
Pre-print To appear in Computer Graphics Forum

Liquid Splash Modeling with Neural Networks

Kiwon Um, Xiangyu Hu, and Nils Thuerey

Technical University of Munich, Germany

Figure 1: Our data-driven splash model improves the visual fidelity of FLIP simulations as shown here with three different simulation setups.
Our model learns to infer the probability and velocity changes of under-resolved droplet formation effects with the trained neural networks.

Abstract
This paper proposes a new data-driven approach to model detailed splashes for liquid simulations with neural networks. Our
model learns to generate small-scale splash detail for the fluid-implicit-particle method using training data acquired from
physically parametrized, high resolution simulations. We use neural networks to model the regression of splash formation using
a classifier together with a velocity modifier. For the velocity modification, we employ a heteroscedastic model. We evaluate
our method for different spatial scales, simulation setups, and solvers. Our simulation results demonstrate that our model
significantly improves visual fidelity with a large amount of realistic droplet formation and yields splash detail much more
efficiently than finer discretizations.

CCS Concepts
•Computing methodologies → Physical simulation; Supervised learning by regression;

1. Introduction

For large-scale liquid simulations, it is crucial for visual fidelity
that a numerical simulation can produce a sufficient number of very
small droplets [GB13, UHT17]. However, it is difficult to capture
such splashes in practical simulations due to their complex small-
scale surface geometry and dynamics. A typical remedy for this
difficulty is to use additional representations that are physically or
heuristically inspired to improve the visual realism of the under-
lying simulations [TFK∗03, KCC∗06, IAAT12]. As an alternative,
small drops can be also tracked as part of the underlying simula-
tion method [GSLF05]. However, accurately resolving the effects

of drop formation typically requires the use of very fine spatial dis-
cretization, which in turn leads to high computational cost. Thus, it
is often challenging to generate vivid splashes in liquid simulations
as they require resolving the small-scale dispersive motions that
lead to droplets forming and being ejected from the bulk volume.

This paper proposes a new data-driven splash generation ap-
proach that improves the visual fidelity of hybrid particle-grid liq-
uid simulations. By learning the formation of small-scale splashes
from physically accurate simulations, our model effectively ap-
proximates the sub-grid scale effects that lead to droplet genera-
tions. This enables us to generate realistic splashes in coarse sim-

Um et al. / Liquid Splash Modeling with Neural Networks

ulations without the need for manually tweaking parameters or
increased computational costs induced by high resolution simu-
lations. We realize our model using machine learning techniques
with neural networks (NNs) and integrate the model into the fluid-
implicit-particle (FLIP) algorithm [ZB05]. Within this environ-
ment, we investigate the generality of our design by employing dif-
ferent simulation methods for generating the training data. More-
over, we show an extension of our model to generate secondary
particles, which are independent from the underlying simulation.
Using this extension, we also investigate controlling the number
of generated splashes and the ability of our model to learn from
multi-scale data. Figure 1 shows three examples of results that our
model can generate. In the following, we will refer to our model as
MLFLIP, which indicates a combination of machine learning and
FLIP.

2. Related Work

The behavior of liquids is typically modeled with the Navier-Stokes
(NS) equations:

∂u
∂t

+u ·∇u = g− 1
ρ
∇P+ν∇2u and ∇·u = 0, (1)

where u is the velocity, g is the gravity, ρ is the density, P is the
pressure, and ν is the viscosity coefficient. There exist many numer-
ical methods for solving these equations, which are commonly cat-
egorized as Eulerian and Lagrangian approaches [Bri15, IOS∗14].

FLIP is a particularly popular method for liquid simulations
[ZB05], and it is widely used in movie visual effects at the moment.
Its effective combination of Lagrangian and Eulerian properties en-
ables the efficient solve of liquid motions. While FLIP has become
a practical solution for liquid simulations, the core method has been
extended to various ways in order to improve its simulation quality
and efficiency. For example, different position correction methods
improved the distribution of particles [ATT12, UBH14], and Fer-
stl et al. [FAW∗16] proposed a narrow band method that improves
the efficiency by sampling the volume with particles only near
the surface. In addition, FLIP has been widely adopted to various
problems of fluid simulations such as viscous free surfaces [BB08]
and solid-fluid coupling [BBB07]. Two-phase fluids have been also
simulated via an extension of FLIP [BB12]. Moreover, the affine
particle-in-cell (APIC) method [JSS∗15] as a variant effectively
addressed the stability issues of FLIP and the dissipation of the
particle-in-cell method, and APIC has been further generalized to
polynomial representations [FGG∗17].

A central goal of our model is to improve the visual fidelity of
liquid simulations with small-scale details. Apart from FLIP, the
smoothed particle hydrodynamics (SPH) approach is a popular al-
ternative in graphics [MCG03, SP09, AAT13, BK17]. Due to the
nature of its computational mechanism based on interparticle inter-
actions, SPH is able to simulate dispersive motions and droplets.
This behavior led to a combination of SPH and the particle level
set approach [EMF02]; this simulates the diffuse regions via SPH
[LTKF08]. Our model infers such small-scale interactions in a data-
driven way. In addition, we employ an efficient hybrid particle-grid
solver (i.e., FLIP). Thus, our method does not require potentially

expensive particle neighborhood information. A possible alterna-
tive approach to achieve this goal in FLIP is to add details using ex-
tra representations for diffuse materials [YLHQ14,YLX∗15]. Like-
wise, Ihmsen et al. [IAAT12] proposed a flexible secondary particle
model for such diffuse materials in SPH simulations. With enough
manual tuning and elaborate coupling processes, these extra rep-
resentation approaches can yield realistic results, but in contrast to
their work, we focus on an automated approach that captures splash
effects for physically-parametrized real world scales. Our model
does not require any parameter tuning on the user side and sophis-
ticated integration. At the same time, one of our goals is to demon-
strate that NNs are suitable to detect and generate these splashes.

