
DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Informatics: Games Engineering

Accuracy Evaluation of Numerical
Simulation Methods with CNNs

Georg Kohl

DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Informatics: Games Engineering

Accuracy Evaluation of Numerical
Simulation Methods with CNNs

Messung der Genauigkeit von Numerischen
Simulationsmethoden mit CNNs

Author: Georg Kohl
Supervisor: Prof. Dr. Nils Thuerey
Advisor: Dr. Kiwon Um
Submission Date: 15.10.2019

I confirm that this master’s thesis in informatics: games engineering is my own work
and I have documented all sources and material used.

Munich, 15.10.2019 Georg Kohl

Acknowledgments

I would like to thank my supervisor Prof. Dr. Nils Thuerey and my advisor Dr. Kiwon
Um for their ideas, suggestions and advice during this entire project. With their
collaboration and help it was possible to transform the coarse findings of a one-
semester guided research project into this thesis and a polished scientific paper in the
process of publishing. Furthermore, I would like to thank my teammates at the MTV
München tables tennis department. Exercising with them is great fun and helped me
to regenerate and stay well-adjusted during the entire project.

Abstract

This thesis proposes a novel approach for a reliable, stable and generalizing metric
(LNSM) based on neural networks to compare field data from a variety of different
numerical simulations. Our method employs a Siamese network architecture that is
known to work well for finding similarities of other data like text or audio. It is shown
that this architecture by design fulfills mathematical properties of a metric which is
more effective than providing manual constraints on other architectures to enforce
them. We discuss various experimental metric designs that provide insights on how
the network learns to compute a meaningful metric, and why certain ideas that seem
intuitive at first glance do not work in practice.

The data to train our models and compare them to existing other metrics arises
from a novel data generation setup. It utilizes a partial differential equation (PDE)
with a corresponding solver to create increasingly different outputs from a reference
simulation. Additionally, the data generation allows for controlling the difficulty of
the resulting learning task to create robustness towards natural errors in the data and
improve generalization. With this method we created four training and two test data
sets based on three PDEs. To further explore the space of possible data, we added four
more test sets created by other means to test the generalization of the metrics. For an
effective training, a specialized loss function is presented that introduces knowledge
about the correlation between single data samples in the procedure. We demonstrate
the advantages of this loss by comparing it to multiple other loss functions.

Using the test data, we show that the proposed approach outperforms existing
simple metrics for vector spaces and other learned, image based metrics. In addition,
the proposed network could be extended to higher dimensions which is not directly
possible for metrics based on images. To point out important stages of the development
process of our metric, experimental metric designs are discussed. Finally, we investigate
the impact of an adjustable difficulty of the training data, and provide additional
distance evaluations.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 Related Work 4

3 CNN-based Metrics 7
3.1 Learned Numerical Simulation Metric (LNSM) 7
3.2 Discussion of Metric Properties . 11
3.3 Experimental Designs . 13

4 Data and Training 22
4.1 Data Generation Approach . 22
4.2 Navier-Stokes Equations . 24
4.3 Advection-Diffusion and Burger’s Equation 28
4.4 Other Data Sets . 30
4.5 Training . 34
4.6 Correlation Loss Function . 35

5 Results 37
5.1 Accuracy Evaluation of Different Metrics 37
5.2 Analysis of Experimental Designs . 43
5.3 Impact of Data Difficulty and Correlation Loss 47
5.4 Distance Evaluations . 48

6 Conclusion 51

A Notation 53

Glossary 55

Bibliography 60

v

1 Introduction

Evaluating computational tasks for complex data sets is a fundamental problem in
all computational disciplines. Regular vector space metrics, such as the L2 distance
were shown to be very unreliable (Zhou Wang et al. 2004; Zhang et al. 2018), and the
advent of deep learning techniques with convolutional neural networks (CNNs) made
it possible to more reliably evaluate complex data domains such as natural images,
texts (Benajiba et al. 2018), or speech (Zhenyu Wang et al. 2018).

Our central aim is to demonstrate the usefulness of CNN-based evaluations in the
context of numerical simulations. These simulations are the basis for a wide range of
applications ranging from blood flow simulations to aircraft design. Specifically, we
propose a novel learned numerical simulation metric (LNSM) that allows for a reliable
similarity evaluation of simulation data. The main areas of application for a such a
metric are accuracy evaluations of existing methods and the assessment of accuracy for
new methods with respect to a known ground truth solution (Oberkampf et al. 2004).

In this work, we focus on field data, i.e. dense grids of scalars, similar to images,
which were generated with known partial differential equations (PDEs) in order to
ensure the availability of ground truth solutions. While we focus on 2D data in the
following to make comparisons with existing techniques from imaging applications
possible, our approach naturally extends to higher dimensions. Every sample of this
2D data can be regarded a high dimensional vector, so metrics on the corresponding
vector space are applicable to evaluate similarities. These metrics are typically simple,
elementwise functions such as L1 or L2 distances. We denote these as shallow metrics,
and their inherent problem is that they can not capture structures of any scale or
contextual information.

This problem is not confined to the field of natural images: it represents a fundamen-
tal challenge for many areas of simulation, most prominently for the field of turbulence
simulations (Lin et al. 1998; Moin and Mahesh 1998). Many practical problems require
solutions over time, and need a vast number of non-linear operations that often result
in substantial changes of the solutions even for small changes of the inputs. Hence,
despite being based on known, continuous formulations, these systems can be seen as
chaotic.

We illustrate this behavior in Fig. 1, where in each row two smoke flows are compared
to a reference simulation. A single simulation parameter was varied for these examples,

1

1 Introduction

Plume (a) Reference Plume (b)

LNSM L2 GT
0

1

Distance to Reference

(a) (b)

Plume (a) Reference Plume (b)

LNSM L2 GT
0

1

Distance to Reference

(a) (b)

Figure 1: Two examples of field data from a fluid simulation of hot smoke with
normalized distances for different metrics. Our method (LNSM, in green) approximates
the ground truth distances (GT, gray) determined by the data generation method
best, i.e., version (a) is closer to the ground truth data than (b). An L2 metric (red)
erroneously yields a reversed ordering in both cases.

and a visual inspection shows that smoke plume (a) is more similar to the reference in
both cases. This matches the data generation process: version (a) has a significantly
smaller parameter change than (b), as shown in the inset graph on the right. Our LNSM
metric robustly predicts the ground truth distances, while the L2 metric labels plume (b)
as more similar in both cases. In our work, we focus on retrieving the relative distances
of simulated data sets. Hence, we do not aim for retrieving the absolute parameter
change, but a relative distance that preserves ordering with respect to this parameter.

Using existing image metrics based on CNNs for this problem is not optimal either:
Natural images only cover a small fraction of the space of possible 2D data, and
numerical simulation outputs are located in a fundamentally different data manifold
within this space. Hence, there are crucial aspects that can not be captured by purely
learning from photographs. Furthermore, we have full control over the data generation
process for simulation data. As a result, we can create arbitrary amounts of training
data with gradual changes and a known ground truth order. With this data, we can
learn a metric that is not only able to directly extract and use features, but additionally
knows the fundamental interactions between them.

2

1 Introduction

The central contributions of this thesis are:

• A Siamese network architecture with feature map normalization which is able to
learn a metric that generalizes well to unseen simulations methods.

• We also propose an improved loss function that combines a batchwise correlation
loss term with a mean squared error to improve the accuracy of the learned
metric.

• In addition, we show how a data generation approach for numerical simulations
can be employed to train networks with general and robust feature extractors for
metric calculations.

3

2 Related Work

For the general concepts of deep learning we refer the reader to the work from Goodfel-
low et al. (2016). It discusses the fundamental techniques of applied mathematics and
machine learning necessary to understand deep learning. In addition, optimization,
basic network layers, and important deep learning research is covered. Three important
network structures for feature extraction the reader should be familiar with are AlexNet
(Krizhevsky et al. 2017), VGG (Simonyan and Zisserman 2015) and SqueezeNet (Ian-
dola et al. 2016). In the following, we discuss existing work in four categories: general
comparison tasks that utilize a method similar to ours as a solution, ideas that deal
with the related problem of image metrics, existing work targeting the given task of
simulation metrics, and the usage of correlation terms in CNNs.

Comparison Methods A Siamese network architecture is known to work well for a
large range of different comparison tasks. With them, Benajiba et al. (2018) performed
semantic pattern similarity analysis to compare structural patterns in two sentences. To
allow sound search by vocal imitation, Zhang and Duan (2017) employed a convolu-
tional Semi-Siamese architecture that extracts and compares deep features from audio.
Similarly, Zhenyu Wang et al. (2018) investigated speech pronunciation evaluation with
a Siamese network, where the difference in acoustic feature vectors is used to measure
mispronunciation. Or they are used for slightly different tasks like object tracking as
proposed by Bertinetto et al. (2016). Directly learning the appearance of objects that
should be tracked only yields a limited richness of the resulting model. Instead, they
suggest to train a Siamese network for general similarity as a preprocessing step and
repurpose it for the object tracking task later on.

Furthermore, certain comparison tasks that only deal with dense 2D data similar to
images require designated methods, in particular if they deal with a small, specialized
subset of all possible 2D data. H. He et al. (2019) worked on matching multitemporal
optical satellite images with the help of Siamese networks. To find similar products in
terms of interior product design, Bell and Bala (2015) investigated such architectures
among others. Hanif (2019) used Siamese networks with dense convolutional layers
that reuse feature maps from preceding layers for image matching and image patch
verification. Finally, Chu and Thuerey (2017) employed a Siamese architecture in the
context of descriptor learning to find similarities between fluid regions for smoke flow

4

2 Related Work

synthesis. They utilized a repository of volumetric space-time flow data created with a
PDE solver. Using learned descriptors to quickly look up a suitable data point from the
repository allows for high effective simulation resolutions with low simulation costs.

Image Metrics For the related task of comparing natural images, one of the earliest
methods going beyond using simple metrics based on Lp-norms was the structural
similarity index (SSIM) proposed by Zhou Wang et al. (2004). Because this is a shallow
metric as well, it has similar problems and is not optimal for a broad range of inputs
either. Over the years multiple large databases for human evaluations of natural images
were presented, for instance CSIQ from Larson and Chandler (2010) and CID:IQ from
Liu et al. (2014). Furthermore, the data set TID2013 for distortions on natural images
that mainly focuses on compression errors and different types of noise was created by
Ponomarenko et al. (2015).

With this data and the discovery that CNNs can create very powerful feature ex-
tractors that are able to recognize patterns and structures, deep feature maps quickly
became a better way to compute image similarity metrics (for different methods see
Amirshahi et al. 2016; Bosse et al. 2016; Kang et al. 2014; Kim and Lee 2017). Most
approaches rely on computing deep embeddings of the images that should be com-
pared, and evaluating a feature distance in the latent space to create a final distance
value. Recently, these methods were improved by predicting the distribution of human
evaluations instead of directly learning distance values as discussed by Prashnani et al.
(2018) and Talebi and Milanfar (2018b). A slightly different approach that utilizes the
eigenvalues of the fisher information matrix for hierarchical image comparison was
suggested by Berardino et al. (2017). Finally, Zhang et al. (2018) compared different
architectures and levels of supervision. They showed that metrics can be interpreted as
a transfer learning approach, by applying a linear weighting to the feature maps of any
network architecture. Using this method on the feature extractor from AlexNet, they
proposed the image metric LPIPS v0.1.

The current use cases of these image-based CNN metrics are typical computer vision
problems like detail enhancement, local tone mapping (Talebi and Milanfar 2018a), style
transfer, and super-resolution (Johnson et al. 2016). For these task the learned metric
replaces the common pixelwise comparison of the generated result to a ground truth
image, to achieve a more meaningful notion of distance. Similarly, image generation
with generative adversarial networks (GANs) can be improved by using learned metrics
in the loss functions. In this context, the work of Dosovitskiy and Brox (2016) shows
that only using learned metrics as a feature loss produces high-frequency artifacts,
but combining it with an established adversarial loss yields better results than other
state-of-the-art methods.

5

2 Related Work

Simulation Metrics Similarity metrics for numerical simulations are a topic of on-
going investigation and have not been studied extensively yet. Different specialized
metrics have been proposed to overcome the limitations of Lp-norms. In the area of
weather forecasting, Keil and Craig (2009) suggested a displacement and amplitude
score to measure precipitation forecasts. They employed an optical flow algorithm to
compute the displacement between both inputs and a direct difference as the amplitude
measurement. Both parts are combined to form the final distance prediction. Haben
et al. (2014) introduced a metric for energy consumption forecasting, that avoids overes-
timations of elementwise metrics for translated inputs. It uses restricted permutations
of the original forecast to minimize pointwise errors according to a given metric. Tur-
bulent flows, on the other hand, are often evaluated in terms of aggregated frequency
spectra (Pitsch 2006).

Um et al. (2017) used human evaluations to create a visual accuracy metric for
different liquid simulation methods for physics-based animation. Their approach
requires a real-world reference in the form of a video showing a corresponding liquid
setup to compare the different methods in pairs to the reference. But for PDEs in
general, it is often not feasible to create such a real-world setup. As follow up research,
Um et al. (2019) performed a similar study where they showed that the human visual
system can be employed to find similarities for finite difference methods from the class
of non-oscillatory schemes, that form the core of many PDE solvers. In this case, they
used a simulation with a significantly higher resolution as the ground truth to compare
two low resolution methods. These results indicate that it is possible to use visual
evaluation methods in the context of field data, but they require extensive and expensive
user studies. In addition, our method naturally extends to higher dimensions, while
human evaluations are inherently restricted to projections with at most two spatial and
one time dimension for higher dimensional data. These projections include abstracting
visualizations, slicing, showing volumes as planes over time, or other dimensionality
reductions to allow for a feasible visual evaluation.

Correlation in CNNs In the context of deep learning, correlation terms have been
used for learning joint representations by maximizing correlation of projected views
(Chandar et al. 2016), and for style transfer applications via the Gram matrix (Ruder
et al. 2016). We have not found any usage of correlation terms integrated into the
loss functions for learned distance metrics. As demonstrated below, they can yield
significant improvements for the inferred distances.

6

3 CNN-based Metrics

In the following, we explain our considerations when employing CNNs as evaluation
metrics. For a comparison that corresponds to our intuitive understanding of how
distances work, an underlying metric has to obey certain criteria. More precisely, a
function m : I× I→ [0, ∞) is a metric with respect to its input space I, if it satisfies the
following properties ∀x, y, z ∈ I:

m(x, y) ≥ 0 non-negativity (1)

m(x, y) = m(y, x) symmetry (2)

m(x, y) ≤ m(x, z) + m(z, y) triangle inequality (3)

m(x, y) = 0 ⇐⇒ x = y identity of indiscernibles (4)

The properties (1) and (2) are crucial as distances should be symmetric and have a
clear lower bound. Eq. (3) ensures that direct distances can not be longer than a
detour. Property (4), on the other hand, is not really useful for discrete operations as
approximation errors and floating point operations can easily lead to a distance of zero
for slightly different inputs. Hence, we focus on a relaxed, more meaningful definition
m(x, x) = 0 which leads to a so called pseudometric. It allows for a distance of zero for
different inputs, but has to be able to spot identical inputs.

3.1 Learned Numerical Simulation Metric (LNSM)

We realize these requirements for a pseudometric with an architecture that follows
popular perceptual metrics such as LPIPS: The activations of a CNN are compared
in latent space and accumulated with a set of weights. Afterwards, the resulting
per-feature distances are aggregated to produce a final distance value. Fig. 2 gives a
visual overview of this process.

3.1.1 Base Network

The sole purpose of the base network is to extract feature maps from both inputs. The
Siamese architecture implies that the weights of the base network are shared for both
inputs, meaning all feature maps are comparable. In addition, this ensures the identity

7

3 CNN-based Metrics

Base
network

Input 1

Input 2 Base
network

Feature map
normalization

Feature map
normalization

Elementwise
latent space
difference

Channel aggr.:
weighted avg.

