proposed solver-based method (SOLk). The
latter uses a differentiable solver directly in the loss (see subsection 5.2.3), in line with
recent research into differentiable physics in Deep Learning [HKT20; Um+20].

For all loss function variations, we apply the L2-Norm as a last step. This opera-
tion is defined as ‖v‖2 = 1

2 ∑ v2, i.e. the sum of the squared components of the loss
vector. Since the loss vector is usually a difference, squaring the components before
summing prevents terms with different signs from cancelling each other out. The factor
1
2 is used instead of a square root to improve performance.
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5.2.1 Supervised Loss

The first approach (SUP) employs a regular supervised loss. It minimizes the difference
of the network’s prediction from pre-computed ground truth pressures p. These ground
truth samples are obtained by running the CG solver up to a fixed accuracy of 10−6

and are saved as part of the dataset.

LSUP = ‖C(u)− p‖2 (5.1)

Though LSUP makes the CNN match the solver result as closely as possible for each
training sample, it does not provide any information on the physical meaning of a
prediction to the network. Pressure predictions that lead to velocity divergence are not
penalized as long as their overall difference to the ground truth remains small.

5.2.2 Physical Loss

Our second approach (PHY) directly aims for the same physical goal as the CG solver.
Similar physics-informed losses have been employed in previous works [RPK17; RYK18;
SS18]. Specifically, our variant is based on the approach proposed by Tompson et. al.
[see Tom+17, page 4], which has proven to yield good pressure predictions that can
be used in a simulation as-is. The idea is to minimize the remaining divergence after
the input velocity u has been corrected with the predicted pressure (see 3.5). This is
equivalent to minimizing the CG-solver’s residual r = ∇u− ∆p (see equation 3.9).

LPHY = ‖∇u− ∆C(u)‖2 (5.2)

LPHY is an unsupervised loss, i.e. an error metric that is directly based on the network’s
prediction, without including any solver-generated terms. Therefore, the PHY-network
learns to aim for the same goal as the solver, but independently of it.

5.2.3 Solver-based Loss

For the CNN to produce pressure guesses that are useful as initial states for the CG
solver, the network should ideally receive feedback on the solver’s behavior at training
time. We therefore propose a method that incorporates the iterative CG-solver directly
into the loss function.

LSOLk =
∥∥∥S k(C(u))− C(u)

∥∥∥2
(5.3)

This requires a differentiable version of the CG-solver, so that gradients can be back-
propagated through it. In this work, we make use of the ΦFlow fluid simulation toolkit
[see HKT20, page 2], which was developed with such differentiable physics learning
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tasks in mind. The linear operator S denotes the evaluation of one differentiable solver
step, given an input initial guess. S k = S(S(...)) refers to k successive solver iterations.
The network thus receives gradients through k solver evaluations based on its output. It
can therefore see how the solver performs based on its prediction and learn accordingly.
Additionally, since two successive pressure guesses p̂j, p̂i (with j > i) have the property

| p̂j − p̂i| < | p̂j − p| [see H+52, page 416], (5.4)

it follows that minimizing
∥∥S k( p̂j)− p̂j

∥∥2 makes the network converge towards the
true solution p without the need to pre-compute ground truth samples.

As the difference p̂− p converges to zero, the residual r decreases. Thus, both LPHY

and LSOLk minimize the residual divergence. But while LPHY minimizes it directly,
LSOLk does so via the convergence of the solver instead.

5.3 Dataset

The dataset used to train, validate and test our CNN models was generated by running
randomized numerical simulations using the ΦFlow-framework [HKT20]. Each simula-
tion starts out from a randomly generated velocity and density field, on a domain of
size dx × dy = 64× 64.

Random Generation of Density and Velocity Fields The initial density and veloc-
ity fields are generated by taking a normally distributed, 2D frequency spectrum,
then performing Discrete Inverse Fourier Transformation (DIFT) to convert it to the
corresponding 2D signal. Specifically, the following steps are taken:

1. Generate a normally distributed 2D scalar field Ñ = N + 1j · N . Here, N is
a random 64× 64 field sampled from a standard normal distribution. Since Ñ
is the sum of a real normal distribution and an imaginary one, its values are
complex numbers.

2. Generate a 64× 64 field F of frequency bins.

3. Multiply Ñ by 256 · ( 1
F+1 )

32 to scale the probabilities of the frequencies in F . F
becomes a normally distributed 2D spectrum of frequencies.

4. Apply DIFT to the frequency spectrum. The result is a 2D signal, i.e. a combina-
tion of the sin and cos functions described by the spectrum.
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Figure 5.2: Density and velocity divergence samples from the training dataset.

Examples of the generated fields can be seen in Figure 5.2. From this random initial
state, 16 frames are simulated with a CG pressure solver up to an accuracy of 10−6

maximum residual divergence per frame. We use a buoyancy factor of 0.1 and closed
domain boundaries. Every time step, the current advected velocity, its divergence field,
and the pressure field used to correct it are saved to disk. The dataset consists of
3,000 such simulations in total, resulting in 3, 000 · 16 = 48, 000 data samples. Of these,
2800 simulations (44,800 samples) were used as training data and the remaining 200
(3200 samples) as validation data. We additionally generated a separate test dataset
comprised of another 3,000 simulations to evaluate the trained models on in chapter 6.
This was created in the same way, but using a solver accuracy of 10−3 instead.