A method that shares our goal to enable splashes with FLIP
is the unilateral incompressibility (UIC) solver [GB13]. The UIC
solver allows positive divergence in fluid cells such that it can cre-
ate larger-scale splashes. However, it leads to a very different vi-
sual behavior as the grid based velocities lead to a formation of
sheets and filaments rather than detaching droplets. In addition, the
UIC approach requires two solves of the linear complementarity
problem. Our approach targets a very different direction. Instead
of modifying the pressure solve, we incorporate a statistical model
with the help of machine learning. We note that our approach is
orthogonal to the choice of Poisson solver and thus could also in-
tegrate into the UIC solver in a single simulation to increase the
small-scale splash effects.

Machine learning: Machine learning is a field that recently re-
ceived substantial attention due to the success of so-called deep
neural networks. Here, especially the seminal image classification
work of Krizhevsky et al. [KSH12] has to be mentioned, but other
areas such as object detection [GDDM14] and control of complex
systems based on visual inputs [MKS∗13] have likewise seen im-
pressive advances. As our splash model utilizes NNs, we briefly
review their concepts and give an overview of previous work on
NNs for physics simulations. In general, the learning process aims
for the approximation of a general function f using a given data set
(i.e., input x and output y) in the form of y = f (x,w) where w is
the set of weights and biases to be trained. Using NNs, the general
function f is modeled by networks of multiple layers where each
layer contains multiple nodes (i.e., artificial neurons). These net-
works consist of layers with connected nodes. The output vector yL
from a layer L is typically computed with yL = Φ(wLyL−1 + bL)
where Φ(·) is the activation function that is applied to each compo-
nent, wL is the weight matrix of the layer, and bL is the bias vector
of the layer. Here, the activation function Φ enables the networks
to capture non-linearities in the approximated function. We will
demonstrate that NNs, which so far have rarely been used for fluid
simulations, can be used for realization of our data-driven splash
model.

NNs were previously used to compute local pressure approxima-
tions [YYX16] while others employed networks with convolutional
layers to regress the whole pressure field [TSSP17]. Moreover, an
approach using regression forests, which represent an alternative to
NNs, was proposed to efficiently compute forces in SPH [LJS∗15].
More recently, NNs were also successfully employed for patch-
based smoke simulations [CT17], super-resolution with temporal
coherence [XFCT18], and fast generation of liquid animations with

Pre-print

Um et al. / Liquid Splash Modeling with Neural Networks

input vector x

ys(x,ws) µ(x,wµ) σ
2(x,wσ2)

indicator l velocity modification ∆v

Figure 2: The overall structure of our neural networks.

space-time deformations [BPT17]. In the engineering community,
approximating effects smaller than the discretization resolution is
known as coarse-grained modeling [HEVEDB09], but this idea has
not been used to model splash formation. We propose to use ma-
chine learning techniques to represent accurate and high resolution
data in order to approximate complex small-scale effects with high
efficiency.

3. Data-driven Splash Modeling

The following section details our data-driven approach for generat-
ing splashes. The principal idea of our approach is to infer statis-
tics about splash formation based on data from simulations that are
parametrized to capture the droplet formation in nature. Our defi-
nition of a splash is a small disconnected region of liquid material
that is not globally coupled with the main liquid volume. The key
novelty of our approach is that it does not require manually chosen
parameters, such as velocity or curvature thresholds, to generate the
splashes. Rather, we use a statistical model and data extracted from
a series of highly detailed and pre-computed simulations.

Our approach consists of two components: a detachment clas-
sification and a velocity modification. Based on a feature descrip-
tor consisting of localized flow information, the classifier predicts
whether a certain volume of liquid forms a detached droplet within
a chosen duration ∆t (typically, on the order of a single frame of
animation). For droplets that are classified as such, our modifier
predicts its future velocity based on a probability distribution for
velocity modifications. We use NNs to represent both components,
and the following sections describe our statistical model and the
corresponding machine learning approach.

3.1. Neural Network Model

The input to our model is a feature descriptor x ∈ RM that encap-
sulates enough information of the flow such that a machine learn-
ing model can infer whether the region in question will turn into
a splash. For this binary decision “splash or non-splash”, we will
use an indicator value l ∈ {1,0} in the following. Each descriptor
is typically generated for a position p. The M individual compo-
nents of x consist of flow motion and geometry in the vicinity of
p. In practice, we use 33 samples of the velocity and level set. The
discussion of this choice will be given in Section 3.3 in more detail.

We train our models with a given data set that consists of feature
vectors X = {x1,x2, · · · ,xN} and corresponding detachment indi-
cator values L = {l1, l2, · · · , lN}; they are generated during a pre-
processing phase at locations {p1,p2, · · · ,pN}. Then, our classifier
aims for inferring the probability Ps that a feature vector xi is in the
class indicated by li. Considering a probability distribution func-
tion ys that Ps follows, we will approximate the function ys from
the given data. For this task, we can follow established procedures
from the machine learning field [Bis06].