Spatial aggr.:
average

Layer aggr.:
summation

Distance
output

1 Learned weight
per feature map

RGB inputs Feature maps:
sets of 3rd order tensors

Difference maps:
set of 3rd order tensors

Average maps:
set of 2nd order tensors

Layer distances:
set of scalars

d1 d2 d3 d
Result:
scalar

Figure 2: Overview of the proposed distance computation for a simplified base network
that contains three layers with four feature maps each in this example. The output
shape for every operation is illustrated below the transitions in orange and white; bold
operations are learned by the CNN.

of indiscernibles because for identical feature maps a distance of zero is guaranteed by
the following operations.

In the last years, a variety of powerful CNN-based feature extraction architectures
were proposed. We experimented with various networks, such as AlexNet (Krizhevsky
et al. 2017), VGG (Simonyan and Zisserman 2015), SqueezeNet (Iandola et al. 2016),
and a fluid flow prediction network (Thuerey et al. 2018). In all cases, only the feature
extracting layers are used, and the remaining layers which are responsible for the
original task, e.g., classification, are discarded. Building on this previous work, we
consider three variants of the networks below: using the original pre-trained weights,
fine-tuning them, or re-training the full networks from scratch. In contrast to typical
CNN tasks where only the result of the final output layer is further processed, we
make use of the full range of extracted features across the layers of a CNN (see Fig. 2).
This implies a slightly different goal: while early features should be general enough
to allow for extracting more complex features in deeper layers, this is not their sole
purpose. Rather, features in earlier layers of the network can directly participate in the
final distance calculation, and can yield important cues. In Section 5.2.1, we compare
the performance impact of different existing feature extractors, when re-training them
from scratch and when using pre-trained, frozen weights.

We achieved the best performance for our data sets using a custom architecture with
five layers, similar to a reduced AlexNet. This final base network for the LNSM metric
that was trained from scratch is shown in Fig. 3. To maximise the usefulness and avoid
feature maps that show too similar features, the chosen kernel size and stride of the
convolutions is important. Starting with a very larger kernels and strides means the
network has a big receptive field and can extract large scale features. For the two
following layers, the large strides are replaced by additional MaxPool operations that
serve a similar purpose and reduce the spatial size of the feature maps.

8

3 CNN-based Metrics

32

55

55

3

224

224

96

27

27

192

13

13

128

13

13

128

13

13

11x11 Convolution
with stride 4
+ ReLU

3x3 MaxPool with
stride 2

5x5 Convolution
with stride 1
+ ReLU

3x3 Convolution
with stride 1
+ ReLU

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Figure 3: Proposed base network architecture consisting of five layers with up to 192
feature maps that are decreasing in spatial size. It is similar to the feature extractor
from AlexNet as identical spatial dimensions for the feature maps are used, but it
reduces the number of feature maps for each layer by 50% to have fewer weights.

For the three final layers only small convolution kernels and strides are used, but
the number of channels is significantly larger than before. The reason is that the very
deep features, that typically contain only small scale structures, are most important to
distinguish small changes in the inputs. Keeping the number of trainable weights as
low as possible was an important consideration for this design, to prevent overfitting to
certain simulations types and increase generality. We explored a weight range by using
the same architecture and only scaling the number of feature maps in each layer. The
final design shown in Fig. 3 consists of about 0.62 million weights.

3.1.2 Feature Map Normalization

The goal of normalizing the feature maps is to transform the extracted features of each
layer, that typically have very different orders of magnitude, into comparable ranges.
While this task could potentially be performed by the learned weights, we found the
normalization to yield improved performance in general (see Section 5.2.2). Zhang et al.
(2018) proposed a unit length normalization using a division by the Euclidean norm in
channel dimension, to only measure the angle between the latent space vectors with a
cosine distance. Instead, we suggest to interpret all possible feature maps as a normal
distribution and to normalize them to a standard normal distribution. This is achieved
via a preprocessing step using the full training data set: we subtract the mean of the
feature maps and then divide by their standard deviation in channel dimension for
each layer. As a result, we can measure angles for the latent space vectors and compare
their magnitude in the global length distribution.

A more detailed derivation for this normalization to a standard normal distribution
is provided in Section 3.3.2. There, we also discuss other ways to normalize the feature
maps.

9

3 CNN-based Metrics

3.1.3 Latent Space Difference

Combining the latent spaces representations x̃, ỹ that consist of all extracted features
from the two inputs x, y lies at the core of the metric computation. Here, the most
obvious approach to employ an elementwise x̃i − ỹi difference is not advisable, as this
would directly violate the metric properties above. Instead, possible options to ensure
non-negativity and symmetry are |x̃− ỹ| or (x̃− ỹ)2. We found that both work equally
well in practice. Considering the importance of comparing the extracted features, the
simple operations used for comparing the features do not seem optimal. Rather, one
can imagine that improvements in terms of comparing one set of feature activations
could lead to overall improvements for derived metrics. Hence, we experimented
with replacing these operations with a pre-trained CNN-based metric for each feature
map. This creates a recursive process, and a ”meta-metric” that reformulates the initial
problem of the similarity between inputs in terms of the similarity a series of deep
representations of the inputs. However, as detailed in Section 3.3.3, we have not found
this recursive approach to yield any substantial improvements. This implies that once a
large enough number of expressive features is available for comparison, the in-place
difference of each feature is sufficient to compare two inputs. In the following, we
compute the feature difference maps (Fig. 2, in yellow) via (x̃− ỹ)2.

3.1.4 Aggregations

The subsequent aggregation operations (Fig. 2, in green) are applied to the difference
maps to compress the contained per feature differences along the different dimensions
into a single distance value. The aggregation operations only need to preserve the
metric properties already established via the latent space difference. To aggregate the
difference maps along the channel dimension, we found the weighted average proposed
by Zhang et al. (2018) to work very well. Thus, we use one learnable weight to control
the importance of a feature. The weight is a multiplier for the corresponding difference
map before summation along the channel dimension. To preserve non-negativity
and the triangle inequality, the weights are clamped to be non-negative. A negative
weight would mean that a larger difference in this feature produces a smaller overall
distance, which is not helpful. For spatial and layer aggregation, functions like a
summation or averaging are sufficient and generally interchangeable. We tested more
intricate aggregation functions, such as a learned spatial average or determining layer
importance weights dynamically from the inputs. When the base network is fixed and
the metric only has very few trainable weights, this did improve the overall performance.
But with a fully trained base network the feature extraction seems to automatically
adopt these aspects, making a more complicated aggregation unnecessary.

10

3 CNN-based Metrics

3.2 Discussion of Metric Properties

To analyze if the method proposed in Section 3.1 qualifies as a metric, it is split in two
functions m1 : I→ L and m2 : L×L→ [0, ∞) which operate on the input space I and
the latent space L. Through flattening elements from the input or latent space into
vectors, I ' Ra and L ' Rb where a and b are the dimensions of the input data or
all feature maps respectively, and both values have a similar order of magnitude. m1

describes the non-linear function computed by the base network combined with the
following normalization and returns a point in the latent space. m2 uses two points
in the latent space to compute a final distance value, so it includes the latent space
difference and the aggregation in the spatial, layer, and channel dimensions. With the
Siamese network architecture the resulting function for the entire approach is

m(x, y) = m2(m1(x), m1(y)).

The identity of indiscernibles (see Eq. (4)) mainly depends on m1 because even if m2

itself guarantees this property, m1 could still be non-injective, which means it can
map different inputs to the same point in latent space x̃ = ỹ for x 6= y. Due to the
complicated nature of m1 it is difficult to make accurate predictions about the injectivity
of m1. Each base network layer of m1 recursively processes the result of the preceding
layer with various feature extracting operations so intuitively, significant changes in
the input should produce different feature map results in some layer. But very small
changes in the input do lead to zero valued distances predicted by the CNN (i.e. an
identical latent space point for different inputs), meaning m1 is in practice not injective.
In an additional experiment, the proposed architecture was evaluated on about 3500
random inputs from all our data sets, where the CNN received one unchanged and
one slightly modified input. The modification consisted of multiple pixel adjustments
by one bit (on 8-bit color images) in random positions and channels. When adjusting
only a single pixel in the 224× 224 input, the CNN predicts a zero valued distance on
about 23% of the inputs, but we never observed an input where seven or more changed
pixels resulted in a distance of zero in all experiments.

In this context, the problem of numerical errors is important, because even two
slightly different latent space representations could lead to a result that seems to be
zero if the difference vanishes in the aggregation operations or is smaller than the
floating point precision. On the other hand, an automated analysis to find points that
have a different input but an identical latent space image is a challenging problem and
left as future work.

The evaluation of the base network and the normalization is deterministic, and
hence ∀x : m1(x) = m1(x) holds. Further, we know that m(x, x) = 0 if m2 guarantees
that ∀m1(x) : m2(m1(x), m1(x)) = 0. Thus, the remaining properties (1), (2), and (3)

11

3 CNN-based Metrics

only depend on m2, since for them the original inputs are not relevant, only their
respective images in the latent space. The resulting structure with a relaxed identity of
indiscernibles is called a pseudometric, where ∀x̃, ỹ, z̃ ∈ L:

m2(x̃, ỹ) ≥ 0 (5)

m2(x̃, ỹ) = m2(ỹ, x̃) (6)

m2(x̃, ỹ) ≤ m2(x̃, z̃) + m2(z̃, ỹ) (7)

m2(x̃, x̃) = 0 (8)

Notice, that m2 has to fulfill these properties with respect to the latent space and not
the input space. If m2 is carefully constructed the metric properties still apply, indepen-
dently of the actual design of the base network or the feature map normalization.

A first observation concerning m2 is that if all aggregations were sum operations and
the elementwise latent space difference was the absolute value of a difference operation,
m2 would be equivalent to computing the L1-norm of the difference vector in latent
space.

msum
2 (x̃, ỹ) =

b

∑
i=1
|x̃i − ỹi|

Similarly, adding a square operation to the elementwise distance in the latent space
and computing the square root at the very end leads to the L2-norm of the latent
space difference vector. In the same way, it is possible to use any Lp-norm with the
corresponding operations.

msum
2 (x̃, ỹ) =

(
b

∑
i=1
|x̃i − ỹi|p

) 1
p

In both cases, this forms the metric induced by the corresponding norm which by
definition has all desired properties (5), (6), (7), and (8). If we change all aggregation
methods to a weighted average operation, each summand is multiplied by a weight wi.
This is even possible with learned weights, as they are constant at evaluation time, if
they are clamped to be positive as described above. Now, wi can be attributed to both
inputs by distributivity, meaning each input is elementwise multiplied with a constant
vector before applying the metric, which leaves the metric properties untouched. The
reason is that it is possible to define new vectors in the same space, equal to the scaled
inputs. This renaming trivially provides the correct properties.

mweighted
2 (x̃, ỹ) =

b

∑
i=1

wi|x̃i − ỹi|
wi>0
=

b

∑
i=1
|wi x̃i − wiỹi|

12

3 CNN-based Metrics

Accordingly, doing the same with the Lp-norm idea is possible, each wi just needs a
suitable adjustment before distributivity can be applied, keeping the metric properties
once again.

mweighted
2 (x̃, ỹ) =

(
b

∑
i=1

wi|x̃i − ỹi|p
) 1

p

=

(
b

∑
i=1

wi|x̃i − ỹi| |x̃i − ỹi| . . . |x̃i − ỹi|
) 1

p

=

(
b

∑
i=1

w
1
p
i |x̃i − ỹi| w

1
p
i |x̃i − ỹi| . . . w

1
p
i |x̃i − ỹi|

) 1
p

wi>0
=

(
b

∑
i=1
|w

1
p
i x̃i − w

1
p
i ỹi|p

) 1
p

With these weighted terms for m2, it is possible to describe all used aggregations and
latent space difference methods. The proposed method deals with multiple higher
order tensors instead of a single vector, so the weights wi additionally depend on
constants like the direction of the aggregations and their position in the latent space
tensors. But it is easy to see that mapping a higher order tensor to a vector and keeping
track of additional constants still retains all properties in the same way. As a result, the
described architecture by design yields a pseudometric that is suitable for comparing
simulation data in a way that corresponds to our intuitive understanding of distances.

3.3 Experimental Designs

In the following, we discuss various experimental metric designs and changes to the
approach from above. Intuitively they should improve the results, but we will analyze
why they do not work in practice.

3.3.1 Base Network with Skip Connections

As explained above, our base network primarily serves as a feature extractor to produce
activations that are employed to evaluate a learned metric. In many state-of-the-art
methods, networks with skip connections are employed (K. He et al. 2016; Huang et al.
2017; Ronneberger et al. 2015), as experiments have shown that these connections help
to preserve information from the inputs. In our case, the classification ”output” of
a network such as the AlexNet plays no actual role. Rather, the features extracted

13

3 CNN-based Metrics

32

55

55

3

224

224

64

27

27

128

13

13

128

13

13

11x11 Convolution
with stride 4
+ ReLU

3x3 MaxPool with
stride 2

5x5 Convolution
with stride 1
+ ReLU

3x3 Convolution
with stride 1
+ ReLU

32

55

55

128 + 64

13

13

64 + 64

27

27

32 + 32

55

55

3x3 Transposed
convolution with
stride 1 + ReLU

3x3 Transposed
convolution with
stride 2 + ReLU

Skip connection
via channel
concatenation

Figure 4: Network architecture with skip connections for better information transport
between feature maps. Transposed convolutions are used to upscale the feature maps
in the second half of the network to match the spatial size of earlier layers for the skip
connections.

along the way are crucial. Hence, skip connections should not improve the inference
task for our metrics. To verify that this is the case, we have included tests with a base
network similar to the popular UNet architecture (Ronneberger et al. 2015). For our
experiments, we kept the early layers closely in line with the feature extractors that
worked well for the base network (see Section 3.1.1). Only the layers in the decoder
part have an increased spatial feature map size to accommodate the skip connections.
As expected, this network can be used to compute reliable metrics for the input data
without negatively affecting the performance. However, as expected, the improvements
of skip connections for regular inference tasks do not translate into improvements for
the metric calculations, as shown in Section 5.1.

3.3.2 Different Feature Map Normalizations

Here, we analyze possible feature map normalizations for the ”normalization” step of
our algorithm, i.e., the red ellipses in Fig. 2. Assume we have a 3rd order feature tensor
G with dimensions (gc, gx, gy) from one layer of the base network (see Fig. 2). We can
form a series G0,G1, . . . for all possible forms of this tensor in our training samples
(computed as a preprocessing step). Below, we evaluate three different normalization

14

3 CNN-based Metrics

methods and also consider not normalizing at all, denoted by

normnone(G) = G.

The normalization only happens in the channel dimension, so all following operations
accumulate values along (:, gx, gy) while keeping gx and gy constant, i.e., are applied
independently of the spatial dimensions. The unit length normalization proposed by
Zhang et al. (2018)

normunit(G) =
G
‖G‖2

only considers the current sample. In this case ‖G‖2 is a 2nd order tensor with the
Euclidean norms of G along the channel dimension. Combined with summation as the
aggregation operation in channel direction, this results in a cosine distance which only
measures angles of the latent space vectors. Using a learned average instead means
the angles are no longer uniform, but warped according to the importance of each
feature (i.e. the resulting angle changes differently for the same amount of change in
two separate features). Extending this idea to consider other training samples as well,
leads to a global unit length normalization

normglobal(G) =
G

max (‖G0‖2 , ‖G1‖2 , . . .)

where the maximum Euclidean norm of all available samples is employed. As a result,
not only the angle of the latent space vectors, but also their magnitude compared
to the largest feature vector is available in the aggregation. This formulation is not
really robust yet, because the largest feature vector could be an outlier w.r.t. the typical
content. Instead, we can consider the full feature vector as a normal distribution and
transform it to a standard normal distribution with the proposed

normdist.(G) =
G−mean (‖G0‖2 , ‖G1‖2 , . . .)

std (‖G0‖2 , ‖G1‖2 , . . .)
.