5.4 Training Procedure

To train our models, we iterate through the training dataset sequentially in batches of 32
samples. For each batch, a stochastic gradient descent optimization step is performed.
We utilize the Adaptive Moment Estimation (ADAM) scheme for this [KB14]. This
optimizer is widely used, as it is an efficient first-order method that builds momentum
along those dimensions of the cost function whose gradients do not change directions
much. It thereby mimics a ball rolling down a slope, more easily overcoming local
minima in the loss landscape. All CNNs we compare in this work were trained for
a total of 300,000 ADAM optimization steps, using a learning rate of 2 · 10−4. Their
parameters (weights and biases) were initialized using the method proposed by Glorot
and Bengio in [GB10]. This initialization scheme draws the parameters from a Gaussian
random distribution with mean zero and a variance based on the number of inputs and
outputs of the corresponding neuron. Apart from the randomness resulting from this
parameter initialization, the training procedure is identical across all trained models,
making them easily comparable.
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6 Results

In this chapter, we evaluate the pressure prediction capabilities of the three approaches
(SUP, PHY and SOLk) described in chapter 5. In particular, we focus on their perfor-
mance in conjunction with the CG solver. For each approach, we trained a representative
model (see section 6.1), choosing SOL5 for the solver-based variant (see subsection 6.4.1
for an exploration of different look-ahead step sizes k). We compare how the models
perform on test data (see section 6.2), as well as in-simulation (see section 6.3). In our
comparisons, we additionally include an all-zero initial guess as a baseline.

Input Normalization When using the trained models to infer a pressure field, we
first normalize the input. Specifically, we calculate the standard deviation σ of the
divergence field. We then divide the divergence field element-wise by σ, before feeding
it into the trained network. Lastly, we denormalize the network’s output by multiplying
it by σ again. As the divergence fields are already zero-centered, it is unnecessary to
subtract their mean.
This normalization process is possible because the pressure equation the network
is solving, Ap = d, is linear. It has the advantage of making pressure prediction
independent of the scale of the input divergence. The trained models should thus be
able to handle very strongly and weakly divergent inputs equally well.

6.1 Training Results

The models were trained on an Nvidia GeForce RTX 2080 Ti, using the training proce-
dure detailed in section 5.4. They took 22 hours 4 minutes (SUP), 22 hours 21 minutes
(PHY) and 23 hours 15 minutes (SOL5) to train, respectively. Figures 6.1, 6.2 and 6.3
visualize their training processes. The left side shows how the loss decreased over
the course of training. On the right, it is shown how many iterations the CG solver
needs to reach an accuracy of 10−3, given the network output as an initial guess. For
both, the blue line represents batches from the training dataset and the orange line
validation data batches. It is important to note here that we used a batch size of 32 for
training and 16 for validation, which is why the validation loss is generally lower than
the training loss.
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Figure 6.1: SUP, (a) Loss (b) CG iterations for accuracy 10−3 with network guess.
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Figure 6.2: PHY, (a) Loss (b) CG iterations for accuracy 10−3 with network guess.
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Figure 6.3: SOL5, (a) Loss (b) CG iterations for accuracy 10−3 with network guess.

For all three models, the loss decreases steadily throughout training. Using a loga-
rithmic scale and a smoothing factor of 0.8, we can observe that none of the models’
training loss fully stagnates by the 300,000 step mark. PHY and SOL5 in particular
appear to still be improving at that point. As such, training these networks for longer
might further improve their performance.
The CG iterations also decrease for all three models as their pressure predictions im-
prove. However, there is a clear ranking to be observed. SOL5 clearly does the best,
reducing the maximum required iterations for a training batch from roughly 160 to be-
low 80 by the end of training. SUP manages around 90, while PHY does the worst with
more than 100. PHY however also shows a large gap between validation and training
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data. This implies that the quality of its predictions varies more strongly depending
on the divergence data, with the validation set evidently containing favorable data. To
more accurately assess the generalization capabilities of the networks, it is therefore
necessary to test them on a large set of varying divergence fields not seen at training
time.

6.2 Test Dataset Performance

To gauge how well the trained models perform on unknown data, we first evaluate them
on the test dataset (see section 5.3), i.e. on sample divergence field inputs the networks
did not observe during training. For all results in this section, we computed the average
of 100 such test cases. These 100 cases are randomly sampled from the test set once
in the beginning. They are therefore random but consistent across the compared models.
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Figure 6.4: CG solver residual error, given initial guesses by different models.

To understand the quality of the models’ outputs as initial pressure guesses, we
observe the CG solver’s behavior when starting from these outputs. Figure 6.4 depicts
how the residual divergence decreases over the solver’s iterations. The starting point
of each curve represents the accuracy of the model’s guess itself, without any further
solver iterations. Here, the PHY model fares the best. It reaches an accuracy of nearly
10−2 out of the gate, closely followed by SOL5. SUP’s output is much less accurate and
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only a slight improvement over the zero-guess baseline, even though its predictions
seem visually close to the reference (see Figure 6.6). This is due to the residual error
being measured locally per grid point. For a low residual, a low sum of the grid cells’
errors is more important than matching the overall structure of the true solution. Cor-
rect large-scale structures in the output only become more relevant as the solver iterates.