The probability distribution ys(xi,ws) is the target function that
is represented by the weights ws. The weights are the actual degrees
of freedom that will be adjusted in accordance to the data during the
learning phase. We can express Ps in terms of ys as:

Ps(li|xi)∼ P(li|ys(xi,ws)) , (2)

which yields the following likelihood function that we wish to max-
imize:

Ld(L|X) =
N

∏
i=1

P(li|ys(xi,ws)) . (3)

In order to maximize this likelihood, we use the well-established
softmax (i.e., normalized exponential function) for the loss of our
classification networks. It will successfully encode the given data
set and train the model for ys, and then we can evaluate with new
feature vectors at any position in a flow to predict whether the re-
gion will turn into a detached droplet within the time frame ∆t.

Let ∆v be an instance of a velocity change for a splash with re-
spect to the motion of the bulk liquid in its vicinity. We will after-
ward consider this velocity change of a droplet relative to the bulk
as the velocity modification of a particle in our simulation. Similar
to the classifier above, our goal is to infer the set of velocity mod-
ifications ∆V = {∆v1,∆v2, · · · ,∆vN} based on the corresponding
set of feature vectors X. From the statistics of our training data,
we found that it is reasonable to assume that the velocity modifica-
tions follow a normal distribution relative to the mean flow direc-
tion. Accordingly, we model the modifier as a modification func-
tion fm(∆vi|xi) following a normal distribution with mean µ and
variance σ

2:

fm(∆vi|xi)∼N
(

∆vi|µ(xi,wµ),σ
2(xi,wσ2)

)
, (4)

thus

fm(∆vi|xi)∼
1√

2πσ2
i

exp

(
−(∆vi−µi)

2

2σ2
i

)
, (5)

where, for the sake of simplicity, µi and σ
2
i denote µ(xi,wµ) and

σ
2(xi,wσ2), respectively. Then, the negative log likelihood function

Lm (also known as loss function) for the given data is defined as
follows:

Lm(∆V|X) =
1
2

N

∑
i=1

d

∑
j=1

[
(∆vi, j−µi, j)

2

σ2
i, j

+ lnσ
2
i, j

]
, (6)

where j denotes the spatial index.

As Eq. (6) indicates, we model the modifier as a mean vari-
ance estimation (MVE) problem [NW94, KNCA11]. Instead of di-
rectly estimating the mean of targets, the MVE problem assumes

Pre-print

Um et al. / Liquid Splash Modeling with Neural Networks

Figure 3: Selected close-up snapshots of ten randomized initial conditions to generate the droplet formation data for training.

Figure 4: Example frames of (top) 5mm and (bottom) 1.5mm scale simulations for training data generation.

that errors are normally distributed around the mean and estimates
both the mean and heteroscedastic variance. Note that µ(xi,wµ) and
σ

2(xi,wσ2) are the target functions that are approximated with each
set of weights wµ and wσ2 .

In our approach, the mean and variance functions are represented
by NNs and approximated by estimating the two sets of weights
such that they minimize the loss function Lm for the given data
{X,∆V}. We want to point out that several machine learning algo-
rithms are available to solve this problem [Bis06], but NNs have
proven themselves to be robust for this problem, and we found that
they work very well in our tests.

The overall structure of our NNs is illustrated in Figure 2. The
NNs learn for two separate components: classifier and modifier.
Sharing the input vector x, both components are represented as sep-
arate two-layer NNs. The size of output from the first layer is dou-
ble the input vector’s, and the output is fully connected to the final
output. All outputs from each layer are activated using the hyper-
bolic tangent function. Note that there is a large variety of different
network layouts that could tried here, but we found that this simple
structure worked sufficiently well in our tests.

3.2. FLIP Integration

Our NN-based splash generation model easily integrates into an ex-
isting FLIP simulation pipeline. After the pressure projection step,
we run classification on all particles in a narrow band of one cell
around the surface. For those that generate a positive outcome, we
evaluate our velocity modification network to compute component-
wise mean and variance. Then, we generate random numbers from
correspondingly parametrized normal distributions to update the
velocity of the new splash particle. All splashes are treated as ballis-
tic particles and do not participate in the FLIP simulation until they
impact the main volume again. Thus, we treat individual splashing
droplets as particles that only experience gravitational acceleration
but no other NS forces. This modeling is in line with the secondary
effects often employed in movies [LB12].

Our model evaluates the probability of forming a splash in regard
to a chosen duration ∆t, which is typically larger than the simula-
tion time-step size because of the stability constraint. Unless this
difference is carefully considered, the time-step size will affect the
inference results. As we use smaller time-step size so evaluate more
frequently, we will get more splashes. To avoid this, we evaluate
our inference using a stochastic process [PP02], i.e., random walk,
scaling the expectation by time to match the desired duration. For
a series of simulation steps ∆tk, which proceed for the chosen du-
ration ∆t (i.e., ∑k ∆tk = ∆t), we compute particle i’s expectation
Ei using two finite outcomes 1 (splash) and -1 (non-splash) with
probabilities ys that are evaluated from our trained model:

Ei = ∑
k

1√
∆t/∆tk

ys(xi,k,ws) · [1,−1]. (7)

If the expectations of particles are positive after the random walks
during ∆t, we treat them as splashes and thus evaluate our velocity
modification.