In addition to the angle, this formulation allows for a robust comparison of the
magnitude of each feature vector in the global magnitude distribution. An analysis of
these normalization variants is provided in Section 5.2.2.

3.3.3 Latent Space Difference with LPIPS

Since comparing the feature maps, i.e., the yellow ellipse in Fig. 2, is a central operation
of the proposed metric calculations, we experimented with replacing it with an existing
CNN-based metric. In theory, this would allow for a recursive, arbitrarily deep network

15

3 CNN-based Metrics

that repeatedly invokes itself: first, the deep representations of inputs are used, then
the deep representations of the deep representations, etc. In practice, however, using
more than one recursion step is currently not feasible due to increasing computational
requirements in addition to vanishing gradients.

Base
network

Input 1

Input 2 Base
network

Feature map
normalization

Feature map
normalization

LPIPS
latent space
difference

Aggregation:
weighted avg.

Distance
output

1 Learned weight
per feature map

RGB inputs Feature maps:
sets of 3rd order tensors

Feature differences:
sets of scalars

d1,4d1,3d1,2d1,1 d
Result:
scalar

d1,4d1,3d1,2d2,1

d1,4d1,3d1,2d3,1

Spatial
extension

Spatial
extension

Extended feature maps:
sets of 3rd order tensors

Figure 5: Adjusted distance computation for a LPIPS-based latent space difference. To
provide sufficiently large inputs for LPIPS, small feature maps are spatially enlarged
with nearest neighbor interpolation. In addition, LPIPS creates scalar instead of spatial
differences leading to a simplified aggregation.

Fig. 5 shows how our computation method can be modified for a CNN-based latent
space difference, instead of an elementwise operation. Here we employ LPIPS (Zhang
et al. 2018). There are two main differences compared to Fig. 2: First, the LPIPS latent
space difference creates single distance values for a pair of feature maps instead of a
spatial feature difference. As a result, the following aggregation is a single learned
average operation and spatial or layer aggregations are no longer necessary. We
also performed experiments with a spatial LPIPS version here, but due to memory
limitations these were not successful. Second, the convolution operations in LPIPS
have a lower limit for spatial resolution, and some feature maps of our base network
are quite small (see Fig. 3). Hence, we up-scale the feature maps that are below the
required spatial size of 32× 32 using nearest neighbor interpolation.

3.3.4 Aggregation with Spatial Masking

The main idea of spatial masking is that the network should be able to vary the spatial
importance of features. This means, the average operation for the spatial aggregation
is replaced with a weighted average. To achieve this, we used the adjusted distance
computation illustrated in Fig. 6. The difference maps from the elementwise latent
space difference are transformed to one spatial mask for each layer, that is used for
the weighted average in the spatial aggregation of the feature maps. As a result, the

16

3 CNN-based Metrics

spatial masks are not fixed at evaluation time like the weights of the feature maps, but
dynamically adapted to both inputs.

Spatial aggr.:
weighted avg.

Base
network

Input 1

Input 2 Base
network

Feature map
normalization

Feature map
normalization

Elementwise
latent space
difference

Channel aggr.:
weighted avg.

Layer aggr.:
summation

Distance
output

RGB inputs Feature maps:
sets of 3rd order tensors

Difference maps:
set of 3rd order tensors

Average maps:
set of 2nd order tensors

Layer distances:
set of scalars

d1 d2 d3 d
Result:
scalar

Spatial masks:
set of 2nd order tensors

1 Learned weight
per feature map

Masking
network

Figure 6: Distance computation with spatial masking. In addition to the learned channel
aggregation, here the network can also learn the spatial aggregation using a masking
network. The spatial masks created by the masking network are the elementwise
weights of the weighted spatial aggregation.

The conversion happens with a special masking network, which consists of a separate
part for each 3rd order tensor G with dimensions (gl

c, gl
x, gl

y) from the set of difference
maps. Fig. 7 shows the general architecture of these parts, that are used for each layer l
of the base network. Overall, the main task of the masking network is to reduce the
channel dimension gl

c of G to one. This is done with incremental reductions through

5x5 Padded convolution
with stride 1 for

Sigmoid

gx
l

g y
l

gc
l

gx
l

g y
l

8

gx
l

g y
l

4

gx
l

g y
l

1

3x3 Padded convolution
with stride 1 for

Spatial maskFeature map input from layer l

l ≤ 2

l ≥ 3

ReLU

Figure 7: General design of each part of the masking network used to create a single
spatial mask (see Fig. 6) from one 3rd order feature map tensor G. For the final masking
network, one instance of this is used for each base network layer l.

convolution + ReLU operations. For the final operation, a sigmoid is used instead of
the ReLU to enforce a range of [0, 1] for the masking values. It is employed to only
allow the network to reduce the importance of certain areas in the feature maps and not
to increase it. This step is necessary, as otherwise the network almost always overfits to
the training data and uses only single unconnected pixels of the feature maps without
any context. The first two layers have feature maps with a relatively high spatial size,
thus larger convolution kernels are used to achieve a more similar receptive field. Over

17

3 CNN-based Metrics

the course of the masking network, the spatial dimensions gl
x and gl

y of G must be
preserved, so the padding for the convolution operations are always chosen in this way.

The network with three layers shown in Fig. 7 was only one experiment. We also
tested masking networks with a different number of layers, following the same concept
of incrementally reducing the number of feature maps as described above. For example,
a four layer masking network would simply add another layer with 16 convolutions
with the same kernel size directly after the input. A two layer network would remove
the first shown layer and directly start with a channel dimension of four.

3.3.5 Layer Aggregation with Dynamic Weighting

The dynamic weighting tries to achieve a similar goal as the spatial masking described
above. Instead of the spatial aggregation, this aims to improve the layer aggregation
as illustrated in Fig. 8. The weights for the learned layer average come from a dy-
namic weighting network that dynamically processes the difference maps from the
elementwise latent space difference to scalar layer weights. Like for the spatial masks,
the advantage of this approach is that the model can dynamically adapt the learned
average at evaluation time via the dynamic weighting network.

Layer aggr.:
weighted avg.

Base
network

Input 1

Input 2 Base
network

Feature map
normalization

Feature map
normalization

Elementwise
latent space
difference

Channel aggr.:
weighted avg.

Distance
output

RGB inputs Feature maps:
sets of 3rd order tensors

Difference maps:
set of 3rd order tensors

Average maps:
set of 2nd order tensors

Layer distances:
set of scalars

d1 d2 d3 d
Result:
scalar

Dynamic
weighting
network

Dynamic weights:
set of scalars

w1 w2 w3

Spatial aggr.:
average

1 Learned weight
per feature map

Figure 8: Distance computation with dynamic weighting. A dynamic weighting network
creates scalar dynamic layer weights that are used for the learned average in the layer
aggregation.

As shown in Fig. 9, the dynamic weight computation is performed with 1 × 1
convolutions to reduce the channel dimension, and different MaxPool operations to
reduce the spatial dimensions of the input tensor G to a scalar weight. The first MaxPool
is adaptive, meaning it directly scales the spatial input dimensions gl

x and gl
y to constant

values. For the same reason as described for the spatial masking the final activation
function is a sigmoid.

We also experimented with using only a single MaxPool for the spatial reduction
and tested dynamic weighting networks with a lower number of layers. For instance, a

18

3 CNN-based Metrics

1x1 Convolution with stride 1

Sigmoid

gx
l

g y
l

gc
l 8

4
1 2x2 MaxPool with stride 2

Dynamic weightFeature map input from layer l

ReLU

4

4
Adaptive MaxPool

2

2
1
1

Figure 9: General design of each part of the dynamic weighting network used to create
a single dynamic weight (see Fig 8) from one 3rd order feature map tensor G. For the
final dynamic weighting network, one instance of this is used for each base network
layer l.

two layer network would remove the first shown layer and directly reduce the input
to 4× 2× 2. Note, that the dynamic weighting approach also works with the input
difference layer described below. In combination, both of them work especially well
since the dynamic weights allow the network to selectively add some amount of the
input differences.

3.3.6 Input Difference Layer

Base
network

Input 1

Input 2 Base
network

Feature map
normalization

Feature map
normalization

Elementwise
latent space
difference

Channel aggr.:
weighted avg.

Spatial aggr.:
average

Layer aggr.:
summation

Distance
output

1 Learned weight
per feature map

RGB inputs Feature maps:
sets of 3rd order tensors

Stacked difference maps:
set of 3rd order tensors

Average maps:
set of 2nd order tensors

Layer distances:
set of scalars

d2 d3 d4 d
Result:
scalar

Input 1

Input 2

Elementwise
input space
difference

d1
Input difference:
3rd order tensor

Stacking in
layer

dimension

Figure 10: Distance computation using an input difference layer. In addition to the
feature differences, the network can also directly work with the per-channel input
difference that is appended to the set of feature maps. The input difference layer is
treated in the same way as an additional layer of the base network with three feature
maps.

The input difference layer depicted in Fig. 10 was designed to be used in combination
with the dynamic weighting described above. The main idea is that the network can
utilize the elementwise L2 distance as an additional layer to the feature differences.

19

3 CNN-based Metrics

With the dynamic weighting, the network can adapt the influence of the input difference
at evaluation time, but without it every input partially uses a shallow comparison. As
shown in Fig. 10, the elementwise input space difference is directly concatenated to the
feature map differences. From that point on, it is treated as a separate layer with three
feature maps in the same way as other layers from the base network.

3.3.7 Non-siamese Architecture

To compute a metric without the Siamese architecture outlined above, we use a network
structure with a single output, as shown in Fig. 11. Thus, instead of having two
identically feature extractors and combining the feature maps, here the distance is
directly predicted from the stacked inputs with a single network with about 1.24 million
weights. After using the same feature extractor as described in Section 3.1.1 the final
set of feature maps is spatially reduced with an adaptive MaxPool operation. Next, the
result is flattened and three consecutive fully connected layers process the data to form
the final prediction. Here, the last activation function is a sigmoid instead of a ReLU.
The reason is that a ReLU would clamp every negative intermediate value to a zero
distance, while a sigmoid compresses the intermediate value to a small distance that is
more meaningful than directly clamping it.

6

224

224

128

13

13
Dropout

Adaptive MaxPool

ReLU

Sigmoid2 Stacked inputs

Feature
extractor
identical
to base
network

128 128

1

Predicted
distance

4608

Fully connected
layer

Flatten

128
6

6

Figure 11: Non-Siamese network architecture with the same feature extractor used in
Fig. 3. It uses both stacked inputs and directly predicts the final distance value from
the last set of feature maps with several fully connected layers.

In terms of metric properties, this architecture only provides non-negativity (see
Eq. (1)) due to the final sigmoid function. All other properties can not be guaranteed
without further constraints. This is the main disadvantage of a non-Siamese network.
These issues could be alleviated with specialized training data or by manually adding
constraints to the model, e.g., to have some amount of symmetry (see Eq. (2)) and
at least a weakened identity of indiscernibles (see Eq. (8)). However, compared to a
Siamese network that guarantees them by design, these extensions are clearly sub-
optimal. As a result of the missing properties, this network has significant problems

20

3 CNN-based Metrics

with generalization, even though dropout layers are employed for regularization.

3.3.8 Optical Flow Metric

Recognizing that many PDEs include transport phenomena, we investigated optical
flow (Horn and Schunck 1981) as means to compute motion from field data. To compute
a metric via optical flow (OF), we bidirectionally compute the optical flow field between
two inputs and aggregate them. For an efficient OF evaluation we employed the
pre-trained network FlowNet2 (Ilg et al. 2016).

From any OF network f : I× I → Rimax×jmax×2 with two inputs data fields x, y ∈ I,
we get the flow vector field f xy(i, j) = (f xy

1 (i, j), f xy
2 (i, j))T, where i and j denote the

location and f1 and f2 denote the components of the flow vectors. In addition, we have
a second flow field f yx(i, j) computed from the reversed input ordering. We can now
define a function m : I× I→ [0, ∞):

m(x, y) =
imax

∑
i=0

jmax

∑
j=0

√
(f xy

1 (i, j))2 + (f xy
2 (i, j))2 +

√
(f yx

1 (i, j))2 + (f yx
2 (i, j))2

Intuitively, this function computes the sum over the magnitudes of all flow vectors
in both vector fields. With this definition, it is obvious that m(x, y) fulfills the metric
properties of non-negativity and symmetry (see Eq. (1) and (2)). Under the assumption
that identical inputs create a zero flow field, a relaxed identity of indiscernibles holds
as well (see Eq. (8)). Compared to the proposed approach there is no guarantee for the
triangle inequality though, so m(x, y) only qualifies as a pseudo-semimetric.

21

4 Data and Training

In the following we describe the generation of our data sets and include training details.
The first Section 4.1 illustrates our general data generation approach. Afterwards, the
Sections 4.2, 4.3 and 4.4 describes each used data set in more detail. In these sections
each figure displaying data samples (consisting of a reference simulation and several
variants with one changing parameter) shows the reference as the leftmost image and
the variants in order of increasing parameter change to the right. Finally, Section 4.5
deals with training details like data augmentation and optimization, and Section 4.6
describes the proposed correlation loss function.

4.1 Data Generation Approach

Similarity data sets for natural images typically rely on changing already existing
images with distortions, noise or other operations, and assigning ground truth distances
according to the strength of the operation. Since we can control the data creation process
for numerical simulations directly by altering the simulation, we can generate large
amounts of simulation data with growing dissimilarities. Thus, the data contains more
information about the nature of the problem, i.e., which changes of the data distribution
should lead to increased distances, than by applying modifications as a post-process.

Given a set of model equations, e.g. a PDE from fluid dynamics, typical solution
methods consist of a solver that, given a set of boundary conditions, computes discrete
approximations of the necessary differential operators. The discretized operators and
the boundary conditions typically contain problem dependent parameters which we
collectively denote with p0, p1, . . . , pi, . . . in the following. We only consider time
dependent problems, and our solvers start with initial conditions at t0 to compute a
series of time steps t1, t2, . . . until a target point in time (tt) is reached. At that point
we obtain a reference output field o0 from one of the PDE variables, e.g., a velocity.
For data set generation, we now incrementally change a single parameter pi in n steps
∆i, 2 · ∆i, . . . , n · ∆i to create a series of n outputs o1, o2, . . . , on. We consider a series
obtained this way to be increasingly different from o0.

To create natural variations of the resulting data distributions, we add Gaussian noise
fields with zero mean and adjustable variance to an appropriate simulation field such
as a velocity. This noise allows us to generate a large number of varied data samples

22

4 Data and Training

for a single simulation parameter pi. In addition, it is similar in nature to numerical
errors introduced by discretization schemes. Thus, these perturbations enlarge the
space covered by the training data, and we found that training networks with suitable
noise levels improves robustness, as we will demonstrate below. The process for data
generation is summarized in Fig. 12.

Initial conditions OutputFinite difference solver with time discretization

[p0 p1 ⋯ pi ⋯] t1 t2 t t o0

o1[p0 p1 ⋯ pi+Δ i ⋯]

[p0 p1 ⋯ pi+n⋅Δi ⋯] t1 t2 t t onIn
cr

e
as

in
g

 p
a

ra
m

et
e

r
ch

an
g

e

D
e

cr
e

as
in

g
 o

u
tp

u
t

si
m

il
ar

it
y

noise1,1(s) noise1,2(s) noise1 , t(s)

t1 t2 t t

noise2,1(s) noise2,2(s) noise2 , t(s)

noisen ,1(s) noisen ,2(s) noisen ,t (s)

Figure 12: General data generation method from a PDE solver for a time dependent
problem. With increasing changes of the initial conditions for a parameter pi in ∆i
increments, the outputs decrease in similarity. Controlled Gaussian noise is injected in
a simulation field of the solver. The difficulty of the learning task can be controlled by
scaling ∆i as well as the noise strength s.