Over the first few iterations, the accuracy of SOL5 improves significantly, quickly
overtaking PHY. SUP also shows rapid improvement, though it is less steep than that
of SOL5 and starts from a much worse accuracy. By contrast, the PHY approach shows
barely any improvement in the initial iterations. When running the solver for more
iterations, the increase in accuracy becomes more similar across the three models, with
SOL5 retaining the advantage obtained in the first few iterations.
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Figure 6.5: Visual comparison of required CG iterations, given initial guesses by differ-
ent models.

The rapid improvement in accuracy facilitated by the SOL5 guess means fewer it-
erations are needed to reach higher accuracies. This is shown in Figure 6.5, which
visualizes how many CG iterations are required for a specified target accuracy given the
pressure solutions inferred by each model. The numerical results are listed in Table 6.1.
An accuracy of 10−2, for example, requires an average of around two solver steps for
SOL5, nine steps for SUP, 28 steps for PHY and 78 steps when starting from a zero
guess. SOL5 consistently requires the least CG iterations to reach the target. The only
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exception are the lowest accuracies, which only require very few CG iterations. The
supervised model initially also shows a good reduction in needed iterations, but loses
this advantage compared to PHY the closer the target accuracy gets to the accuracy of
the ground truth it was trained with (see subsection 5.2.1). By contrast, SOL5 retains its
advantage even for higher accuracies.

Model Iterations for Target Accuracy, Mean (Standard Deviation)

10−1 10−2 10−3 10−4 10−5 10−6

Zero 16.96 78.48 121.61 161.57 189.03 212.86
(10.512) (9.138) (13.443) (10.294) (6.172) (5.365)

SUP 1.67 9.33 52.16 109.12 155.37 186.12
(1.010) (5.428) (17.540) (15.875) (10.155) (5.719)

PHY 0.0 27.79 79.06 117.97 155.76 181.07
(0.0) (15.255) (10.042) (13.234) (9.403) (6.052)

SOL5 0.03 1.97 29.59 88.37 133.59 167.37
(0.171) (1.118) (14.832) (13.465) (11.605) (8.549)

Table 6.1: Average CG solver iterations required for target accuracies, given initial
guesses by different models.

Overall, these results reveal an interesting dichotomy. On one hand, the PHY model
produces pressure fields which lead to the least amount of residual divergence. They
can therefore be considered the best pressure guesses if used as-is. On the other hand,
when using the network outputs in conjunction with the CG solver, our solver-based
approach outperforms PHY noticeably.

This shows the significance of training with the solver in the training loop. The
PHY model only learns to directly minimize the residual, measured per grid point. It
does not receive any feedback on the solver’s behavior during training. Therefore, it
does not learn to match the true solution on a global scale. The CG solver then has to
retroactively work out the larger structures, leading to more iterations. By contrast, the
SOL5 model sees how the solver corrects its prediction at training time, enabling it to
adjust its guess accordingly. The supervised approach learns the global structure of the
true solution to some extent as well, due to being fed pre-computed solutions. Like
PHY, however, it does not receive information on the solver’s behavior during training
and is consistently outperformed by SOL5.
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Investigating the inferred pressure fields themselves further corroborates these findings.
As can be seen in Figure 6.6, the PHY model’s outputs have significant large-scale
differences from the reference solution. Both SUP and particularly SOL5 come much
closer to the reference. Looking at the residual divergence (see Figure 6.7), PHY also
produces a noticeable error pattern near the domain border. These border-cell errors are
small individually but significantly influence the solution as a whole. The physics-based
loss consequently does not give a lot of weight to them, whereas SOL5 learns about
the solver’s behavior at the borders directly. Again, the lack of solver feedback during
training leads to the PHY model being unable to learn these more global influences.
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Figure 6.6: (a) Sample outputs of the models (b) Difference of output from reference.
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6.3 Simulation Performance

In this section, we apply the trained models to actual fluid simulations. We take
two different approaches to this. First, we use the trained CNNs directly as pressure
predictors in a simulation, fully replacing the CG solver (subsection 6.3.1). In our
second approach, we use the CNNs and CG solver in conjunction to compute the
pressure for each time step (subsection 6.3.2).

6.3.1 Neural Network Pressure Solve

The most straightforward way of using a trained pressure predictor in a fluid simulation
is to directly use it instead of the numerical pressure solving step. This allows a
qualitative visual analysis of the prediction quality of each trained network. Our setup
for these neural network simulations is as follows:

1. Load the trained model C

2. Generate a random velocity field u and density field ρ (see section 5.3)

3. Simulate for 150 time steps:

a) Render the current density field ρ as an image

b) Advect u and ρ using a Semi-Lagrangian scheme (see subsection 3.2.3)

c) Apply buoyancy by subtracting 0.1 · ρ · g from u, where g =

(
0
−9.81

)
d) Apply boundary conditions to u

e) Calculate the divergence ∇u

f) Obtain the pressure by feeding the divergence into the trained CNN,
i.e. p̂ = C(∇u)

g) Correct the velocity by subtracting ∇ p̂

30



6 Results
R

ef
er

en
ce

PH
Y

SU
P

SO
L 5

0 15 30 45 60 75 90 105 120 135

Figure 6.8: Example simulation using different trained models as pressure solver.

An example of such a neural network simulation can be seen in Figure 6.8. It shows
how the density field evolves over time with different CNNs as pressure predictors, as
well as with a standard CG pressure solve (target accuracy 10−3) as reference. We only
show every fifteenth simulation frame here, but the full simulation may be viewed in
video form in our supplemental material.