FLIP can use different numbers of simulation particles for the
same grid resolution, and this will affect the number of inferred
splashes since our model evaluates splashes for each simulation
particle. In order to make the model robust to such a variety, we can
normalize the inference process in space. While the expectations
are evaluated for each particle, we can limit the maximum num-
ber of splashes per unit volume using the expected values Ei (e.g.,
one particle whose expectation is the largest value in a cell). We
found that our approach generates a consistent number of splashes
regardless of the size of the time-step and the number of simulation
particles per grid cell.

Look-ahead correction: While our splash generation algorithm re-
liably works in our tests, we noticed a small chance of misclassifi-
cation. This can happen, for instance, when the side of an obstacle
is just outside the region of our input feature vector. To minimize
the influence of such misclassifications, we implemented a look-
ahead step that reverts the classification of individual splashes if
the droplets do not manage to form the expected splashes. For this
look-ahead check, we advance all bulk volume particles, i.e., those

Pre-print

Um et al. / Liquid Splash Modeling with Neural Networks

Figure 5: Example frames of dam simulations with MLFLIP. The bottom row compares (left) MLFLIP with (right) FLIP side-by-side in the
selected areas of three frames.

that were not classified as splashes, by ∆t using the current grid
velocities. We separately integrate positions of the new splash par-
ticles for a time interval of ∆t with their updated velocities. If a new
splash particle ends up inside of the bulk liquid or an obstacle, we
revert its classification and modification.

3.3. Training Data

Our NNs require a large set of input feature vectors with target
outputs for training. In our model, the latter consists of the classifi-
cation result l indicating whether a flow region forms a splash and
the velocity modification ∆v predicting the trajectory of a splash.
We generate the training data from a series of simulations with ran-
domized initial conditions designed to incite droplet formation. The
randomized initial conditions are the number of droplets and their
initial positions and velocities. We choose the ranges of each con-
dition such that they yield sufficient variability for data generation.
The snapshots of the randomized example simulations are shown
in Figure 3. Note that at this stage any available “accurate” NS
solver could be employed. However, we demonstrate that FLIP can
bootstrap itself by using high resolution simulations with correctly
parametrized surface tension.

For the training data simulations, it is crucial that they resolve
important sub-grid effects that are not well resolved on coarse res-
olutions to which our model will be applied later. We test our
model with two physical parametrizations where the surface ten-
sion is dominant, and thus many droplets are generated. Our train-
ing simulations are performed using FLIP with the ghost fluid
method [HK05] for surface tension effects. The two scales use a
grid spacing of 5mm and 1.5mm, and they are parametrized with
the surface tension of water, i.e., 0.073 N/m. Both scales use a
simulation grid of 1003. Several example frames for both scales are
shown in Figure 4.

Note that the simulation data for training will be used to en-
code the desired sub-grid effects for much larger scales afterwards.
When applying our model in new simulation setups, we typically
have scales that are much coarser than those used for generating
the training data. Thus, the feature descriptor (i.e., xi) needs to be
defined at this coarse simulation scale, and our networks need to

infer their outputs (i.e., li and ∆vi) based only on this coarse input.
For this purpose, we make use of a coarse grid at data generation
time. This coarse grid represents the scale to which the model will
be applied afterward. For every time step, we down-sample the nec-
essary high resolution fields from the data generation simulation to
this lower resolution and extract the feature descriptors for training.

As indicated in Section 3.1, we define a feature descriptor xi
using 33 samples of the velocity and level set values interpolated
with a sampling spacing of h; i.e., the feature vector consists of
108 components containing 33×3 velocity values and 33×1 level
set values. Because the splash formation mostly relies on the lo-
cal flow physics near the liquid surface, we focus on the localized
flow information and the surface region where the splash is likely
initiated. From pilot experiments, we found that the improvement
is negligible when more samples or more features such as obstacle
information are used for the feature vector.

In order to extract the splash indicator value l, we analyze the
particle’s spatial motion for a chosen duration ∆t (i.e., a single
frame of animation in our experiments). Using an auxiliary grid,
the separate volumes are recognized by computing the isolated liq-
uid regions from the level set field or cell flags. We then identify
the splashing particles (i.e., l=1) as those ending up in a new dis-
connected component that falls below a given volume threshold at
time t +∆t. In our case, if a disconnected component consists of
less than 8 cells, the volume is marked as droplet volume. All par-
ticles in such a droplet are marked as splashes if the droplet did not
exist as a disconnected component at time t.

The velocity modifier of our model predicts the trajectory for
a splash. We evaluate this prediction after updating the velocity
of particle from the divergence-free velocity at the target resolu-
tion. Thus, the new velocity vt+∆t

m for a splash particle is defined as
vt+∆t

m = vt+∆t +∆v, and we compute the velocity modification ∆v
for training:

∆v =
pt+∆t −pt

∆t
−vt+∆t (8)

where, intuitively, the first term on the right side represents the ve-
locity of the training resolution, and the second term represents the
down-sampled velocity evaluated at the target resolution.