As PDEs can model extremely complex and chaotic behaviour, there is no guarantee
that the outputs always get increasingly dissimilar with the increasing parameter
change. This behaviour is what makes the task of similarity assessment so challenging.
Even if the solutions are essentially chaotic, their behaviour is not arbitrary but rather
governed by the rules of the underlying PDE. For our data set, we choose a range of
representative PDEs: We include a pure Advection-Diffusion model (AD) and Burger’s
equation (BE) which introduces a viscosity term. Furthermore, we use the full Navier-
Stokes equations (NSE) which introduce a conservation of mass constraint. When
combined with a deterministic solver and a suitable parameter step size, all these PDEs
exhibit chaotic behaviour at small scales, so that medium and large scale characteristics
of the solutions shift smoothly with increasing changes of the parameters pi. The noise
n amplifies the chaotic behaviour to larger scales to create an environment with a
controlled amount of perturbations. This lets the network learn about the nature of
the chaotic behaviour of PDEs, without overwhelming it with data where patterns are
not observable anymore. The latter can easily happen when ∆ or n grow too large and
produce essentially random outputs. Instead, we specifically target solutions which are
difficult to evaluate in terms of a shallow metric. We choose the smallest ∆ and n such

23

4 Data and Training

that the ordering of several random output samples with respect to their L2 difference
drops below a correlation value of 0.8.

Using this data generation approach for the mentioned PDEs, we created data sets
with ten parameter steps for each reference simulation described in the following
sections. Two 2D NSE solvers for smoke and liquids were used to create two training
and one test set (Smo, Liq, and LiqN, see Section 4.2). Similarly, two 1D solvers for AD
and BE were employed to create two training and one test set (Adv, Bur, and AdvD, see
Section 4.3). In addition, we employed four more test sets (see Section 4.4) created
without PDE models to explore the generalization for data far from our training data
setup. We include a shape data set that features multiple randomized moving rigid
shapes (Sha), a video data set consisting of frames from random video footage (Vid),
the perceptual image data set TID2013 (TID) from Ponomarenko et al. (2015), and an
adjusted user study data set (Use) from Um et al. (2019).

For the following Figures 13, 14, 15, and 16 the first subfigure (a) demonstrates that
medium and large scale characteristics behave very non-chaotic for simulations without
any added noise. They are only included for illustrative purposes and are not used for
training. The second and third subfigure (b) and (c) in each case show the training data
of LNSM, where the large majority of data falls into the category (b) of normal samples
that follow the generation ordering, even with more varying behaviour. Category (c) is
a small fraction of the training data and the shown examples are specifically picked,
worst case examples to show how the chaotic behaviour can sometimes override the
ordering intended by the data generation. In some cases, category (d) is included to
show how normal data samples from the test set differ from the training data.

4.2 Navier-Stokes Equations

These equations describe the general behaviour of fluids with respect to advection, vis-
cosity, pressure, and mass conservation. Eq. (9) defines the conservation of momentum
and Eq. (10) the conservation of mass inside the fluid.

∂u
∂t

+ (u · ∇)u = −∇P
ρ

+ ν∇2u + g (9)

∇ · u = 0 (10)

In this context, u is the velocity, P is the pressure the fluid exerts, ρ is the density of
the fluid (usually assumed to be constant), ν is the kinematic viscosity coefficient that
indicates the thickness of the fluid, and g denotes the acceleration due to gravity. With
this PDE three data sets were created using a smoke and a liquid solver. For all data,
2D simulations were run until a certain step before useful data fields were exported.

24

4 Data and Training

4.2.1 Smoke (Smo)

For the smoke data, a standard Eulerian fluid solver using a preconditioned pressure
solver based on conjugate gradient and a Semi-Lagrangian advection scheme was
employed.

(a) Data samples generated without noise: tiny output changes following generation ordering

(b) Normal training data samples with noise: larger output changes but ordering still applies

(c) Outlier data samples: noise can override the generation ordering by chance

Figure 13: Various smoke simulation examples using one component of the velocity
(top rows), the density (middle rows), and the pressure field (bottom rows).

The general setup for every smoke simulation consists of a rectangular smoke source
at the bottom with a fixed additive noise pattern to provide smoke plumes with more

25

4 Data and Training

details. Additionally, there is a downwards directed, spherical force field area above
the source which divides the smoke in two major streams along it. We chose this
solution over an actual obstacle in the simulation, in order to avoid overfitting to a
clearly defined black obstacle area inside the smoke data. Once the simulation reaches a
predefined time step, the density, pressure, and velocity field (separated by dimension)
is exported and stored. Some examples can be found in Fig. 13. With this setup the
following initial conditions were varied in isolation:

• Smoke buoyancy in x- and y-direction

• Strength of noise added to the velocity field

• Amount of force in x- and y-direction provided by the force field

• Orientation and size of the force field

• Position of the force field in x- and y-direction

• Position of the smoke source in x- and y-direction

4.2.2 Liquid (Liq and LiqN)

For the liquid data, a solver based on the fluid implicit particle (FLIP) method proposed
by Zhu and Bridson (2005) was employed. It is a Eulerian-Lagrangian hybrid approach
that replaces the Semi-Lagrangian advection scheme with particle based advection to
achieve higher accuracy and prevent the loss of mass. Still, this method is not optimal
as we experienced problems with mass loss, especially for larger noise values. The
simulation setup consists of a large breaking dam and several smaller liquid areas for
more detailed splashes. After the dam hits the simulation boundary a large, single drop
of liquid is created in the middle of the domain that hits the already moving liquid
surface. Then, the extrapolated level set values, binary indicator flags, and the velocity
field (separated by dimension) are saved, with some examples shown in Fig. 14. The
list of varied parameters include:

• Radius of the liquid drop

• Position of the drop in x- and y-direction

• Amount of additional gravity force in x- and y-direction

• Strength of noise added to the velocity field

For the liquid test set additional background noise was added to the velocity field of
the simulations (see Fig. 14d). Because this only alters the velocity field, the extrapolated
level set values and binary indicator flags are not used for this data set.

26

4 Data and Training

(a) Data samples generated without noise: tiny output changes following generation ordering

(b) Normal training data samples with noise: larger output changes but ordering still applies

(c) Outlier data samples: noise can override the generation ordering by chance

(d) Data samples from test set: additional background noise

Figure 14: Several liquid simulation examples using the binary indicator flags (top
rows), the extrapolated level set values (middle rows), and one component of the
velocity field (bottom rows) for the training data and the velocity field for the test data.

27

4 Data and Training

4.3 Advection-Diffusion and Burger’s Equation

For these PDEs our solvers only discretized and solve the corresponding equation
in 1D. Afterwards, the different time steps of the solution process are concatenated
along a new dimension to form 2D data with one spatial and one time dimension.
Since these equations are closely related, the used solvers and varied parameters are
relatively similar. Unless noted otherwise, the noise was added to the velocity field of
the simulation in both cases.

(a) Data samples generated without noise: tiny output changes following generation ordering

(b) Normal training data samples with noise: larger output changes but ordering still applies

(c) Outlier data samples: noise can override the generation ordering by chance

(d) Data samples from test set: noise directly added to the density field

Figure 15: Various examples from the Advection-Diffusion equation using the density
field.

28

4 Data and Training

4.3.1 Advection-Diffusion Equation (Adv and AdvD)

This equation describes how a passive quantity is transported inside a velocity field
due to the processes of advection and diffusion. Eq. (11) is the simplified Advection-
Diffusion equation with constant diffusivity and no sources or sinks.

∂d
∂t

= ν∇2d− u · ∇d (11)

Here, d denotes the density, u is the velocity, and ν is the kinematic viscosity (also
known as diffusion coefficient) that determines the strength of the diffusion. Our solver
employed a simple implicit time integration and a diffusion solver based on conjugate
gradient without preconditioning. The initialization for the 1D fields of the simulations
was created by overlaying multiple parameterized sine curves with random frequencies
and magnitudes.

In addition, continuous forcing controlled by further parameterized sine curves was
included in the simulations over time. In this case, the only initial conditions to vary
are the forcing and initialization parameters of the sine curves and the strength of the
added noise. From this PDE only the passive density field was used as shown in Fig. 15.
For the Advection-Diffusion test set the noise was instead added directly to the passive
density field of the simulations. This creates results with more small scale details as
shown in Fig. 15d.

4.3.2 Burger’s Equation (Bur)

This equation is very similar to the Advection-Diffusion equation and describes how
the velocity field itself changes due to diffusion and advection.

∂u
∂t

= ν∇2u− u · ∇u (12)

Eq. (12) is known as the viscous form of the Burger’s equation that can develop shock
waves, and again u is the velocity and ν denotes the kinematic viscosity. Our solver
for this PDE used a slightly different implicit time integration scheme, but the same
diffusion solver as used for the Advection-Diffusion equation.

The simulation setup and parameters were also the same; the only difference is
that the velocity field instead of the density is exported. As a consequence, the data
examples in Fig. 16 looks relatively similar to the results from the Advection-Diffusion
equation.

29

4 Data and Training

(a) Data samples generated without noise: tiny output changes following generation ordering

(b) Normal training data samples with noise: larger output changes but ordering still applies

(c) Outlier data samples: noise can override the generation ordering by chance

Figure 16: Different simulation examples from the Burger’s equation using the velocity
field.

4.4 Other Data Sets

The remaining data sets are not based on PDEs and thus not generated with the
proposed method. The data is only used to test the generalization of the discussed
metrics and not for training or validation.

4.4.1 Shapes (Sha)

This data set tests if the metrics are able to track simple, moving geometric shapes. To
create it, a straight path between two random points inside the domain is generated
and a random shape is moved along this path in steps of equal distance. The size of the
used shape depends on the distance between start and end point, such that a significant
fraction of the shape overlaps between two consecutive steps. It is also ensured that no
part of the shape leaves the domain at any step, by using a sufficiently big boundary
area when generating the path.

30

4 Data and Training

Figure 17: Examples from the shapes data set using a field with only binary shape
values (first row), shape values with additional noise (second row), smoothed shape
values (third row), and smoothed values with additional noise (fourth row).

With this method, multiple random shapes for a single data sample are produced
and their paths can overlap, such that they occlude each other to provide an additional
challenge. All shapes are moved in their parametric representation and only when
exporting the data, they are discretized onto a fixed binary grid. To add more variations
to this simple approach, we also apply them in a non-binary way with smoothed edges
and include additive Gaussian noise over the entire domain. Examples for the different
exports can be seen in Fig. 17.

4.4.2 Video (Vid)

For this data set, different publicly available video recordings were acquired and
processed in three steps. First, videos with abrupt cuts, scene transitions or camera
movements were discarded, and afterwards the footage was broken down into single
frames. Then, each frame was resized to match the spatial size of our other data by
linear interpolation. Since directly using consecutive frames is no challenge for any
analyzed metric and all of them recovered the ordering almost perfectly, we achieved a
more meaningful data set by skipping several intermediate frames. For the final data
set, we defined the first frame of every video as the reference and subsequent frames
in an interval step of ten frames as the increasingly different variations. Some data
examples can be found in Fig. 18.

31

4 Data and Training

Figure 18: Multiple examples from the video data set.

4.4.3 TID2013 (TID)

This data set was created by Ponomarenko et al. (2015) and used without any further
modifications. It consists of 25 reference images with 24 distortion types in five levels.
As a result it is not directly comparable to our data sets, so it is excluded from the test
set aggregation (All) in Section 5.1. The distortions focus on various types of noise,
image compression and color changes. Fig. 19 contains examples from the data set.

Figure 19: Examples from the TID2013 data set proposed by Ponomarenko et al. (2015).
Displayed are a change of contrast, three types of noise, denoising, jpg2000 compression,
and two color quantizations (from left to right and top to bottom).

32

4 Data and Training

4.4.4 User Study (Use)

This data set is an adaptation of the data from Um et al. (2019), where various finite
difference methods from the class of non-oscillatory schemes are compared with user
studies. Instead of ground truth distances from the data generation, the user study
scores for the different variations are used for the comparison of the model performance.
The scores are normalized to a [0, 1] range and inverted such that they correspond to
distances. In addition to the 29 data samples using the human visual system provided
by Um et al. (2019), we included 11 more user studies. They are created from a selection
of smoke data using the exact same user study approach proposed by Um et al. (2019).
As the studies only compare seven methods to a reference, this data set is also not
directly comparable our data sets and excluded from the test set aggregation (All) in
Section 5.1.

Reference W5 W5z W6c T5 T5o T6 T6o

0

1

D
is

ta
nc

es
 to

 re
fe

re
nc

e
(n

or
m

al
iz

ed
)

User Study

0

1

0

1

0

1

W5
W5z
W6c
T5
T5o
T6
T6o

Figure 20: Examples from the user study data set proposed by Um et al. (2019) with the
corresponding user study results that are treated as a ground truth distance to compare
our metrics. Shown are three shock simulations and a visualization of the Taylor-Green
vortex created with different methods.

Note that the crowdsourced user studies were performed with a large number of
participants and the distances shown in Fig. 20 are only an aggregation of all evaluations.
Single evaluations can vary strongly from the displayed distances, as visual similarity
is in general quite complicated. It depends on the experience and the expectations
of the viewer, and can be ambiguous. This is shown in Fig. 21, where the perceived
impression depends to some extent on the viewing distance. This effect is most likely
related to optical illusion of hybrid images that were first described by Oliva et al. (2006)
and work by overlaying a detailed high frequency image with a blurred low frequency
image. From close up the small scale details dominate the perceived result, but further
away the details are not as visible anymore and the larger structures prevail.

33

4 Data and Training

(a) Plume variation (b) Reference plume (c) Plume variation

Figure 21: Ambiguous smoke simulation example where plume (a) looks more similar
to the reference (b) from a high viewing distance due to the overall shape. When
looking from a very small viewing distance, plume (c) is visually closer due to small
scale details, especially when looking at the right half of the plume.

4.5 Training

For training, the scalar 2D fields from the simulations were individually normalized
to the [0, 255] range. To add more variation to our data, we include different data
augmentation techniques. These augmentations help the network to become more
invariant to typical data transformations. In order to compare our data to existing
natural image feature extractors trained for RGB images, we focus on three channel
inputs. As a first step, the scalar, i.e. grey-scale, data is converted to a three channel RGB
input with a random color map (out of five fixed variations) or no color map at all by
copying the data directly to each channel. Next, each data sample is randomly flipped
on either axis and rotated in increments of 90◦ to provide robustness to rotations. The
rotated data fields are then cropped from their simulation size 256× 256 to a size of
224× 224 which is the typical input size for existing feature extractors. Examples for
the augmented data can be found in Fig. 22. Note that each data sample gets a new
augmentation every time it is used, and that the corresponding reference receives the
identical transformations the keep comparability.

Finally, each input is normalized to a standard normal distribution. For this step, the
mean and standard deviation are computed from all available training data without
augmentations in a pre-processing step with an online algorithm from Welford (1962).
For the validation and test inputs, only a bilinear interpolation to the correct input size
and the normalization step is applied.

Unless noted otherwise, networks were trained for 40 epochs with an Adam optimizer
using a learning rate of 10−5 that was reduced to 5 · 10−6 after 15 epochs.

34

4 Data and Training

Figure 22: Augmented data samples in groups from the Smo, Adv, Bur, and Liq training
data sets. The upper row in each group shows the same reference simulation, and the
lower row contains variations with different ground truth distances (increasing from
left to right).

4.6 Correlation Loss Function

The central goal of our networks is to identify relative differences of input pairs
produced via numerical simulations. Thus, instead of employing a loss that forces the
network to only infer given labels or distance values, we train our networks to infer
the ordering of a given sequence of varying inputs o1, . . . , on. We propose to use the
Pearson correlation coefficient (see Pearson 1920) which yields a value in [−1, 1] that
measures the linear relationship between two distributions. A value of one implies that
a linear equation describes their relationship perfectly. We compute this coefficient for
a full series of outputs, such that the network can learn to extract features that arrange
this data series in the correct ordering.