All simulations shown in Figure 6.8 start out from the same density and velocity
fields. Initially, they are thus identical. The further the simulations progress, however,
the more strongly they deviate from the reference. This can be seen as early as frame 15
for SOL5. Throughout the SOL5 simulation, this error accumulates, making the fluid’s
behavior quite implausible from frame 45 onward. SUP retains its similarity to the
reference a little longer, noticeably starting to deviate around frame 45. PHY does the
best, staying very close to the reference simulation visually, with only minor artifacts
visible in e.g. frames 90 and 105. Its simulation is plausible enough that it presents a
viable alternative to the CG solver if high accuracy is not required. PHY’s in-simulation
performance is not unexpected, as its pressure predictions also showed high initial
accuracy (nearly 10−2) on the test dataset (see Figure 6.4). It therefore makes sense
for it to perform similarly to the 10−3 accuracy reference. What is more surprising is
the significantly worse performance of SOL5, given that its initial accuracy on the test
dataset (without additional solver iterations) is only slightly lower than PHY’s.
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Figure 6.9: Pressure outputs of the trained models throughout the example simulation.

Looking at the pressure outputs for this example simulation (see Figure 6.9), we see
that SOL5’s outputs match the reference pressure very well initially, but start to deviate
strongly around time step 4 to 5. From that point on, the SOL5 pressures also show a no-
table checkerboard pattern. This kind of pattern is usually associated with a mismatch
of kernel size and stride when performing deconvolutions in a CNN (see [ODO16]).
However, instead of deconvolutions, our architecture uses linear upsampling, followed
by normal convolution and should thus not suffer from this issue. Furthermore, all
models use the same architecture but only SOL5 exhibits these artifacts. It is therefore
unlikely to be an architectural issue.
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Figure 6.10: Residual divergence throughout the example simulation after successively
correcting the velocity with the pressure output of different trained models.
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Instead, the residual divergence (shown in Figure 6.10) suggests a different reason for
the pattern. Evidently, it is the result of correcting the input divergence with SOL5’s
pressure guess, as it appears immediately after the first correction, i.e. in frame 0. At
this point, SOL5’s pressure is still very close to the reference with respect to the overall
structure of the pressure solution (cf. Figure 6.9) - more so than PHY, for example.
Correcting with it successfully reduces the overall divergence, but introduces locally
alternating positive and negative grid cells. These cells’ residual values are of similar
magnitude. Their main difference is their sign.

This explains why SOL5’s accuracy is high on the test set, yet its in-simulation per-
formance is lacking. Accuracy is measured as the maximum absolute value of the
residual, since that is the convergence criterion of the CG algorithm (see Algorithm
2). Because the absolute value is used, the alternating positive and negative cells do
not affect the accuracy. When used in-simulation, however, they cause the residual
error to accumulate much more quickly. This is likely because the training dataset
does not contain any divergence fields that feature more erratic patterns such as the
checkerboard artifacts, as we used a CG solver with very high accuracy to generate
them (see section 5.3). The SOL5 network consequently cannot deal well with receiving
such inputs, making its next pressure prediction introduce even stronger artifacts.
Continually feeding SOL5’s residual divergence back to it as input, as is done when it
is used as a standalone pressure predictor in a simulation, thus exacerbates this error.
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Figure 6.11: Average residual divergence over the course of a neural network simulation.

To quantify these findings and show that they are not just the case for this exam-
ple simulation, we evaluated the maximum absolute residual over 100 randomized
simulations. The average is shown in Figure 6.11. The residuals start out much as

33



6 Results

on the test dataset (see Figure 6.4), with PHY achieving the best accuracy, followed
by SOL5 and then SUP. All three curves decrease initially. This is because the gen-
erated starting velocity field is not divergence-free. The initial divergence is much
larger than that introduced by advection and buoyancy in subsequent time steps. All
models successfully reduce this starting divergence over the first few steps. After this,
however, the residuals begin to increase again as the networks repeatedly receive input
divergences based on their own pressure corrections. Here, we can observe the effect of
SOL5’s checkerboard pattern. SOL5’s pressure corrections lead to input divergences
that are strongly dissimilar to the divergence data it was trained on. Consequently,
SOL5’s residual accumulates much more quickly and drastically compared to the other
models’. By contrast, both SUP’S and PHY’s residual increases more gradually and
stabilizes as the fluid becomes less turbulent. They balance out at an average of 1.070
and 0.038 respectively (see Table 6.2).

CG (10−3) CG (4 · 10−2) SOL5 PHY SUP

Time (avg.) 0.208 ms 0.105 ms 0.054 ms 0.056 ms 0.054 ms
Residual Error (avg.) 0.001 0.039 1.796 0.038 1.070

Table 6.2: Average residual and per time step computation time over 100 simulations.
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Figure 6.12: Comparison of average computation time per simulation step.