Pre-print

Um et al. / Liquid Splash Modeling with Neural Networks

(a)

0.6 0.8 1.0 1.2 1.4
initial length

10

15

20

25

of

 d
ro

pl
et

s

High resolution FLIP
MLFLIP

(b)

Figure 6: Number of droplets formed after 1.5 seconds with different initial lengths. (a) Two selected high resolution FLIP simulations
(top row in blue) show the surface tension driven dynamics. Two examples of our MLFLIP simulations (bottom row in orange) successfully
recover the break-up in a low resolution simulation. Droplet count statistics are shown in (b). Our simulations (orange dots) very accurately
match the full resolution simulation results (blue dots).

As the splashes are initiated near the liquid surface in general,
we extract the training data only from the surface particles. The
surface particles are recognized by slightly expanding the area of
empty (i.e., air) cells. Note that we use the data from splashing as
well as non-splashing particles for training. It is crucial for training
that the networks see sufficiently large numbers of samples from
both classes.

For training, we used 1.3M samples of the 5mm scale and 441K
samples of the 1.5mm scale. They were extracted from sixteen
training simulations per scale. The data of each scale contain the
same number of both splashing and non-splashing samples. Note
that the same set of initial conditions (Figure 3) generates differ-
ent physics in different scales (Figure 4). The smaller scale incites
less splashes because the surface tension forces are more promi-
nent. This resulted in a reduced number of training samples for the
smaller scale of 1.5mm.

3.4. Training Networks

We randomly split the training samples into 75% for the training
set and 25% for the test set. The graphs in Figure 7 illustrate the
progress of the learning phase in our experiments. The training
performed for 60K iterations with 5K samples as a training batch.
When the data sets were fully used, we randomly shuffled the sam-
ples and then continued with the training. In order to train our MVE
model, the first 30K iterations trained the mean, keeping the vari-
ance constant, afterwards the remaining 30K iterations trained both
the mean and variance simultaneously [NW94]. Thus, as shown in
the right of Figure 7, we could observe two learning phases: the first

0.0 20.0K 40.0K 60.0K
step

0.4

0.6

0.8

ac
cu

ra
cy training (5mm)

test (5mm)
training (1.5mm)
test (1.5mm)

0.0 20.0K 40.0K 60.0K
step

0

25

50

lo
ss

training (5mm)
test (5mm)
training (1.5mm)
test (1.5mm)

Figure 7: Learning graphs for both the training and test sets in two
scales. The left graph shows the classification accuracy; the right
graph shows the loss Lm.

intermediate convergence of the mean value after ca. 15K iterations
and the final convergence approximately after 40K iterations.

To realize our NNs, we employed the TensorFlow framework
[ten16] with its ADAM optimizer [KB14]. Here, the learning rate
for training was set to 10−4. We also employed weight decay and
dropout (both with strength 10−1) to avoid over-fitting. Addition-
ally, we found that the batch normalization technique [IS15] signif-
icantly improves the learning rate and accuracy.

4. Model Evaluation

Our data-driven splash model (i.e., MLFLIP) incites the formation
of splashes by inferring the likelihood and velocity modification of
particle. As outlined in Section 3.3, our approach can employ any
available NS solver to generate the training data. In order to demon-
strate that our approach is agnostic to the choice of solver, we
trained our model with two sets of data that were generated using
two different simulation methods: FLIP and SPH. The FLIP data
were generated using randomized initial conditions (Figure 18-(c))
similar to the three-dimensional example (Figure 3) with surface
tension effects to incite splashes. On the other hand, SPH often
results in a significant number of splashes due to its direct inter-
particle interactions. Our SPH training data were generated using
randomized breaking dam simulations as shown in Figure 17. Fig-
ure 9 compares the results of MLFLIP trained using these two data
sets. As shown in the comparison, both MLFLIP models produce
very comparable splashes while demonstrating that our model suc-
cessfully learns from both solvers. In addition, we believe that other
NS solvers could likewise be employed to generate training data.

4.1. Physical Evaluation

Next, we will evaluate the ability of our approach to capture realis-
tic physical behavior. Due to the turbulent nature of splashing liq-
uids, we rely on a two-dimensional setup similar to the well known
Plateau-Rayleigh instability for 3D flows [dGBWQ04]. Plateau-
Rayleigh instabilities explain the break-up of tubes of liquid due
to surface tension, and it is one of the well known phenomena lead-
ing to droplet formation.

We consider strings of liquid with different initial lengths sam-
pling each with perturbed FLIP particles. These setups were simu-
lated with surface tension and viscosity of water with zero gravity.

Pre-print

Um et al. / Liquid Splash Modeling with Neural Networks

Figure 8: Example frames of stairs simulations with MLFLIP. The bottom row compares (left) MLFLIP with (right) FLIP side-by-side in the
selected areas of three frames.

MLFLIP

FLIP

Figure 9: Comparison among (top) MLFLIP trained using FLIP,
(middle) MLFLIP trained using SPH, and (bottom) FLIP.

As evaluation metric, we calculate the number of formed droplets
after 1.5 seconds. To generate training data, we simulated 40 dif-
ferent simulations with a resolution of 1000×100 cells, which
parametrized for a spatial scale of 2.5mm per cell. As shown in
blue in Figure 6-(a), these simulations accurately resolve the sur-
face tension effects and lead to the droplet counts shown with blue
dots as reference data in Figure 6-(b).