We train our networks with minibatches consisting of n outputs, and provide a
linearly increasing distance distribution c ∈ [0, 1]n representing the parameter change.
For a distance prediction d ∈ Rn of our network for one minibatch, we compute the
training loss with

L(c, d) = (c− d)2 + (1− (c− c̄) · (d− d̄)
‖c− c̄‖2

∥∥d− d̄
∥∥

2

) . (13)

Here, the mean of a minibatch distance vector is denoted by c̄ or d̄ respectively. The
first part of the loss is a regular MSE term, which minimizes the difference between
predicted and actual distances. The second part is the Pearson correlation coefficient,

35

4 Data and Training

which is inverted such that the optimization results in a maximization of the correlation.
While the terms in Eq. (13) could be scaled to adjust their relative influence; we found
that weighting them to a similar order of magnitude worked best in our experiments. A
comparison of different loss functions is provided in Section 5.3, where we demonstrate
that the proposed combination of a correlation and an MSE term outperforms other
loss functions.

36

5 Results

In the following sections, we demonstrate that the proposed LNSM metric outperforms
existing shallow and learned image-based metrics in terms of various aspects. In
Section 5.1, the accuracy of different existing metrics and our experimental designs
are evaluated on the different data sets discussed in Chapter 4. The evaluations are
performed with three different correlation measures. To emphasize the importance of a
good feature extractor and a suitable normalization, we compare multiple variations
in Section 5.2. Furthermore, visualizations for the optical flow metric are included
here. Next, the impact of an adjustable training data and the influence of the proposed
correlation loss function is analyzed in Section 5.3. Finally in Section 5.4, the normalized
distances computed with different metrics are directly compared to further illustrate
the performance difference.

5.1 Accuracy Evaluation of Different Metrics

To evaluate the performance of a metric on a data set, we first compute the distances
from each reference simulation to all corresponding variations. Then, the predicted and
the ground truth distance distributions over all samples are combined and compared
using Spearman’s rank correlation coefficient (see Spearman 1904) in Tab. 1. Like the
Pearson correlation it is a value in [−1, 1] to compare distributions, but it measures the
correlation between ranking variables, i.e. monotonic instead of linear relationships.

The top part of Tab. 1 shows the performance of the shallow metrics L2 and SSIM,
as well as the LPIPS metric (Zhang et al. 2018) for all our data sets. The results clearly
show that shallow metrics are not suitable to compare the samples in our data set, and
only achieve good correlation values on the TID2013 data set which contains a large
number of pixel-based image variations without contextual structures. The perceptual
LPIPS metric performs better in general and outperforms our method on the image
data sets Vid and TID. This is not surprising, as LPIPS is specifically trained for such
images. For the simulation data sets LiqN and Sha, however, it performs significantly
worse than for the image content. The last row of Tab. 1 shows the results of our LNSM
network, with a very good performance across all data sets. Note that even though it
was not trained with any images it still performs well for the image test data sets.

37

5 Results

Table 1: Performance comparison, measured in terms of Spearman’s rank correlation
coefficient, of existing metrics (top block), experimental designs (second block), variants
of the proposed architecture (third block), and the final architecture using different
training data (bottom block). Bold values show the best performing metric for each
data set and bold+italic values are within a 0.01 error margin of the best performing.
Below, a visualization of the combined test data results is shown for selected models.

Metric
Validation data sets Test data sets

Smo Liq Adv Bur TID Use LiqN AdvD Sha Vid All

L2 0.67 0.80 0.72 0.59 0.83 0.69 0.72 0.58 0.50 0.77 0.56
SSIM 0.67 0.75 0.75 0.68 0.80 0.65 0.25 0.70 0.35 0.70 0.48
LPIPS v0.1. 0.72 0.75 0.75 0.72 0.80 0.72 0.63 0.60 0.81 0.82 0.66

AlexNetrandom 0.64 0.75 0.67 0.64 0.84 0.69 0.64 0.67 0.61 0.78 0.62
AlexNetfrozen 0.67 0.70 0.68 0.70 0.79 0.70 0.40 0.64 0.84 0.81 0.62
AlexNetfrom scratch 0.70 0.73 0.68 0.69 0.80 0.71 0.49 0.54 0.68 0.78 0.60
Optical flow 0.62 0.57 0.36 0.37 0.55 0.50 0.49 0.28 0.61 0.75 0.48
Non-Siamese 0.72 0.82 0.76 0.69 0.29 0.58 0.73 0.62 0.60 0.72 0.63

LatentLPIPS 0.65 0.76 0.69 0.59 0.83 0.73 0.52 0.52 0.80 0.79 0.62
Masking 0.67 0.80 0.72 0.68 0.80 0.61 0.74 0.58 0.85 0.79 0.70
Dyn. weights 0.67 0.83 0.73 0.66 0.80 0.72 0.81 0.58 0.81 0.78 0.70
Input diff. layer 0.64 0.79 0.73 0.67 0.75 0.63 0.75 0.62 0.90 0.75 0.71
Dyn. + input 0.64 0.76 0.72 0.67 0.73 0.68 0.74 0.61 0.85 0.72 0.71
Skipfrom scratch 0.65 0.84 0.74 0.67 0.80 0.70 0.79 0.59 0.83 0.79 0.70

LNSMnoiseless 0.64 0.83 0.74 0.60 0.80 0.69 0.81 0.58 0.84 0.76 0.69
LNSMstrong noise 0.63 0.82 0.71 0.61 0.80 0.68 0.78 0.50 0.80 0.77 0.65
LNSM (ours) 0.68 0.82 0.76 0.70 0.78 0.64 0.80 0.61 0.85 0.76 0.71

L2

SS
IM

LP
IP

S

Al
ex

ra
nd

om

Al
ex

fr
oz

en

Al
ex

sc
ra

tc
h

O
pt

ic
al

Fl
ow

N
on

Si
am

es
e

La
te

nt
LP

IP
S

M
as

ki
ng

D
yn

.w
ei

gh
ts

In
pu

td
iff

.
D

yn
.+

in
pu

t

Sk
ip

sc
ra

tc
h

LN
SM

0.4

0.5

0.6

0.7

C
or

re
la

tio
n

(A
ll) Shallow

Image-based
Experimental
Variations
Proposed

38

5 Results

The second block of Tab. 1 contains several experimental designs: AlexNetrandom,
AlexNetfrozen, and AlexNetfrom scratch are models, similar to Zhang et al. (2018), where the
base network is the original AlexNet with pre-trained weights. AlexNetrandom contains
purely random aggregation weights without training, while AlexNetfrozen is a small
model that only has trained weights for the channel aggregation. AlexNetfrom scratch
fully re-trains the AlexNet base network as well as the aggregation weights. The
random model performs surprisingly well, pointing to powers of the underlying CNN
architecture, while AlexNetfrozen lacks enough trainable weights to fully adjust to the data
distribution of the numerical simulations. With its 2.47 million weights AlexNetfrom scratch
has the opposite problem of too many weights, indicated by the good results on the
validation data and the worse test performance.

The Optical flow metric bidirectionally computes and aggregates the optical flow field
between two inputs (see Section 3.3.8 for details) and is based on FlowNet2 (Ilg et al.
2016). On the data sets Sha and Vid that are similar to the training data of FlowNet2 it
performs relatively well, but on most other data it performs poorly. This shows that
computing a simple warping from one input to the other is not enough for a stable
metric, although it seems like an intuitive solution. A more robust metric needs the
knowledge of the underlying features and their changes to generalize better to new data.
For the Non-Siamese metric, we used a non-Siamese architecture that directly predicts
the distance from both inputs, to evaluate whether a Siamese architecture is really
beneficial. For this purpose, we employed a modified version of AlexNet that reduces
the weights of the feature extractor as described in Section 3.3.7. As expected, this
metric works great on the validation data, but has huge problems with generalization.
In addition, even simple metric properties like symmetry are no longer guaranteed,
because this architecture does not have the inherent constraints of the Siamese setup.

In the third block of Tab.1 we show variants of the proposed architecture, where
only single steps of the algorithm are adjusted. Unless noted otherwise all networks
in this block use the proposed fully trained custom base network, the feature map
normalization to a standard normal distribution, the weighted channel aggregation, and
the remaining simple aggregations (see Section 3.1). The LatentLPIPS metric utilizes the
recursive approach with a CNN-based latent space difference from Section 3.3.3. The
results are similar to AlexNetrandom, as it is the best performing metric on the user study
data and close to the best performing on TID. For the other data sets it is substantially
behind the top performers, so it seems the model is able to extract meaningful features
but can not utilizes them properly in the following steps.

The four following metrics Masking, Dyn. weights, Input diff. layer, and Dyn. + input
employ different aggregation combinations of spatial masking, dynamic weighting and
the input difference layer (see Sections 3.3.4, 3.3.5, and 3.3.6). While these variants can

39

5 Results

lead to top performances on single data sets, like the input difference layer for Sha
or dynamic weighting for LiqN, using no variations creates a more stable and general
metric. Similarly, using a custom base network with skip connections (see Section 3.3.1)
for the Skipfrom scratch metric did not improve the results either.

The last block in Tab. 1 shows variants of the proposed architecture, trained with
varied noise levels. This inherently changes the difficulty of the data sets. Hence
LNSMnoiseless was trained with relatively simple data without perturbations, while
LNSMstrong noise was trained with strongly varying data. Both cases decrease the gen-
eralizing capabilities of the trained model, resulting in a deteriorated performance
for the test data. This indicates that the network needs to see a certain amount of
variation at training time in order to become robust, but overly large changes hinder
the learning of useful features. We provide a more detailed analysis of varying noise
levels in Section 5.3.

In the following, we demonstrate other ways to compare the performance of the
analyzed metrics on our data sets. In Tab. 2 the Pearson correlation coefficient is
used instead of Spearman’s rank correlation coefficient. While Spearman’s correlation
measures monotonic relationships by using ranking variables, it directly measures
linear relationships as discussed in Section 4.6. The results in Tab. 2 match very
closely with the numbers provided in Tab. 1. The best performing metrics in both
tables are almost identical and even the numbers only vary slightly. Since a linear
and a monotonic relation describes the results of the metrics similarly well, there
are no apparent non-linear dependencies that can not be captured using the Pearson
correlation.

In the Tables 3 and 4 we employ a different, more intuitive approach to determine
combined correlation values for each data set using the Pearson correlation. We
no longer analyze the entire predicted distance distribution and the ground truth
distribution at once as done for the Tables 1 and 2. Instead, we individually compute
the correlation between the ground truth and the predicted distances for the single data
samples of the data set. From the single correlation values, we compute the mean and
standard deviations shown in the tables. Note that this approach potentially produces
less accurate comparison results, as small errors in the individual computations can
accumulate to larger deviations in mean and standard deviation. Still, the values in
both tables lead to very similar conclusions as Tab. 1: The best performing metrics are
almost the same and low combined correlation values match with results that have a
high standard deviation and a low mean.

40

5 Results

Table 2: Performance comparison on validation and test data sets measured in terms
of the Pearson correlation coefficient. Bold values show the best performing metric
for each data set and bold+italic values are within a 0.01 error margin of the best
performing. Below, a visualization of the combined test data results is shown for
selected models.

Metric
Validation data sets Test data sets

Smo Liq Adv Bur TID Use LiqN AdvD Sha Vid All

L2 0.66 0.81 0.71 0.58 0.85 0.67 0.72 0.57 0.55 0.76 0.56
SSIM 0.67 0.74 0.75 0.68 0.83 0.66 0.25 0.69 0.34 0.66 0.47
LPIPS v0.1. 0.71 0.75 0.76 0.72 0.79 0.73 0.63 0.61 0.82 0.80 0.65

AlexNetrandom 0.63 0.75 0.66 0.64 0.86 0.70 0.63 0.65 0.68 0.77 0.60
AlexNetfrozen 0.67 0.70 0.68 0.70 0.79 0.70 0.40 0.63 0.84 0.80 0.61
AlexNetfrom scratch 0.70 0.73 0.66 0.68 0.72 0.67 0.48 0.53 0.73 0.78 0.60
Optical flow 0.63 0.56 0.37 0.39 0.49 0.49 0.45 0.28 0.61 0.74 0.48
Non-Siamese 0.71 0.82 0.75 0.69 0.26 0.51 0.72 0.62 0.65 0.68 0.63

LatentLPIPS 0.65 0.75 0.68 0.58 0.82 0.72 0.53 0.50 0.80 0.79 0.62
Masking 0.67 0.80 0.72 0.58 0.70 0.61 0.74 0.58 0.85 0.78 0.70
Dyn. weights 0.67 0.83 0.73 0.66 0.71 0.72 0.81 0.58 0.81 0.77 0.70
Input diff. layer 0.64 0.78 0.73 0.67 0.63 0.57 0.74 0.61 0.88 0.75 0.71
Dyn. + input 0.64 0.76 0.72 0.67 0.62 0.63 0.74 0.61 0.86 0.71 0.71
Skipfrom scratch 0.65 0.83 0.74 0.66 0.72 0.71 0.78 0.59 0.83 0.78 0.70

LNSMnoiseless 0.64 0.82 0.74 0.60 0.69 0.69 0.80 0.58 0.83 0.75 0.68
LNSMstrong noise 0.63 0.81 0.71 0.61 0.70 0.68 0.78 0.50 0.80 0.76 0.64
LNSM (ours) 0.68 0.82 0.76 0.70 0.71 0.64 0.79 0.61 0.86 0.76 0.71

L2

SS
IM

LP
IP

S

Al
ex

ra
nd

om

Al
ex

fr
oz

en

Al
ex

sc
ra

tc
h

O
pt

ic
al

Fl
ow

N
on

Si
am

es
e

La
te

nt
LP

IP
S

M
as

ki
ng

D
yn

.w
ei

gh
ts

In
pu

td
iff

.
D

yn
.+

in
pu

t

Sk
ip

sc
ra

tc
h

LN
SM

0.4

0.5

0.6

0.7

C
or

re
la

tio
n

(A
ll) Shallow

Image-based
Experimental
Variations
Proposed

41

5 Results

Table 3: Performance comparison on test data sets measured by computing mean and
standard deviation (in brackets) of Pearson correlation coefficients from individual data
samples. Bold values show the best performing metric for each data set and bold+italic
values are within a 0.01 error margin of the best performing. Below, a visualization of
the combined test data results is shown for selected models.