Of course, achieving a low average residual error using a CNN instead of the CG
solver is only interesting if the network requires less computation time. We therefore
also measured the average calculation time needed for each simulation step. The
system we measured on uses an Intel i7-3770 CPU, Nvidia GTX 1070 GPU and 24 GB
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of memory. The results are listed in Table 6.2 and visualized in Figure 6.12. Since PHY
achieves an average accuracy of roughly 4 · 10−2, we included a CG solver with that
target accuracy for a more direct comparison. The time it takes to evaluate the trained
models is practically identical as they use the same architecture. Compared to the CG
solver, though, PHY only requires approximately half the computation time to obtain a
similar accuracy. For a target accuracy of 4 · 10−2, PHY is therefore a viable alternative
to the CG solver, providing a speed-up.

In summary, the neural network simulations show that PHY and, to a lesser extent,
SUP can be used as a replacement for the CG solver, if no very high accuracy must be
achieved. Our solver-based approach, however, cannot, even though the initial accuracy
of its pressure output is similar to PHY’s. The reason for this are small scale, regular
artifacts introduced through correction with its pressure guess. The network cannot
properly deal with inputs that contain these patterns and thus fails when predicting
pressures successively. These artifacts are only produced by SOL5, not the other models.
Since the models only differ in the loss function, it stands to reason that SOL5 learns
to introduce them because of training with the solver. This is corroborated by the fact
that the residuals of the CG solver itself also contain similar checkerboard structures
(cf. Figure 6.10). Though comparatively small for an accuracy of 10−3, intermediate
solutions of the solver, e.g. after 5 iterations, exhibit strong checkerboard artifacts. As
SOL5’s loss formulation includes a direct difference to the solver’s output after a limited
amount of iterations (see Equation 5.3), it learns to imitate these patterns. Along with
the observation that SOL5’s outputs present the best initial state for the CG solver (cf.
section 6.2), this implies that SOL5 learns to solve the pressure equation in a way that is
more similar to the CG solver than the other approaches.

6.3.2 Hybrid Pressure Solve

Completely replacing the CG solver with a trained model can lead to a speed-up of
the simulation. However, this ties the simulation accuracy to the fixed accuracy of
the network. It becomes impossible to set an arbitrarily high target accuracy, as is
possible when using the CG solver. This is fine for simulations where visual plausibility
and computation time are the most important. However, there are several areas of
application where high accuracy is essential.

We therefore propose a hybrid approach that does not fully replace the CG solver
by a trained pressure predictor but instead uses them in conjunction. The setup for
these hybrid simulations is similar to that outlined in subsection 6.3.1. However, instead
of directly using the network’s pressure guess C(∇u) = p̂ to correct the divergent
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velocity, we use p̂ as an initial guess for the CG solver. As we showed in section 6.2,
our solver-based model SOL5 in particular significantly reduces the iterations the CG
solver needs to reach higher accuracies. The hybrid simulation can thus benefit from
the neural network’s speed-up and still provide the same accuracy guarantee as the
CG solver normally does.
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Figure 6.13: Example 10−3 accuracy SOL5 hybrid simulation and its residual divergence.
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Figure 6.14: Residual divergence over example 10−3 accuracy SOL5 hybrid simulation.

Figure 6.13 shows an example hybrid simulation, wherein the SOL5 model produces
an initial pressure guess for a CG solver with target accuracy 10−3. The maximum
absolute residual is additionally shown in Figure 6.14. Indeed, the hybrid approach
produces a simulation result that is visually identical and provides the same accuracy
guarantee as the solver-only variant.
More interesting is how the hybrid approach compares regarding computational effi-
ciency. We tested this comprehensively for all trained models and target accuracies from
10−1 to 10−6, running 100 randomly initialized hybrid simulations for each combination.
We used the same machine to measure performance as in section 6.3.
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Figure 6.15: Computation time per hybrid simulation step for different models
with accuracy (a) 10−1 (b) 10−2 (c) 10−3 (d) 10−4 (e) 10−5 (f) 10−6.

Pressure Solver Computation Time for Target Accuracy, Mean (Standard Deviation)

10−1 10−2 10−3 10−4 10−5 10−6

CG only 0.0887 ms 0.1632 ms 0.2215 ms 0.2382 ms 0.3154 ms 0.3189 ms
(0.0394) (0.0480) (0.0571) (0.0509) (0.0619) (0.0609)

CG + SUP 0.0512 ms 0.0641 ms 0.1214 ms 0.2165 ms 0.2655ms 0.2746ms
(0.0349) (0.0375) (0.0474) (0.0603) (0.0654) (0.0576)

CG + PHY 0.0533 ms 0.0867 ms 0.1507 ms 0.2301 ms 0.2436 ms 0.3271 ms
(0.0333) (0.0407) (0.0502) (0.0641) (0.0557) (0.0693)

CG + SOL5 0.0556 ms 0.0587 ms 0.0970 ms 0.1512 ms 0.2449 ms 0.2684 ms
(0.0343) (0.0348) (0.0489) (0.0482) (0.0611) (0.0613)

Table 6.3: Computation time per simulation step using different hybrid pressure solvers
(averaged over 100 randomized simulations).