We train our model on this data using a four times smaller base
resolution of 250×25, for which we completely omit both surface
tension and viscosity. With this resolution, the string is only ca. 1
cell thick, and hence the surface tension driven instabilities could

not be properly simulated at this scale. Without surface tension,
these simulations would not lead to any droplets forming. However,
when enabling our model, we can accurately simulate the droplet
formation for the liquid string setups. For these tests, we disable the
inference of velocity variance in order to make the results indepen-
dent of randomness. The results of our model are shown in orange
in Figure 6-(a), and the corresponding droplet counts can be found
in Figure 6-(b). As this graph shows, our model captures the ground
truth numbers of droplets very well across the full range of different
lengths. It is also worth pointing out here that simpler models for
generating secondary particles would not be able to re-create this
behavior. As such, this test case successfully demonstrates that our
model learns to represent the underlying physics of droplet forma-
tion faithfully.

4.2. Secondary Particle Approach

While our approach described so far couples particles and bulk
motion, we can modify our algorithm to produce secondary par-
ticles. To this end, when our model classifies simulation particles
as splashes, we seed secondary particles at the same positions as
the simulation particles and copy their velocities to the newly gen-
erated secondary particles. After that, the velocity modification is
applied using random numbers. The secondary particle is simulated
individually and removed when it ends up inside of the liquid vol-
ume. Figure 11 shows the example frames of the secondary particle
model. Here, the splashes were enriched on the pre-simulated FLIP
frames. Unlike the work of Ihmsen et al. [IAAT12], our model does
not require any manual adjustment of parameters. While secondary
splash models from previous work could potentially produce results
similar to ours with enough manual adjustment of the parameters,
the formation of splashes in our model purely relies on the gener-
ated training data. Despite this automated process, we demonstrate,
in the following, that the results can be easily controlled by a user.

By virtue of the NN-based classification model, we can readily
adopt the output classification values in order to control the num-
ber (i.e., likelihood) of droplet generation. Rather than classifying
splash particles directly via the output probabilities of ys, we de-
fine a threshold (∈ [0,1]) and compare the output probability of
forming a splash with this threshold. Intuitively, a lower threshold

Pre-print

Um et al. / Liquid Splash Modeling with Neural Networks

Figure 10: Example frames of wave tank simulations with MLFLIP. The bottom row compares (left) MLFLIP with (right) FLIP side-by-side
in the selected areas of three frames.

Figure 11: Example frames of MLFLIP with the secondary particle
approach. We colored secondary particles magenta. Each row uses
two different numbers of samples (i.e., (top) one and (bottom) four)
when we seed secondary particles per simulation particle.

classifies the particle with a less likely value as a splash such that
more splashes are generated, and vice versa. Figure 12 shows the
example frames of two thresholds of 0.2 and 0.8. Note that here
we adopted the secondary particle approach to assure the under-
lying simulations are comparable. The left side of Figure 15 plots
the graph of the number of splash decisions with respect to the
threshold value. We found that the number of splashes changes
smoothly with respect to the chosen threshold ys. Note that positive
splash decisions do not necessarily lead to the generation of visible
droplets as some of these decisions can be reverted as outlined in
Section 3.2.

One goal of our approach is to make the model robust to a wide
range of spatial scales. Because of its data-driven nature, the re-
liable coverage of the model is often limited to the scale that the
training data represent. Rather than training the model for a certain
scale, we extend the model’s coverage to a wider range using het-
erogeneous training data. To this end, we first generated the data
in three scales: 2.5mm, 5mm, and 1cm in grid spacing (Figure 18).

Figure 12: Different numbers of splashes with two control thresh-
olds: (top) 0.2 and (bottom) 0.8. The difference is highlighted in
green at the top; i.e., the green color represents the additional
splashes that are generated when the lower threshold of 0.2 is used.

Then, we used the grid spacing value of the target resolution as an
input feature such that the model can correctly infer the right out-
put values. Figure 13 shows the results of the extended model for
similar surface positions and compares it with the three models that
were individually trained using each set of data for each scale. We
observed that the extended model produces splashes that are com-
parable to the three individual models. We also experimented with
two intermediate scales, which are not directly represented by the
training data, and found that the model works robustly as shown
in Figure 14 and is able to generalize to a wider range of spatial
scales. The simulations of Figure 13 and 14 all used the secondary
particle approach.

Pre-print

Um et al. / Liquid Splash Modeling with Neural Networks

Figure 13: Example frames of MLFLIP in three spatial scales:
(left) 5mm, (middle) 1cm, and (right) 2cm in grid spacing. The top
row shows the model that is trained using the three scales, whereas
the bottom row shows the three models that are individually trained
for each scale.

Figure 14: Example frames of the three-scale MLFLIP model from
Figure 13 for two intermediate scales: (left) 7.5mm and (right)
1.5cm that are not part of the training data.

Convergence: In order to investigate if the learning process con-
verges, we additionally trained our model with different numbers
of samples and monitored the number of splashes generated using
the model. Here, we also adopted the secondary particle approach
in order to keep the same conditions for inference. The right side of
Figure 15 shows the graph of the number of splash decisions with
respect to the number of training samples. This graph indicates that
the results of our model stabilize for more than ca. 40K training
samples.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
threshold

2.5K

5.0K

7.5K

10.0K

of

 sp
la

sh
 d

ec
is

io
ns

20.0K 40.0K 60.0K 80.0K
of training samples

7.0K

7.5K

8.0K

8.5K

of

 sp
la

sh
 d

ec
is

io
ns

Figure 15: The number of splash decisions with respect to (left) the
threshold and (right) the number of training samples.