Metric
Test data sets

TID Use LiqN AdvD Sha Vid All

L2 0.98 (0.19) 0.78 (0.49) 0.76 (0.29) 0.59 (0.45) 0.61 (0.29) 0.82 (0.33) 0.68 (0.37)
SSIM 0.92 (0.40) 0.77 (0.50) 0.26 (0.49) 0.73 (0.36) 0.45 (0.45) 0.77 (0.37) 0.57 (0.46)
LPIPS v0.1. 0.94 (0.33) 0.73 (0.60) 0.66 (0.38) 0.65 (0.41) 0.83 (0.24) 0.85 (0.30) 0.74 (0.36)

AlexNetrandom 0.96 (0.27) 0.78 (0.50) 0.68 (0.34) 0.69 (0.38) 0.68 (0.26) 0.82 (0.33) 0.71 (0.34)
AlexNetfrozen 0.94 (0.33) 0.77 (0.54) 0.41 (0.49) 0.67 (0.39) 0.85 (0.21) 0.85 (0.29) 0.70 (0.40)
AlexNetfrom scratch 0.97 (0.23) 0.76 (0.53) 0.52 (0.46) 0.56 (0.45) 0.74 (0.31) 0.83 (0.28) 0.65 (0.41)
Optical flow 0.74 (0.67) 0.59 (0.66) 0.50 (0.34) 0.32 (0.53) 0.63 (0.45) 0.78 (0.45) 0.53 (0.49)
Non-Siamese 0.47 (0.88) 0.69 (0.59) 0.76 (0.24) 0.66 (0.41) 0.67 (0.28) 0.76 (0.42) 0.71 (0.35)

LatentLPIPS 0.97 (0.23) 0.75 (0.53) 0.56 (0.41) 0.53 (0.48) 0.82 (0.31) 0.83 (0.33) 0.68 (0.42)
Masking 0.98 (0.19) 0.73 (0.53) 0.78 (0.26) 0.61 (0.44) 0.87 (0.23) 0.82 (0.35) 0.76 (0.35)
Dyn. weights 0.98 (0.19) 0.78 (0.50) 0.86 (0.14) 0.61 (0.43) 0.83 (0.27) 0.81 (0.35) 0.76 (0.34)
Input diff. layer 0.96 (0.27) 0.73 (0.57) 0.78 (0.26) 0.64 (0.42) 0.90 (0.25) 0.80 (0.33) 0.77 (0.34)
Dyn. + input 0.95 (0.30) 0.67 (0.61) 0.78 (0.27) 0.63 (0.41) 0.88 (0.27) 0.75 (0.38) 0.75 (0.36)
Skipfrom scratch 0.99 (0.14) 0.72 (0.58) 0.85 (0.15) 0.61 (0.42) 0.84 (0.23) 0.82 (0.33) 0.76 (0.33)

LNSMnoiseless 0.98 (0.19) 0.79 (0.49) 0.86 (0.15) 0.61 (0.41) 0.84 (0.26) 0.79 (0.38) 0.75 (0.34)
LNSMstrong noise 0.99 (0.14) 0.78 (0.50) 0.83 (0.19) 0.52 (0.45) 0.81 (0.23) 0.82 (0.35) 0.73 (0.36)
LNSM (ours) 0.97 (0.23) 0.71 (0.58) 0.83 (0.22) 0.64 (0.42) 0.86 (0.23) 0.80 (0.37) 0.77 (0.34)

L2

SS
IM

LP
IP

S

Al
ex

ra
nd

om

Al
ex

fr
oz

en

Al
ex

sc
ra

tc
h

O
pt

ic
al

Fl
ow

N
on

Si
am

es
e

La
te

nt
LP

IP
S

M
as

ki
ng

D
yn

.w
ei

gh
ts

In
pu

td
iff

.
D

yn
.+

in
pu

t

Sk
ip

sc
ra

tc
h

LN
SM

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

tio
n

(A
ll) Shallow

Image-based
Experimental
Variations
Proposed

42

5 Results

Table 4: Performance comparison on validation data sets measured by computing mean
and standard deviation (in brackets) of Pearson correlation coefficients from individual
data samples. Bold values show the best performing metric for each data set and
bold+italic values are within a 0.01 error margin of the best performing.

Metric
Validation data sets

Smo Liq Adv Bur

L2 0.71 (0.34) 0.84 (0.23) 0.76 (0.28) 0.63 (0.41)
SSIM 0.73 (0.30) 0.78 (0.29) 0.80 (0.26) 0.72 (0.38)
LPIPS v0.1. 0.77 (0.28) 0.79 (0.24) 0.81 (0.26) 0.77 (0.32)

AlexNetrandom 0.68 (0.36) 0.79 (0.28) 0.71 (0.36) 0.69 (0.36)
AlexNetfrozen 0.72 (0.31) 0.74 (0.29) 0.73 (0.35) 0.75 (0.33)
AlexNetfrom scratch 0.75 (0.29) 0.77 (0.24) 0.70 (0.35) 0.72 (0.38)
Optical flow 0.66 (0.38) 0.59 (0.47) 0.38 (0.52) 0.41 (0.49)
Non-Siamese 0.76 (0.27) 0.87 (0.19) 0.80 (0.24) 0.75 (0.33)

LatentLPIPS 0.69 (0.32) 0.78 (0.27) 0.73 (0.32) 0.64 (0.40)
Masking 0.71 (0.31) 0.83 (0.24) 0.79 (0.25) 0.74 (0.32)
Dyn. weights 0.71 (0.31) 0.86 (0.22) 0.79 (0.26) 0.71 (0.35)
Input diff. layer 0.68 (0.34) 0.82 (0.24) 0.77 (0.30) 0.72 (0.35)
Dyn. + input 0.69 (0.33) 0.79 (0.28) 0.77 (0.29) 0.72 (0.35)
Skipfrom scratch 0.69 (0.34) 0.87 (0.19) 0.79 (0.26) 0.72 (0.34)

LNSMnoiseless 0.68 (0.33) 0.85 (0.24) 0.78 (0.30) 0.66 (0.37)
LNSMstrong noise 0.67 (0.36) 0.85 (0.22) 0.76 (0.33) 0.67 (0.39)
LNSM (ours) 0.72 (0.31) 0.85 (0.22) 0.81 (0.23) 0.75 (0.33)

5.2 Analysis of Experimental Designs

In the following, some of the experimental metric architectures described in Section 3.3
are analyzed in more detail. First, the impact of the feature extracting base network
is discussed. Then, different feature map normalizations are compared. Finally,
visualizations of the results from the Optical flow metric are shown.

5.2.1 Base Network

Here, we analyze the contributions of the per-layer features of two different metric
networks to highlight differences in terms of how the features are utilized for the
distance estimation task. In Fig. 23 the learned feature map aggregation weights of our

43

5 Results

LNSM network show a very similar mean and a small standard deviation throughout
the five layers. This means, all feature maps similarly contribute to establishing the
distances, and the aggregation just fine-tunes the relative importance of each feature.
In addition, all features receive a weight greater than zero, and as a result no feature is
excluded from contributing to the final distance value.

1 2 3 4 5
Layer

0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n
an

d
st

d.
 d

ev
.

of
 fe

at
ur

e
m

ap
 w

ei
gh

ts

LNSM (ours)

1 2 3 4 5
Layer

0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n
an

d
st

d.
 d

ev
.

of
 fe

at
ur

e
m

ap
 w

ei
gh

ts

AlexNetfrozen

0

5

10

15

20

25

U
nu

se
d

fe
at

ur
e

m
ap

s
in

 %
0

5

10

15

20

25

U
nu

se
d

fe
at

ur
e

m
ap

s
in

 %

Figure 23: Analysis of the distributions of learned feature map aggregation weights
across the base network layers. Displayed is our method for fully training the base
network (left) in comparison to using pre-trained weights (right).

Employing a fixed pre-trained feature extractor on the other hand shows a very
different picture: Although the mean across the different network layers is similar,
the contributions of different features vary strongly, which is visible in the standard
deviation being significantly larger. Furthermore, 2–10% of the feature maps in each
layer receive a weight of zero and hence were deemed not useful at all for establishing
the distances. This illustrates the usefulness of a targeted network in which all features
contribute to the distance inference.

In Fig. 24, five base networks with different training modes are compared. Shown are
AlexNet, VGG, SqueezeNet, a fluid flow prediction network from Thuerey et al. (2018),
and our reduced base network. In all cases re-training the base network with one of the
two feature map normalizations is better than entirely freezing the weights of the base
network. The reason is that the existing feature extractors can not adjust to the different
data distribution when they are frozen as discussed above. The deep flow prediction
model uses more similar data and as a result freezing or re-training only has a smaller
impact here. Note that the proposed base network does not have a frozen variant as
there are no existing weights for this architecture that could be used. When employing
our feature map normalization, some feature extractors seem to utilize the magnitude
of the latent space vectors, while others give it no meaning and work better with a unit
length normalization. A more detailed discussion of our feature map normalization
compared to the unit length normalization is provided in the next section.

44

5 Results

0.50 0.55 0.60 0.65 0.70
Correlation on all test data

AlexNet

SqueezeNet

VGG

Deep Flow
Prediction

LNSM (ours)

Base Network Comparison

Frozen + unit
normalization
Scratch + unit
normalization
Scratch + std.
normal dist.

Figure 24: Performance on the combined test data sets of models with different base
networks. Each architecture is either trained from scratch, or frozen using only learned
aggregation weights (red). Training from scratch is evaluated with a unit length
normalization (green) and the proposed normalization to a standard normal distribution
(blue).

5.2.2 Feature Map Normalization

0.4 0.5 0.6 0.7
Correlation on all test data

Standard
 normal distr.

Global length

Unit length

None

Feature Map Normalization

LNSM (ours)
AlexNetfrozen

Figure 25: Performance on our test data
for the proposed approach (LNSM) and a
smaller model (AlexNetfrozen) using different
normalizations.

Fig. 25 shows a comparison of the normal-
ization methods discussed in Section 3.3.2
on the combined test data for two mod-
els. Using no normalization is detrimen-
tal in both cases as succeeding opera-
tions can not reliably compare the fea-
tures. Interestingly, the unit length nor-
malization works best for the AlexNetfrozen
metric (similar to LPIPS from Zhang et
al. (2018)) that only uses learned aggrega-
tion weights with a fixed AlexNet feature
extractor. This observation allows for a
conclusion about the features extracted by
AlexNet. For the original task of image
classification, the magnitude of a feature
vector does not seem to carry information

45

5 Results

about the feature. Interpreting the length as part of the feature for our task in the global
normalization normglobal and the standard normal distribution normalization normdist.
(see Section 3.3.2), obviously harms the performance of the AlexNetfrozen. Therefore,
training the feature extractor such that the magnitude of the feature vectors bears some
meaning should improve the results for the complex normalizations. The performance
of our approach with a fully trained feature extractor in Fig. 25 shows exactly this be-
haviour: A more complex normalization directly yields better results since the features
can be adapted to utilize it.

5.2.3 Optical Flow

Fig. 26 shows flow visualizations on data examples produced by FlowNet2. The metric
constructed from it (see Section 3.3.8) works relatively well for inputs that are similar to
the training data from FlowNet2, like the shape data example in the top row. For data

Reference Variation Flow streamlines Flow direction Flow magnitude

Figure 26: Outputs from FlowNet2 on data examples. The flow streamlines are sparse
visualization of the resulting flow field and indicate the direction of the flow by
their orientation and its magnitude by their color (darker being larger). The two
visualizations on the right show the dense flow field and are colorcoded to show the
flow direction (blue/yellow: vertical, green/red: horizontal) and the flow magnitude
(brighter being larger).

46

5 Results

that provides some outline, for instance the smoke simulation example in the middle
row or also liquid data, the metric does not work as well but still provides a reasonable
flow field. But for full spatial examples like from the Burger’s or Advection-Diffusion
equation (see bottom row) the network is no longer able to produce meaningful flow
fields. The results are often a very uniform flow with similar magnitude and direction.
These observations are reflected in the performance of the Optical flow metric in Tab. 1.

5.3 Impact of Data Difficulty and Correlation Loss

0x 5x 10x 15x 20x 25x
Difficulty of training data (scaled noise strength)

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

tio
n

LNSMreduced on all test data
L2 on training data
LPIPS on training data

Figure 27: Impact of increasing data difficulty
for a reduced training data set. Evaluations on
training data for L2 and LPIPS, and the test per-
formance of models trained with the different
reduced data sets (LNSMreduced) are shown.

We shed more light on the aspect of
noise levels and data difficulty via
six reduced data sets, that consist
of a smaller amount of smoke and
Advection-Diffusion data with differ-
ently scaled noise strength values. Re-
sults are shown in Fig. 27. Increas-
ing the noise level creates more diffi-
cult data as shown by the dotted and
dashed plots representing the perfor-
mance of the L2 and the LPIPS met-
ric on each data set. Both roughly
follow an exponentially decreasing
function. Each point on the solid line
plot is the test result of a reduced
LNSM model trained on the data set
with the corresponding noise level.
Apart from the data, the entire train-
ing setup was identical. This shows
that the training process is very ro-
bust to the noise, as the result on the
test data only slowly decreases for very high noise levels. Furthermore, small amounts
of noise improve the generalization compared to a the model that was trained without
any noise. This is somewhat expected, as a model that never saw noisy data during
training can not learn to extract features which are robust w.r.t. noise.

In Fig. 28 we investigate how the proposed loss function compares to other commonly
used loss formulations for our full network and a pre-trained network similar to Zhang
et al. (2018). In addition to our full loss function, we consider a loss function that
replaces the Pearson correlation with a simpler cross-correlation (c · d) / (‖c‖2 ‖d‖2).

47

5 Results

0.55 0.60 0.65 0.70

Proposed

MSE +
 cross cor.

Pearson cor.

Cross cor.

MSE

Correlation on all test data

LNSM (ours)
AlexNetfrozen

Figure 28: Performance on our test data
for the proposed approach (LNSM) and a
smaller model (AlexNetfrozen) using different
loss functions.

We also include networks trained with
only the MSE or only the correlation
terms for each of the two variants. As
shown in Fig. 28, a simple MSE loss yields
a low accuracy of less than 0.6. Using
any correlation based loss function for the
AlexNetfrozen metric improves the results,
but there is no major difference due to
the limited number of only 1152 trainable
weights. For LNSM, the proposed com-
bination of MSE loss with the Pearson
correlation performs significantly better
than using cross-correlation or a variant
without the MSE loss. Interestingly, com-
bining cross correlation with MSE yields
worse results than cross correlation alone. This happens because the cross correlation
not only affects the ordering but also impacts the absolute distance values. In com-
bination with MSE, this can lead to influences that cancel each other. For our loss,
the Pearson correlation only handles the ordering while MSE deals with the absolute
distances.

5.4 Distance Evaluations

Fig. 29 shows a visualization of predicted distances c against ground truth distances
d for different metrics on every sample from the test sets. Each plot contains over
6700 individual data points to illustrate the global distance distributions created by the

Figure 29: Distribution evaluation of ground truth distances against normalized pre-
dicted distances for L2, LPIPS and LNSM on all test data (color coded).

48

5 Results

metrics, without focusing on single cases. A theoretical optimal metric would recover a
perfectly narrow distribution along the line c = d, while worse metrics recover broader,
more curved distributions. Overall, the sample distribution of an L2 metric is very
wide. LPIPS manages to follow the optimal diagonal a lot better, but our approach
approximates it with the smallest deviations, as also shown in the tables above. The L2

metric performs very poorly on the shape data indicated by the too steeply increasing
blue lines that flatten after a ground truth distance of 0.3. LPIPS already significantly
reduces this problem, but LNSM still works slightly better. A similar issue is visible for
the Advection-Diffusion data, where for L2 a larger number of red samples is below the
optimal c = d line, than for the other metrics. LPIPS has the worst overall performance
for liquid test set, indicated by the large number of fairly chaotic green lines in the plot.
On the video data, all three metrics perform similarly well.

A fine-grained distance evaluation in 200 steps of L2 and our LNSM metric via the
mean and standard deviation of different data samples is shown in Fig. 30. Similar
to Fig. 29, the mean of an optimal metric would follow the ground truth line with
a standard deviation of zero, while the mean of worse metrics deviates around the
line with a high standard deviation. The plot on the left combines eight samples with

0.0 0.2 0.4 0.6 0.8 1.0
Position variation

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ic
te

d
di

st
an

ce
 (n

or
m

al
iz

ed
) single-Sha 8 samples [seed]

0.0 0.2 0.4 0.6 0.8 1.0
Position variation

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ic
te

d
di

st
an

ce
 (n

or
m

al
iz

ed
) multi-Sha 8 samples [seed]

0.0 0.2 0.4 0.6 0.8 1.0
GravityX variation

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ic
te

d
di

st
an

ce
 (n

or
m

al
iz

ed
) LiqN 6 samples [noise amount]

Ground truth
L2 mean
LNSM mean
L2 std. dev.
LNSM std. dev.