The average results are listed in Table 6.3 and shown in Figure 6.15. Right away it can
be seen that in every setup, the hybrid solvers generally perform better than, or in a
few cases at least similar to, the solver-only baseline. Particularly for accuracies 10−2
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and 10−3 there is a significant improvement. For example, SOL5 provides a speed-up
of roughly 64% and 56% respectively here. For higher accuracies, this performance
improvement diminishes somewhat. This is due to the trained models’ outputs having
limited accuracy. As was seen in Figure 6.5, their pressure guess can substitute the
solver’s iterations up to a certain point, beyond which normal CG iterations have to
be performed. Therefore, the speed-up is tied to how many iterations the model can
replace compared to how long it takes to evaluate the model itself. On our setup, the
models take between 0.054 and 0.056 milliseconds to evaluate (see Table 6.2). There is
naturally potential for improvement here. Firstly, it may be possible to achieve similar
reductions in CG iterations using a leaner neural network architecture than ours (see
section 5.1). Secondly, recent advances in specialized neural network hardware promise
to cut down network evaluation time further in the future.

For a low target accuracy such as 10−1, network evaluation time is the only con-
tributing factor, as no additional CG iterations are required (cf. Figure 6.15 (a)). In these
cases, the hybrid simulation can generally simply use the network’s guess directly,
as was done in subsection 6.3.1. However, there is a significant advantage of the
hybrid approach compared to a straightforward neural network simulation. For SOL5

in particular, the non-hybrid simulations suffer from quickly accumulating residuals,
due to the network being incapable of dealing with inputs based on its own previous
pressure corrections.
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Figure 6.16: Example 10−1 accuracy SOL5 hybrid simulation and its residual divergence.

Figure 6.16 shows an example hybrid simulation using SOL5 and a target accuracy of
10−1. Unlike Figure 6.13, this hybrid simulation is not visually identical to the CG-only
simulation, due to mainly using SOL5’s pressure directly. The same checkerboard
pattern as in the neural network simulation can be observed here, too. However, in the
hybrid simulation, it does not grow more and more intense as the simulation goes on.
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The reason for this can be seen in Figure 6.17. As in the neural network simulation, the
residual quickly increases. Due to being a hybrid simulation, however, once the error
would increase beyond the guaranteed accuracy of 10−1, the solver performs a single
additional iteration, bringing the residual back down below the threshold.
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Figure 6.17: Residual divergence over example 10−1 accuracy SOL5 hybrid simulation.

Even in this scenario, the hybrid simulations thus guarantee the chosen target accuracy
to be met while providing a non-negligible speed-up. Generally, the hybrid approach
therefore shows much more promise than simply using the trained models to replace
the solver. And, while PHY proved to be the most suitable model for stand-alone
pressure prediction, the results in this section suggest that our solver-based approach is
the better choice for hybrid simulations.

6.4 Further Experiments

This section contains additional experiments wherein we further investigate the solver-
based approach under different training and simulation conditions than were employed
so far. Specifically, we look at training solver-based models with different look-ahead
step sizes k (see Equation 5.3) and applying trained models to different simulation
domain sizes than they were trained on. Lastly, we also investigate combining the
physics-based and solver-based training approaches to obtain the advantages from
both.

6.4.1 Look-Ahead Step Size

The solver-based loss function we proposed in subsection 5.2.3 defines the parameter k.
It describes the number of CG solver iterations that are performed on top of the net-
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work’s output, before the two are compared. We therefore refer to k as the look-ahead
step size, since a larger k allows the network to observe how its guess affects the solver’s
output further down the road. Though we focused on SOLk=5 in our comparisons to
the other approaches, we also experimented with varying this look-ahead. Figures 6.18
and 6.19 show how solver-based models with different k perform on the test dataset.
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Figure 6.18: CG solver residual, given initial pressure guesses predicted by different
SOLk variants. (a) k ≤ 5 (b) k ≥ 5.

10−1 10−2 10−3 10−4 10−5 10−6

Target Accuracy

0

50

100

150

It
er

at
io

ns

SOL1

SOL2

SOL3

SOL4

SOL5

SOL6

SOL7

SOL8

SOL9

SOL10

SOL15

Figure 6.19: CG iterations for target accuracies, given different SOLk pressures.

For k ≤ 5, there is a clear tendency to be observed (cf. Figure 6.18 (a)). If k is too
small, too few solver iterations are performed and the model’s performance deteriorates
noticeably. The residual does not see the reduction previously associated with the
solver-based variant and consequently, a lot more CG iterations are needed to reach
the target accuracies (see Figure 6.19). SOLk variants with k ≥ 5 do not show such an
obvious trend. It seems that increasing k beyond this point does not further improve
the usefulness of the network’s output for the CG solver.
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Another interesting observation can be made when looking at the development of
the residual when these SOLk variants are used as standalone pressure predictors in
a simulation (as in subsection 6.3.1). The average results of this over ten example
simulations are depicted in Figure 6.20.
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Figure 6.20: Residual throughout randomized simulations using various SOLk as stan-
dalone pressure predictors (averaged over 10 example simulations).

Though there is of course some variance due to the randomness of both the model
parameters’ initialization and the example simulations, we can see notably different be-
havior between SOLk variations with low and high k. Models with a higher look-ahead
step size evidently accumulate the residual error from their own pressure corrections
much more quickly. This matches our findings in subsection 6.3.1 concerning the
checkerboard artifacts in SOL5’s residual and gives further credence to our speculation
that training with a direct comparison to the solver’s intermediate solution is the cause.
For a small look-ahead step size, the solver cannot introduce strong checkerboard
patterns on top of the network’s output. With higher look-ahead step size, however, the
solver’s alterations gain more weight and the network learns to imitate them.