Figure 16: Comparisons among the three simulations: (left)
MLFLIP, (middle) FLIP, and (right) FLIP with the high resolution.

5. Three-dimensional Results

This section demonstrates that our model improves the visual fi-
delity of liquid simulations in three examples: a dam, stairs, and a
wave tank. The former two examples represent larger scales than
the wave tank example in length. Hence, we use the 5mm splash
model for both (i.e., dam and stairs) and 1.5mm splash model for
the wave tank. Figure 5 and 8 show the comparisons between FLIP
and MLFLIP for the dam and stairs examples. Our model leads to
a significant increase in violent and detailed splashes for this large
scale flow. Despite the large number of splashes, the plausibility
of the overall flow is preserved. Likewise, our model robustly in-
troduces splashes also in the smaller wave tank example as shown
in Figure 10. The smaller real world size in conjunction with the
smaller velocities leads to fewer splashes for this setup.

Our model requires additional calculations for the generation of
splashes, and consequently, this results in a slightly increased run-
time. In the dam example, the average computation time per simu-
lation step was 0.52s for FLIP, while it was 0.60s for MLFLIP. Both
simulations used the same grid resolution of 160×150×50, where
the grid spacing was 2cm. In the stairs example, the runtime was
0.62s for FLIP and 0.78s for MLFLIP, and their grid resolutions
were both 100×200×100. In the wave tank example, the runtime
was 0.12s for FLIP and 0.14s for MLFLIP. In this case, the grid
resolution was 150×84×10, where the grid spacing was 0.6cm.

We observed that the splashes of our MLFLIP simulation are
very difficult to resolve with regular FLIP simulations even with
high resolutions. For the dam example, Figure 16 shows a visual
comparison of three simulations: FLIP and MLFLIP with the same
resolution and FLIP with a doubled resolution of 320×300×100.
Despite taking nine times longer per simulation step (i.e., 5.43s for
FLIP and 0.60s for MLFLIP), this high resolution simulation fails
to resolve the droplets of our MLFLIP simulation. Our model suc-
cessfully generates splash details from a low resolution simulation,
while the high resolution simulation barely improves the number of
splashes despite its high computational cost.

6. Discussion and Limitations

Our work shares its goal with the well-known secondary particle
approaches. Many of these approaches have proposed physically
inspired heuristics utilizing a combination of measures, such as cur-

Pre-print

Um et al. / Liquid Splash Modeling with Neural Networks

Figure 17: Example frames of SPH simulations for training data
generation. The top row shows four selected initial conditions; the
bottom row shows their snapshots after one second.

vature, velocity, vorticity, or deformation gradient to generate sec-
ondary particles. This naturally requires a manual tuning process to
find a set of proper parameter values for the different components.
In contrast, our model aims for an automated data-driven algorithm
that does not require any tuning but instead learns a probabilistic
model from reference data. However, with enough manual tuning
for each simulation setup, simpler algorithms for secondary parti-
cles could lead to results that are very similar to the output of our
algorithm.

Our model directly works with the regular representation of the
fluid, i.e., the simulation particles, and does not require additional
helper data structures. In this way, our model can be easily two-
way-coupled with a FLIP simulation allowing for interactions of
the splash effects with the bulk liquid. As a consequence, our model
not only yields improved small scale details but can also capture
realistic droplet formation effects as illustrated in Figure 6. This ef-
fect would be very difficult to re-create with previous algorithms.
Interestingly, our model learns this from a set of examples instead
of requiring a hand crafted analytical expression. Thus, our algo-
rithm requires additional work for data generation and training but,
in this way, arrives at a more general framework for the data-driven
modeling of droplet effects.

In our data generation step, we typically place several droplets to
incite splashes and randomize the initial velocities of these droplets
in a pre-defined range. With our current model, this limits the in-
ference capabilities, for instance, when simulations exhibit much
larger velocities than the ones present in the training data. How-
ever, it would be possible to detect such cases in order to trigger
generating additional training data. Apart from the data generation
via numerical simulations, we envision that extracting data from
real world experiments [GKN07] will be an interesting alternative
for future work.

Because our model uses the simulation particles to represent
droplets, the details of generated splashes depend on the particle
resolution of the underlying FLIP simulation. This limits the scale
of droplets to the size of a single simulation particle. Our model
could be extended to a scale variant droplet model by adopting an
adaptive approach [ATW13] and learning the formation of differ-
ent scale droplets from physical parameters. The Ohnesorge num-
ber [Lef11] to characterize the dispersion behavior of liquids would
be a good candidate here.

initial conditions

(a) 2.5mm

(b) 5mm

(c) 1cm

Figure 18: Example frames of FLIP simulations with surface
tension for training data generation for three spatial scales: (a)
2.5mm, (b) 5mm, and (c) 1cm in grid spacing. The initial condi-
tions for each simulation are randomly configured similar to the
three-dimensional examples (Figure 3).

Although the splashes incited by our model transfer momentum
when they merge with the liquid volume, our model currently does
not compute interactions among droplets [JS17]. Finally, we only
experimented with the formation of splash droplets. However, we
envision that our model could be extended to other complex sub-
grid effects such as bubbles, capillary waves, and foam, which are
highly expensive to compute with regular free-surface liquid sim-
ulations. We believe that droplet interactions and additional small-
scale phenomena are important for believable simulations; thus, it
will be very interesting to explore how our NN-based model can
extend to these directions in future work.