Figure 30: Mean and standard deviation of normalized distances over multiple data
samples for L2 and LNSM. The samples differ by the quantity displayed in brackets.
Each data sample uses 200 parameter variation steps instead of 10 like the others in our
data sets. For the shape data the position of the shape varies and for the liquid data the
gravity in x-direction is adjusted.

different seeds from the Sha data set, where only a single shape is moved. Similarly,
the center plot aggregates eight samples from Sha with more than one shape. The right
plot shows six data samples from the LiqN test set that vary by the amount of noise
that was injected into the simulation (see Fig. 12). The task of only tracking a single
shape in the example on the left is the easiest of the three shown cases. Both metrics
have no problem to recover the position change until a variation of 0.4, where L2 can no

49

5 Results

longer distinguish between the different samples. Our metric recovers distances with a
continuously rising mean and a very low standard deviation. The task in the middle is
already harder, as multiple shapes can occlude each other during the position changes.
Starting at a position variation of 0.4 both metrics have a quite high standard deviation,
but the proposed method stays closer to the ground truth line. L2 shows a similar issue
as before, because it flattens relatively fast. The plot on the right features the hardest
task. Here, both metrics perform similar as each has a different problem in addition
to an unstable mean. Our metric stays close to the ground truth, but has a quite high
standard deviation starting at about a variation of 0.4. The standard deviation of L2 is
lower, but instead it starts off with a big jump from the first few data points. To some
degree this is caused by the normalization of the plots, but it still overestimates the
relative distances for small variations in the simulation parameter.

These findings also match with the distance distribution evaluations in Fig. 29 and
the tables above: our method has a significant advantage over shallow metrics on shape
data, while the differences of both metrics become much smaller for the liquid test set.

50

6 Conclusion

In this thesis, we have presented the novel LNSM metric to reliably and robustly
compare outputs from numerical simulation methods. We gave an overview over
existing metrics that could be employed but do not achieve a sufficient performance
and have undesirable properties for our task. In addition, similar methods for other
tasks were summarized.

We proved that the four stages of our architecture by construction achieve the mathe-
matical properties of a pseudometric. Furthermore, a larger number of experimental
networks that intuitively seem to be improvements were discussed and shown to be
impractical. We described a generic data generation approach with an adjustable
difficulty. Using this approach on four solvers of three PDEs, different training and test
data sets were created and showcased with a large range of examples. Additional test
sets created by other means were employed to further investigate the generalization
capabilities of the analyzed metrics. We proposed a correlation-based loss function and
described different data augmentations, which were employed for successful training
of the final network architecture.

Overall, our method significantly outperforms existing shallow metric functions and
provides better results than other learned, image based metrics on our test data. In
particular, the usefulness of the correlation loss and the robustness to natural data
errors via the data generation method were discussed. To illustrate these concepts
further, we provided additional distance evaluations for various metrics.

Future Work In future work, including more diverse data into the training process
could further improve the generalization capability of the approach, as the current
range of data is limited. Good candidates for other data sources are force and tension
fields from cloth or deformable body simulations.

In contrast to image metrics or evaluations with the human visual system, our
method could be directly extended to higher dimensions. Typical areas that require the
comparison of higher dimensional data are volumetric fluid flows. It is also possible to
include the time dimension directly into the metric to compare 2D or 3D flows over time.
This would just require a higher dimensional feature extractor and a corresponding
normalization. To compress the higher dimensional features to a scalar distance value,
supplemental compression steps similar to the three existing aggregations will be

51

6 Conclusion

necessary. The data generation and performance evaluations generalize to higher
dimensions without additional changes.

Another direction is employing our metric as a specialized loss functions for fluid
specific generative adversarial networks. This would help to improve the synthesized
outputs, as learned metrics are able to provide a better notion of closeness to a real
output than shallow metrics can.

52

A Notation

In this thesis, we follow the notation suggested by Goodfellow et al. (2016). Vector
quantities are displayed in bold and tensors use a sans-serif font. Double-barred letters
indicate sets or vector spaces. The following symbols are used:

R Real numbers

i, j Indexing in different contexts

I Input space of the metric, i.e., color images / field data of size
224× 224× 3

a Dimension of the input space I when flattened to a single
vector

x, y, z Elements in the input space I

L Latent space of the metric, i.e., sets of 3rd order feature map
tensors

b Dimension of the latent space L when flattened to a single
vector

x̃, ỹ, z̃ Elements in the latent space L, corresponding to x, y, z

w Weights for the learned average aggregation (1 per feature
map)

p0, p1, . . . Initial conditions / parameters of a numerical simulation

n Number of steps when varying a simulation parameter, thus
size of a minibatch

o0, o1, . . . , on Series of outputs of a simulation with increasing ground truth
distance to o0

∆ Amount of change in a single simulation parameter

t1, t2, . . . , tt Time steps of a numerical simulation

s Strength of the noise added to a simulation

53

A Notation

c Ground truth distance distribution, determined by the data
generation via ∆

d Predicted distance distribution (supposed to match the corre-
sponding c)

c̄, d̄ Mean of the distributions c and d

‖. . . ‖2 Euclidean norm of a vector

m(x, y) Entire function computed by our metric

m1(x, y) First part of m(x, y), i.e., the base network and the feature map
normalization

m2(x̃, ỹ) Second part of m(x, y), i.e., the latent space difference and the
aggregations

l Layer of the base network

G 3rd order feature tensor from one layer of the base network l

gc, gx, gy Channel dimension (gc) and spatial dimensions (gx, gy) of G

f Optical flow network

f xy, f yx Flow fields computed by an optical flow network f from two
inputs in I

f xy
1 , f xy

2 Components of the flow field f xy

∇,∇2 Gradient (∇) and Laplace operator (∇2)

∂ Partial derivative operator

t Time in our PDEs

u Velocity in our PDEs

ν Kinematic viscosity / diffusion coefficient in our PDEs

d, ρ Density in our PDEs

P Pressure in the Navier-Stokes equations

g Gravity in the Navier-Stokes equations

54

Glossary

Advection-Diffusion Equation (AD) A partial differential equation that describes how
a passive quantity is transported over time due to the processes of advection and
diffusion. 23, 24, 55

Burger’s Equation (BE) A partial differential equation that describes how a velocity
field changes over time due to diffusion and advection. 23, 24, 55

Convolution An operation on two functions that describes how the shape of one
function is change by the other. In image or data processing, convolutions can be
interpreted as operations that apply some filter like a blurring or edge detection
to the data. In convolutional neural networks, convolution layers are used to
extract feature maps from the input. 4, 8, 9, 14, 16–18, 55

Convolutional Neural Network (CNN) A certain type of neural network that makes
use of specialized spatial layers based on operations like convolution and pooling.
As a result, CNNs are used for tasks where spatial information is important,
especially when dealing with image, video or volumetric data in computer
graphics and computer vision. 1, 2, 4, 5, 7, 8, 10, 11, 15, 16, 39, 55–59

Data Set Adv Proposed training data set from the Advection-Diffusion equation. 24,
35

Data Set AdvD Proposed test data set from the Advection-Diffusion equation with
noise in the density field. 24, 55

Data Set All Proposed test data set that combines the other test data sets LiqN, AdvD,
Sha and Vid. 32, 33

Data Set Bur Proposed training data set from the Burger’s equation. 24, 35

Data Set Liq Proposed training data set from the Navier-Stokes equations using a
liquid solver. 24, 35

Data Set LiqN Proposed test data set from the Navier-Stokes equations with additional
background noise. 24, 37, 40, 49, 55

55

Glossary

Data Set Sha Proposed test data set featuring randomized, moving, geometric shapes.
24, 37, 39, 40, 49, 55

Data Set Smo Proposed training data set from the Navier-Stokes equations using a
smoke solver. 24, 35

Data Set TID Natural image test data set from Ponomarenko et al. (2015) with various
distortions (mainly different types of noise). 24, 37, 39

Data Set Use Test data set using the user study from Um et al. (2019) with a few
additional human evaluation examples from our smoke data. 24

Data Set Vid Proposed test data set that contains frames from video footage in regular
frame intervals. 24, 37, 39, 55

Dropout Specialized layer in a neural network to reduce overfitting and increase
generalization. It operates by disabling a certain fraction of random weights from
the previous layer. As a result the network can no longer rely on specific weights
for ”memorizing” the training data, but needs to create more general connections
with the weights. 21, 58

Epoch A pass over the entire training data when training a neural network. Normally,
one epoch consists of training the network with multiple data samples aggregated
to minibatches until the entire data set is processed once. 34, 57

Feature Map Part of the result when applying a layer from a convolutional neural
network to an input. Typically, feature maps contain some underlying information
or feature from the input, for example the location of special structures like a grid
pattern. 55, 57, 59

Field Data A scalar, dense 2D grid of data, similar to images. Solvers for PDEs often
work with field data, for example fields for velocity, density or pressure depending
on the underlying PDE. iv, 1, 2, 6, 21, 59

Generalization In the context of neural networks, generalization describes the capability
of a network to infer general properties of the training that can be applied to new,
unseen data samples. Often, networks struggle with generalization as they have a
natural tendency to overfit to the training data. iv, 21, 24, 30, 39, 47, 51, 56, 58

Generative Adversarial Network (GAN) A special type of neural network that typi-
cally consists two subnetworks (generator and discriminator) with the goal of
synthesizing examples similar to the training data. The generator creates samples

56

Glossary

following the training data distribution and the discriminator tries to distinguish
between real and synthesized samples. A balanced, joint optimization increases
the capabilities of both subnetworks at the same time. 5, 52

Indicator Flags Field in a liquid simulation that shows which parts of the domain
contain liquid and which parts contain air. 26, 27

Lp A general form of norms operating on all Rn vector spaces and inducing corre-
sponding metrics. In the special case of the L2-norm the induced metric is also
known as the Euclidean distance. 58, 59

Latent Space A compressed representation of an input achieved by processing it by a
convolutional neural network, that captures all information in the input that are
essential for the task of the network. The latent space consists of a large number
of feature maps. 5, 7, 11, 12, 53

Learned Numerical Simulation Metric (LNSM) The proposed deep metric. It is spe-
cialized for the outputs from numerical simulations and provides a more stable
comparison than shallow metrics. iv, 1, 2, 8, 24, 37, 44, 45, 47–49, 51, 58

Learned Perceptual Image Patch Similarity (LPIPS) A deep metric from Zhang et al.
(2018). It is trained for natural images and outperforms shallow metrics on image
data. 5, 7, 16, 37, 45, 47–49, 58

Learning Rate Parameter of an optimizer that determines the step size of the optimiza-
tion process. Finding a good learning rate is typically a tradeoff: small learning
rates find better local optima while large learning rates need fewer epochs to train.
34, 58

Level Set A function in space that describes the regions create by a closed surface.
Typically, negative values indicate the inside and positive values the outside area.
It is used in liquid simulations to describe the liquid surface and its interactions
with the air. A signed distance function is a special case, where the magnitude
of the function values additionally represent the distance to the closest surface
point. 26, 27

Loss Function When training a neural network, the loss function is the criterion that
is supposed to be minimized in the optimization process. As a result, using
different loss functions can substantially change the performance of a network as
the notion of the optimization goal changes. Loss functions are also known as
training loss, training error or simply loss. iv, 3, 5, 6, 22, 35, 37, 47, 51, 52, 58

57

Glossary

Metric A function operating on a set (e.g. a vector space) that assigns a non-negative
value to each pair of elements. Intuitively, a metric defines a distance value
between all element pairs. Shallow metrics are simple functions like L2 or SSIM
and deep metrics make use of convolutional neural networks like LNSM or LPIPS.
iv, 53, 54, 57–59

Minibatch A set of training samples for neural networks that are combined for a
single pass through the network, to better utilize the parallel computing power of
graphics processing units (GPUs) for training. 3, 35, 56

Navier-Stokes Equations (NSE) A partial differential equation that describes the gen-
eral behaviour of fluids like smoke or water with respect to advection, viscosity,
pressure and mass conservation. 23, 24, 54–56

Neural Network A machine learning method that utilizes a structure of multiple lay-
ers to learn a specific task by generalizing from a set of given training data to
other unseen data. Each layer typically features a set of adjustable weights that
are connected to previous and subsequent layers and a non-linearity function.
This design makes the function computed by the entire neural network differen-
tiable. During training, the optimal values for the weights are found by global
optimization and afterwards fixed for later evaluations of unseen data. iv, 55–59

Norm A function operating on vector spaces like Rn that assigns a non-negative value
to each vector. Intuitively, a norm represents a way of computing the length of a
vector. Every norm h(z) induces a corresponding metric m(x, y) = h(y− x) for a
given vector space with the elements x, y and z. 9, 12, 15, 54, 57

Optimizer The optimizer is an implementation of an optimization strategy that is used
to minimize the loss function when training a neural network. The most common
optimizer is Adaptive Moment Estimation (Adam) that provides an adaptive
learning rate which is in almost any case superior to fixing it. 34, 57

Overfitting A typical problem of neural networks, when a model ”memorizes” the
training data such that the value of the loss function is low but it does not
generalize to new data. Common countermeasures (regularizations) to overfitting
are adding more diverse training data, introduction specialized network layers
like dropout, reducing the number of trainable weights or decreasing the training
duration. 9, 17, 26, 56

Partial Differential Equation (PDE) An equation that relates a function with multiple
variables to its partial derivates. PDEs are typically used to describe physical

58

Glossary

phenomena like sound, heat, diffusion or fluid mechanics. To find an unam-
biguous solution for a PDE, a set of initial conditions or parameters must be
specified. For most PDEs it is possible to create a solver that approximates the true
solution of the PDE by an iterative, numerical algorithm (perhaps with additional
assumptions). iv, 1, 6, 21–24, 28–30, 51, 54–56, 58, 59

Pooling An operation to reduce the spatial size of feature maps in neural networks.
Typical operations are combining multiple pixels of the feature maps to their
maximum (max-pooling) or average value (avg-pooling). 8, 18, 20, 55

Rectified Linear Unit (ReLU) A non-linearity function used in neural networks that
allows for highly efficient optimization and as a result very deep network archi-
tectures. 17, 20, 59

Siamese Neural Network A special type of neural network that employs two or more
identical subnetworks with shared weights. As a result, siamese architectures
work especially well for comparison tasks. iv, 3, 4, 7, 11, 20, 39

Sigmoid An older non-linearity function used in neural networks that makes optimiza-
tion more difficult compared to ReLU. But it is still used in some cases, as it
allows for smoothly compressing values to the (0, 1) range. 17, 18, 20

Skip Connection A structure in a convolutional neural network, that connects layers
which are not consecutive. As a result, they help to preserve information from
the input to deeper layers of the network. 13, 14, 40

Solver In the context of PDEs, a solver is a program that implements a numerical
method to approximate the solution of the PDE. It often stores results and
intermediate values in the form of field data. iv, 5, 6, 22–26, 28, 29, 55, 56, 59

Structural Similarity Index (SSIM) A shallow metric function from Zhou Wang et al.
(2004). It handles structural information better than the strictly elementwise
L2-metric but still has the problems of shallow metrics for certain inputs. 5, 37, 58

Time Step Parameter of a solver for PDEs that determines the temporal step size of
the numerical algorithm. A large time step is typically desirable as the same
period of time can be simulated for less computational costs. But using too large
values often leads to inaccuracies or instabilities in the simulation, where quickly
increasing errors render the result unusable. 22, 26, 28, 53

59

Bibliography

Amirshahi, Seyed Ali, Marius Pedersen, and Stella X. Yu (2016). “Image Quality As-
sessment by Comparing CNN Features between Images.” In: Journal of Imaging Sience
and Technology 60.6. issn: 1062-3701. doi: 10.2352/J.ImagingSci.Technol.2016.60.
6.060410.

Bell, Sean and Kavita Bala (2015). “Learning visual similarity for product design with
convolutional neural networks.” In: ACM Transactions on Graphics 34.4, 98:1–98:10.
issn: 0730-0301. doi: 10.1145/2766959.