6.4.2 Domain Size

To keep data generation, training and simulation times reasonable, we mainly evaluate
our approaches on domains of size 64× 64. Obviously, though, larger resolutions are
desirable and often required. It is therefore interesting to see how our trained models

41



6 Results

can be applied to bigger domains than they were originally trained on. As an example,
we will focus on applying models trained on 64× 64 to a domain of size 256× 256.
We compare two methods to do so. First, since our network architecture is fully
convolutional, it is possible to simply apply it to inputs of any size. This method is
straightforward but does not consider that the networks may perform worse on domain
sizes they have not seen at training time.
Our second method therefore first downscales the divergence field to 64× 64, feeds it
into the network and then upsamples the pressure output to 256× 256 again. In this
way, the network need only infer pressure based on a 64× 64 input, as it was originally
trained to do.

Neural Network Simulation We previously established PHY to be the most suitable
model to run a network-only fluid simulation with (cf. subsection 6.3.1). Therefore,
we used it to investigate higher resolution simulations. An example simulation with
domain size 256× 256 is shown in Figure 6.21.
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Figure 6.21: Example 10−3 accuracy simulation on a domain of size 256× 256.

The results are noticeably worse than when the PHY network is used on a 64× 64
domain (cf. subsection 6.3.1). Naively applying PHY to the larger domain makes the
simulation drastically deviate from the reference. Interestingly, resizing makes the
network perform even worse. The pressure (see Figure 6.22) shows that the resizing
approach does help the network to initially predict outputs closer to the reference.
However, as the fluid becomes more turbulent (and with it the input divergence and
reference pressure), the resized approach fails to capture any of the details. This is very
likely due to the input divergence’s details getting lost in the downscaling process. The
naively applied PHY does not have this issue and is visibly better at dealing with more
turbulent flow, yet still proves unable to make useful pressure predictions.
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Figure 6.22: Pressure outputs for an example simulation on a domain of size 256× 256.

Hybrid Simulation Regarding performance in conjunction with the solver, SOL5

showed the best results (see subsection 6.3.2). We thus use it to investigate how our
models fare on higher dimensional domains in terms of reducing the solver’s iterations.
As Figure 6.23 shows, the SOL5 model reduces the iterations the solver needs to reach
an accuracy of 10−3 here too. Though the reduction seems small, the SOL5 hybrid
approach requires 80 iterations less than the solver would on its own. Absolutely
speaking, this is actually a similar reduction in iterations as was seen on the test dataset
for 64× 64 samples (see Figure 6.5). Of course, it is probable that the reduction would
be bigger relatively if the model had been trained on 256× 256 data.
The resizing approach again shows worse results than simply applying the fully convo-
lutional model naively. Likely here, too, the downscaling and upsampling lead to a
loss of detail in the predicted guess, making it less useful to the solver.
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Figure 6.23: Iterations per time step of a 256× 256 simulation with target accuracy 10−3

(averaged over 10 example simulations).
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6 Results

6.4.3 Combining Solver-Based and Physics-Based Learning

Our experiments in section 6.2 and subsection 6.3.2 suggest that solver-based learning
greatly benefits the usefulness of a network’s output in conjunction with the solver. On
the other hand, we found that our solver-based models are not suitable for standalone
use in simulations (see subsection 6.3.1 and subsection 6.4.1). They accumulate the
residual from their own pressure corrections much more quickly than e.g. physics-
based methods. This appears to result from direct comparison of the network’s output
to the CG solver’s output several iterations further, with more iterations exacerbating
the issue.
Therefore, we formulate another loss which forgoes this direct comparison and instead
includes the physics-informed error from Equation 5.2 on top of the differentiable
solver’s output:

LSOLPHY =
∥∥∇u− ∆S5(C(u))

∥∥2
(6.1)

This combined loss allows the network to observe the solver’s behavior given its pre-
diction, but also ultimately aims to minimize the residual divergence instead of the
distance to the solver’s output. We intentionally fix the look-ahead step size to 5 here,
to simplify notation.
We trained an additional model, SOLPHY, using this loss in the same way as our pre-
vious models. Evaluating it on the test dataset (see Figure 6.24), we see that SOLPHY

generally retains the reduction in solver-iterations and residual that the previous solver-
based approach also showed. The slightly worse performance compared to SOL5

can likely be attributed to the randomized initialization of the network’s parameters.
Due to reducing the iterations in a similar manner, SOLPHY also provides a speed-up
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Figure 6.24: SOLPHY, (a) Iterations needed to reach target accuracy (b) Comparison of
maximum residual error over iterations.
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6 Results

comparable to SOL5 when used in a hybrid simulation. For example, it requires an
average of 0.0933 ms per time step for a target accuracy of 10−3, whereas the CG solver
would require 0.2215 ms by itself (cf. Table 6.3).
These results are very similar to SOL5, so far. When used to replace the CG solver
in a non-hybrid simulation, though, SOLPHY shows a clear improvement over SOL5.
SOLPHY stays visually much closer to the 10−3 accuracy reference, only showing small
deviations e.g. in frames 60, 75 and 90 (see Figure 6.25). Its pressure (see Figure 6.26)
also does not exhibit the same checkerboard pattern as SOL5 and generally stays much
more stable throughout the simulation.
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Figure 6.25: Example simulation using SOLPHY as a standalone pressure solver.
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Figure 6.26: Pressure outputs of SOLPHY in the beginning of the simulation.

SO
L P

H
Y

SO
L 5

0 1 2 3 4 5 6 7 8 9

0.20

-0.20
0.20

-0.20

Figure 6.27: Residual divergence in the initial frames of the SOLPHY simulation.
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Accordingly, the residual divergence (see Figure 6.27) also does not accumulate as it
does for SOL5. This becomes even more clear when looking at the average residual
throughout 100 example simulations, as shown in Figure 6.28.
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Figure 6.28: Comparison of SOLPHY’s average residual error throughout a simulation
to that of the other models.

The SOLPHY model is able to cope with the divergence resulting from its own pressure
corrections much better, leading to a residual divergence that only slowly increases and
even stagnates, much like the PHY model’s. This is even more interesting considering
that, although it does not have the same checkerboard artifacts as SOL5, there is a
noticeable striped pattern in SOLPHY’s residual divergence. It appears that using the
physics-informed error metric for the final comparison (see Equation 6.1) instead of a
direct difference between network output and solver output (see Equation 5.3) makes
the trained network more tolerant to erratic patterns in its input.

In summary, SOLPHY combines the advantages of PHY and SOL5 effectively. Due
to observing the solver at training time, it retains the usefulness as an initial guess for
the CG solver and thus achieves an almost identical speed-up as SOL5 in a hybrid sim-
ulation. It also gains PHY’s in-simulation stability, as its error is ultimately determined
by the actual physical residual.
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7 Conclusions

In this thesis, we explored different approaches to training a Convolutional Neural
Network to accelerate the pressure solving step of Eulerian fluid simulations. We
focused on varying the loss formulation of these networks, comparing supervised,
physics-based and solver-based methods. Our results show that the physics-based
and solver-based variants excel in different areas, while the supervised variant is
generally outperformed. The physics-based variant achieves the highest accuracy when
used as a standalone pressure predictor. In a simulation, it can effectively be used to
substitute a numerical solver, trading some accuracy for computational performance
while still producing visually convincing results. However, its output is ill suited
for use as an initial state that the solver can further iterate upon. Here, our solver-
based approach performs much better. Its pressure predictions significantly reduce the
amount of iterations the solver needs to perform to reach its target accuracy. If used in
conjunction with the solver in a hybrid simulation, the solver-trained model leads to
noticeable real-world performance benefits. For a target simulation accuracy of 10−3,
our solver-based hybrid approach more than doubles computation speed. Even so, we
also found that our solver-based loss formulation is not optimal. Training to directly
minimize the difference to an intermediate output of the solver causes the network to
adopt the same checkerboard patterns found in these limited-iteration solutions. If not
included in the training dataset, the trained model then becomes unable to handle input
divergences containing these artifacts. When used as a standalone pressure predictor,
our solver-based model therefore accumulates its residual error much faster, leading
to an unstable simulation. We showed that this issue can be alleviated by combining
the physics-based and solver-based loss functions, so that the result no longer contains
a direct comparison of the network’s output to an intermediate solver solution. This
variant retains the iteration performance benefits of solver-based training and can also
be used as a standalone pressure predictor.
Though these findings were made in the context of fluid simulation, they can be
extrapolated to solving partial differential equations (PDEs) in general. Solver-based
learning can be used to train specific neural networks for different classes of PDEs.
Their output can then be used as an initial guess for a numerical solver to further
improve upon. In the same vein as our hybrid simulations, this promises to provide
notable performance benefits to solving PDEs in different areas.
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8 Future Work

The solver-based approach discussed in this thesis showed promising results for accel-
erating grid-based fluid simulations and the numerical solution of partial differential
equations in general. Nevertheless, there is, of course, ample room for improvement
and follow-up research. As we mainly compared the effects of different approaches
to the loss function, an obvious next step would be to further optimize the network
structure. Reducing the number of trainable parameters while maintaining comparable
iteration reduction would cut down on the cost of evaluating the network itself, thereby
accelerating hybrid simulations further. For this, an ablation study could be performed
on the network architecture we proposed in this work. If less manual trial-and-error is
desired, structured network pruning techniques [see Bla+20] could also be employed.
In doing so, weights, biases and even entire filters and layers could be identified that do
not meaningfully contribute to the trained model’s prediction. Removing them would
lead to a leaner network that could be evaluated more quickly. A different approach
to further speeding up hybrid simulations would be to combine our method with
correction-based schemes as discussed in [Um+19; Hsi+19]. A trained model could first
infer a guess for the numerical solver to use as a starting point. A second, corrective
network could then improve the solver’s updates, reducing the overall required itera-
tions further.

Besides improving the computational speed of our hybrid approach to simulations, it
would be worth investigating the method in different and more complicated settings.
For simplicity, we largely omitted obstacles in the simulations in this work. In- and
outflows were likewise left out in our investigations. As these features would greatly
increase the amount of interesting phenomena that our hybrid simulations can capture,
exploring how they could be integrated into our approach would definitely benefit its
practical usefulness. Similarly, applying our method to three dimensional simulations
and evaluating its performance could be an interesting follow-up investigation. Lastly,
as we focused on a standard Conjugate Gradient solver, the approach should also be
evaluated with respect to different numerical solution techniques. Other algorithms
such as Jacobi and Gauss-Seidel could be experimented with, as could Preconditioning.
Our findings thus provide several avenues for further research, which we feel the
tangible performance improvements demonstrated in this work warrant.
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