Benajiba, Yassine, Jin Sun, Yong Zhang, Longquan Jiang, Zhiliang Weng, and Or Biran
(2018). “Siamese Networks for Semantic Pattern Similarity.” In: CoRR abs/1812.06604.
arXiv: 1812.06604.

Berardino, Alexander, Johannes Balle, Valero Laparra, and Eero Simoncelli (2017).
“Eigen-Distortions of Hierarchical Representations.” In: Advances in Neural Information
Processing Systems 30 (NIPS 2017). Vol. 30. arXiv: 1710.02266.

Bertinetto, Luca, Jack Valmadre, Joao F. Henriques, Andrea Vedaldi, and Philip H. S. Torr
(2016). “Fully-Convolutional Siamese Networks for Object Tracking.” In: Computer
Vision - ECCV 2016 Workshops, PT II. Vol. 9914, 850–865. isbn: 978-3-319-48880-6. doi:
10.1007/978-3-319-48881-3_56.

Bosse, Sebastian, Dominique Maniry, Klaus-Robert Mueller, Thomas Wiegand, and
Wojciech Samek (2016). “Neural Network-Based Full-Reference Image Quality As-
sessment.” In: 2016 Picture Coding Symposium (PCS). isbn: 978-1-5090-5966-9. doi:
10.1109/PCS.2016.7906376.

Chandar, Sarath, Mitesh M. Khapra, Hugo Larochelle, and Balaraman Ravindran
(2016). “Correlational Neural Networks.” In: Neural Computation 28.2, pp. 257–285.
doi: 10.1162/NECO_a_00801.

Chu, Mengyu and Nils Thuerey (2017). “Data-Driven Synthesis of Smoke Flows with
CNN-based Feature Descriptors.” In: ACM Transactions on Graphics 36.4, 69:1–69:14.
issn: 0730-0301. doi: 10.1145/3072959.3073643.

60

https://doi.org/10.2352/J.ImagingSci.Technol.2016.60.6.060410
https://doi.org/10.2352/J.ImagingSci.Technol.2016.60.6.060410
https://doi.org/10.1145/2766959
http://arxiv.org/abs/1812.06604
http://arxiv.org/abs/1710.02266
https://doi.org/10.1007/978-3-319-48881-3_56
https://doi.org/10.1109/PCS.2016.7906376
https://doi.org/10.1162/NECO_a_00801
https://doi.org/10.1145/3072959.3073643

Bibliography

Dosovitskiy, Alexey and Thomas Brox (2016). “Generating Images with Perceptual
Similarity Metrics based on Deep Networks.” In: Advances in Neural Information
Processing Systems 29 (NIPS 2016). Vol. 29. arXiv: 1602.02644.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. MIT Press.

Haben, Stephen, Jonathan Ward, Danica Vukadinovic Greetham, Colin Singleton, and
Peter Grindrod (2014). “A new error measure for forecasts of household-level, high
resolution electrical energy consumption.” In: International Journal of Forecasting 30.2,
pp. 246–256. issn: 0169-2070. doi: 10.1016/j.ijforecast.2013.08.002.

Hanif, Muhammad Shehzad (2019). “Patch match networks: Improved two-channel
and Siamese networks for image patch matching.” In: Pattern Recognition Letters 120,
54–61. issn: 0167-8655. doi: 10.1016/j.patrec.2019.01.005.

He, Haiqing, Min Chen, Ting Chen, Dajun Li, and Penggen Cheng (2019). “Learning to
match multitemporal optical satellite images using multi-support-patches Siamese
networks.” In: Remote Sensing Letters 10.6, 516–525. issn: 2150-704X. doi: 10.1080/
2150704X.2019.1577572.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2016). “Deep residual
learning for image recognition.” In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 770–778. doi: 10.1109/CVPR.2016.90.

Horn, Berthold KP and Brian G Schunck (1981). “Determining optical flow.” In: Artificial
intelligence 17.1-3, pp. 185–203. issn: 0004-3702. doi: 10.1016/0004-3702(81)90024-
2.

Huang, Gao, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger (2017).
“Densely connected convolutional networks.” In: 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2261–2269. doi: 10.1109/CVPR.2017.243.

Iandola, Forrest N., Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J.
Dally, and Kurt Keutzer (2016). “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <1MB model size.” In: CoRR abs/1602.07360. arXiv: 1602.07360.

Ilg, Eddy, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, and
Thomas Brox (2016). “FlowNet 2.0: Evolution of Optical Flow Estimation with Deep
Networks.” In: CoRR abs/1612.01925. arXiv: 1612.01925.

Johnson, Justin, Alexandre Alahi, and Li Fei-Fei (2016). “Perceptual Losses for Real-
Time Style Transfer and Super-Resolution.” In: Computer Vision - ECCV 2016, PT II.
Vol. 9906, 694–711. isbn: 978-3-319-46474-9. doi: 10.1007/978-3-319-46475-6_43.

Kang, Le, Peng Ye, Yi Li, and David Doermann (2014). “Convolutional Neural Networks
for No-Reference Image Quality Assessment.” In: 2014 IEEE Conference on Computer

61

http://arxiv.org/abs/1602.02644
https://doi.org/10.1016/j.ijforecast.2013.08.002
https://doi.org/10.1016/j.patrec.2019.01.005
https://doi.org/10.1080/2150704X.2019.1577572
https://doi.org/10.1080/2150704X.2019.1577572
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1016/0004-3702(81)90024-2
https://doi.org/10.1016/0004-3702(81)90024-2
https://doi.org/10.1109/CVPR.2017.243
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1612.01925
https://doi.org/10.1007/978-3-319-46475-6_43

Bibliography

Vision and Pattern Recognition (CVPR), 1733–1740. isbn: 978-1-4799-5117-8. doi: 10.
1109/CVPR.2014.224.

Keil, Christian and George C Craig (2009). “A displacement and amplitude score
employing an optical flow technique.” In: Weather and Forecasting 24.5, pp. 1297–1308.
doi: 10.1175/2009WAF2222247.1.

Kim, Jongyoo and Sanghoon Lee (2017). “Deep Learning of Human Visual Sensitivity
in Image Quality Assessment Framework.” In: 30TH IEEE Conference on Computer
Vision and Pattern Recognition (CVPR 2017), 1969–1977. isbn: 978-1-5386-0457-1. doi:
10.1109/CVPR.2017.213.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton (2017). “ImageNet Classifi-
cation with Deep Convolutional Neural Networks.” In: Communications of the ACM
60.6, pp. 84–90. issn: 0001-0782. doi: 10.1145/3065386.

Larson, Eric C. and Damon M. Chandler (2010). “Most apparent distortion: full-reference
image quality assessment and the role of strategy.” In: Journal of Electronic Imaging
19.1. issn: 1017-9909. doi: 10.1117/1.3267105.

Lin, Zhihong, Taik Soo Hahm, WW Lee, William M Tang, and Roscoe B White (1998).
“Turbulent transport reduction by zonal flows: Massively parallel simulations.” In:
Science 281.5384, pp. 1835–1837. issn: 1095-9203. doi: 10.1126/science.281.5384.
1835.

Liu, Xinwei, Marius Pedersen, and Jon Yngve Hardeberg (2014). “CID:IQ - A New
Image Quality Database.” In: Image and Signal Processing, ICISP 2014. Vol. 8509, 193–
202. isbn: 978-3-319-07997-4. doi: 10.1007/978-3-319-07998-1_22.

Moin, Parviz and Krishnan Mahesh (1998). “Direct numerical simulation: a tool in
turbulence research.” In: Annual review of fluid mechanics 30.1, pp. 539–578. doi: 10.
1146/annurev.fluid.30.1.539.

Oberkampf, William L, Timothy G Trucano, and Charles Hirsch (2004). “Verification,
validation, and predictive capability in computational engineering and physics.”
In: Applied Mechanics Reviews 57 (5), pp. 345–384. issn: 0003-6900. doi: 10.1115/1.
1767847.

Oliva, Aude, Antonio Torralba, and Philippe G. Schyns (2006). “Hybrid Images.”
In: ACM Transactions on Graphics 25.3, pp. 527–532. issn: 0730-0301. doi: 10.1145/
1141911.1141919.

Pearson, Karl (1920). “Notes on the History of Correlation.” In: Biometrika 13.1, pp. 25–
45. issn: 0006-3444. doi: 10.1093/biomet/13.1.25.

62

https://doi.org/10.1109/CVPR.2014.224
https://doi.org/10.1109/CVPR.2014.224
https://doi.org/10.1175/2009WAF2222247.1
https://doi.org/10.1109/CVPR.2017.213
https://doi.org/10.1145/3065386
https://doi.org/10.1117/1.3267105
https://doi.org/10.1126/science.281.5384.1835
https://doi.org/10.1126/science.281.5384.1835
https://doi.org/10.1007/978-3-319-07998-1_22
https://doi.org/10.1146/annurev.fluid.30.1.539
https://doi.org/10.1146/annurev.fluid.30.1.539
https://doi.org/10.1115/1.1767847
https://doi.org/10.1115/1.1767847
https://doi.org/10.1145/1141911.1141919
https://doi.org/10.1145/1141911.1141919
https://doi.org/10.1093/biomet/13.1.25

Bibliography

Pitsch, Heinz (2006). “Large-eddy simulation of turbulent combustion.” In: Annu. Rev.
Fluid Mech. 38, pp. 453–482. doi: 10.1146/annurev.fluid.38.050304.092133.

Ponomarenko, Nikolay, Lina Jin, Oleg Ieremeiev, Vladimir Lukin, Karen Egiazarian,
Jaakko Astola, Benoit Vozel, Kacem Chehdi, Marco Carli, Federica Battisti, and C. -
C. Jay Kuo (2015). “Image database TID2013: Peculiarities, results and perspectives.”
In: Signal Processing-Image Communication 30, 57–77. issn: 0923-5965. doi: 10.1016/j.
image.2014.10.009.

Prashnani, Ekta, Hong Cai, Yasamin Mostofi, and Pradeep Sen (2018). “PieAPP: Percep-
tual Image-Error Assessment through Pairwise Preference.” In: CoRR abs/1806.02067.
arXiv: 1806.02067.

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox (2015). “U-Net: Convolutional
Networks for Biomedical Image Segmentation.” In: CoRR abs/1505.04597. arXiv:
1505.04597.

Ruder, Manuel, Alexey Dosovitskiy, and Thomas Brox (2016). “Artistic Style Transfer for
Videos.” In: Pattern Recognition, pp. 26–36. isbn: 978-3-319-45886-1. doi: 10.1007/978-
3-319-45886-1_3.

Simonyan, Karen and Andrew Zisserman (2015). “Very Deep Convolutional Networks
for Large-Scale Image Recognition.” In: ICLR. arXiv: 1409.1556.

Spearman, Charles (1904). “The Proof and Measurement of Association between Two
Things.” In: The American Journal of Psychology 15.1, pp. 72–101. issn: 0002-9556. doi:
10.2307/1412159.

Talebi, Hossein and Peyman Milanfar (2018a). “Learned Perceptual Image Enhance-
ment.” In: 2018 IEEE International Conference on Computational Photography (ICCP).
isbn: 978-1-5386-2526-2. doi: 10.1109/ICCPHOT.2018.8368474.

Talebi, Hossein and Peyman Milanfar (2018b). “NIMA: Neural Image Assessment.” In:
IEEE Transactions on Image Processing 27.8, 3998–4011. issn: 1057-7149. doi: 10.1109/
TIP.2018.2831899.

Thuerey, Nils, Konstantin Weissenow, Harshit Mehrotra, Nischal Mainali, Lukas Prantl,
and Xiangyu Hu (2018). “Well, how accurate is it? A Study of Deep Learning Methods
for Reynolds-Averaged Navier-Stokes Simulations.” In: CoRR abs/1810.08217. arXiv:
1810.08217.

Um, Kiwon, Xiangyu Hu, and Nils Thuerey (2017). “Perceptual Evaluation of Liquid
Simulation Methods.” In: ACM Transactions on Graphics 36.4. issn: 0730-0301. doi:
10.1145/3072959.3073633.

63

https://doi.org/10.1146/annurev.fluid.38.050304.092133
https://doi.org/10.1016/j.image.2014.10.009
https://doi.org/10.1016/j.image.2014.10.009
http://arxiv.org/abs/1806.02067
http://arxiv.org/abs/1505.04597
https://doi.org/10.1007/978-3-319-45886-1_3
https://doi.org/10.1007/978-3-319-45886-1_3
http://arxiv.org/abs/1409.1556
https://doi.org/10.2307/1412159
https://doi.org/10.1109/ICCPHOT.2018.8368474
https://doi.org/10.1109/TIP.2018.2831899
https://doi.org/10.1109/TIP.2018.2831899
http://arxiv.org/abs/1810.08217
https://doi.org/10.1145/3072959.3073633

Bibliography

Um, Kiwon, Xiangyu Hu, Bing Wang, and Nils Thuerey (2019). “Spot the Differ-
ence: Accuracy of Numerical Simulations via the Human Visual System.” In: CoRR
abs/1907.04179. arXiv: 1907.04179.

Wang, Zhenyu, Jinsong Zhang, and Yanlu Xie (2018). “L2 Mispronunciation Verification
Based on Acoustic Phone Embedding and Siamese Networks.” In: 2018 11TH In-
ternational Symposium on Chinese Spoken Language Processing (ISCSLP), 444–448. isbn:
978-1-5386-5627-3. doi: 10.1109/ISCSLP.2018.8706597.

Wang, Zhou, Alan Conrad Bovik, Hamid Rahim Sheikh, and Eero Simoncelli (2004).
“Image quality assessment: From error visibility to structural similarity.” In: IEEE
Transactions on Image Processing 13.4, 600–612. issn: 1057-7149. doi: 10.1109/TIP.
2003.819861.

Welford, B. P. (1962). “Note on a Method for Calculating Corrected Sums of Squares and
Products.” In: Technometrics 4.3, pp. 419–420. doi: 10.1080/00401706.1962.10490022.

Zhang, Richard, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang (2018).
“The Unreasonable Effectiveness of Deep Features as a Perceptual Metric.” In: 2018
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 586–595. isbn:
978-1-5386-6420-9. doi: 10.1109/CVPR.2018.00068.

Zhang, Yichi and Zhiyao Duan (2017). “IMINET: Convolutional Semi-Siamese Networks
for Sound Search by Vocal Imitation.” In: 2017 IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics, 304–308. isbn: 978-1-5386-1632-1. doi: 10.1109/
TASLP.2018.2868428.

Zhu, Yongning and Robert Bridson (2005). “Animating Sand As a Fluid.” In: ACM
SIGGRAPH 2005 Papers. New York, NY, USA, pp. 965–972. doi: 10.1145/1186822.
1073298.

64

http://arxiv.org/abs/1907.04179
https://doi.org/10.1109/ISCSLP.2018.8706597
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1080/00401706.1962.10490022
https://doi.org/10.1109/CVPR.2018.00068
https://doi.org/10.1109/TASLP.2018.2868428
https://doi.org/10.1109/TASLP.2018.2868428
https://doi.org/10.1145/1186822.1073298
https://doi.org/10.1145/1186822.1073298

	Acknowledgments
	Abstract
	Contents
	1 Introduction
	2 Related Work
	3 CNN-based Metrics
	3.1 Learned Numerical Simulation Metric (LNSM)
	3.2 Discussion of Metric Properties
	3.3 Experimental Designs

	4 Data and Training
	4.1 Data Generation Approach
	4.2 Navier-Stokes Equations
	4.3 Advection-Diffusion and Burger's Equation
	4.4 Other Data Sets
	4.5 Training
	4.6 Correlation Loss Function

	5 Results
	5.1 Accuracy Evaluation of Different Metrics
	5.2 Analysis of Experimental Designs
	5.3 Impact of Data Difficulty and Correlation Loss
	5.4 Distance Evaluations

	6 Conclusion
	A Notation
	Glossary
	Bibliography