7. Conclusions

This paper introduced a new data-driven splash generation model
that utilizes machine learning techniques with NNs. We demon-
strated that our models successfully learn the formation of splashes
at different physical scales from the training data with the training
process. Our model leads to improved splashing liquids and suc-
cessfully learns to recognize the relevant mechanisms for droplet
formation from the pre-computed data. Moreover, we demonstrated
an extension of our model for secondary particles, and we evaluated
the learned models with a variety of complex tests. Overall, our ex-
periments highlight that our approach provides a very good basis
for learning a wide range of realistic physical effects.

Pre-print

Um et al. / Liquid Splash Modeling with Neural Networks

Acknowledgments

This work is supported by the ERC Starting Grant 637014.

References

[AAT13] AKINCI N., AKINCI G., TESCHNER M.: Versatile surface ten-
sion and adhesion for SPH fluids. ACM Trans. Graph. 32, 6 (Nov. 2013),
182:1–182:8. doi:10.1145/2508363.2508395. 2

[ATT12] ANDO R., THUREY N., TSURUNO R.: Preserving fluid sheets
with adaptively sampled anisotropic particles. IEEE Transactions on
Visualization and Computer Graphics 18, 8 (2012), 1202–1214. doi:
10.1109/TVCG.2012.87. 2

[ATW13] ANDO R., THÜREY N., WOJTAN C.: Highly adaptive liquid
simulations on tetrahedral meshes. ACM Trans. Graph. 32, 4 (July 2013),
103:1–103:10. doi:10.1145/2461912.2461982. 10

[BB08] BATTY C., BRIDSON R.: Accurate viscous free surfaces for
buckling, coiling, and rotating liquids. In Proceedings of the 2008 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (Aire-la-
Ville, Switzerland, Switzerland, 2008), SCA ’08, Eurographics Associa-
tion, pp. 219–228. 2

[BB12] BOYD L., BRIDSON R.: MultiFLIP for energetic two-phase fluid
simulation. ACM Trans. Graph. 31, 2 (Apr. 2012), 16:1–16:12. doi:
10.1145/2159516.2159522. 2

[BBB07] BATTY C., BERTAILS F., BRIDSON R.: A fast variational
framework for accurate solid-fluid coupling. ACM Trans. Graph. 26,
3 (July 2007), 100:1–100:7. doi:10.1145/1276377.1276502. 2

[Bis06] BISHOP C. M.: Pattern Recognition and Machine Learning (In-
formation Science and Statistics). Springer-Verlag New York, Inc., Se-
caucus, NJ, USA, 2006. 3, 4

[BK17] BENDER J., KOSCHIER D.: Divergence-free SPH for incom-
pressible and viscous fluids. IEEE Transactions on Visualization and
Computer Graphics 23, 3 (Mar. 2017), 1193–1206. doi:10.1109/
TVCG.2016.2578335. 2

[BPT17] BONEV B., PRANTL L., THUEREY N.: Pre-computed
liquid spaces with generative neural networks and optical flow.
arXiv:1704.07854 (2017). arXiv:1704.07854. 3

[Bri15] BRIDSON R.: Fluid Simulation for Computer Graphics. CRC
Press, 2015. 2

[CT17] CHU M., THUEREY N.: Data-driven synthesis of smoke flows
with CNN-based feature descriptors. ACM Trans. Graph. 36, 4 (July
2017), 69:1–69:14. doi:10.1145/3072959.3073643. 2

[dGBWQ04] DE GENNES P.-G., BROCHARD-WYART F., QUERE D.:
Capillarity and Wetting Phenomena, first ed. Springer-Verlag New York,
2004. 6

[EMF02] ENRIGHT D., MARSCHNER S., FEDKIW R.: Animation and
rendering of complex water surfaces. ACM Trans. Graph. 21, 3 (July
2002), 736–744. doi:10.1145/566654.566645. 2

[FAW∗16] FERSTL F., ANDO R., WOJTAN C., WESTERMANN R.,
THUEREY N.: Narrow band FLIP for liquid simulations. Computer
Graphics Forum 35, 2 (2016), 225–232. 2

[FGG∗17] FU C., GUO Q., GAST T., JIANG C., TERAN J.: A poly-
nomial particle-in-cell method. ACM Trans. Graph. 36, 6 (Nov. 2017),
222:1–222:12. doi:10.1145/3130800.3130878. 2

[GB13] GERSZEWSKI D., BARGTEIL A. W.: Physics-based animation
of large-scale splashing liquids. ACM Trans. Graph. 32, 6 (Nov. 2013),
185:1–185:6. doi:10.1145/2508363.2508430. 1, 2

[GDDM14] GIRSHICK R., DONAHUE J., DARRELL T., MALIK J.: Rich
feature hierarchies for accurate object detection and semantic segmenta-
tion. In Proc. Conference on Computer Vision and Pattern Recognition
(2014), IEEE, pp. 580–587. 2

[GKN07] GARG K., KRISHNAN G., NAYAR S. K.: Material based
splashing of water drops. In Proceedings of the 18th Eurographics Con-
ference on Rendering Techniques (Aire-la-Ville, Switzerland, Switzer-
land, 2007), EGSR’07, Eurographics Association, pp. 171–182. doi:
10.2312/EGWR/EGSR07/171-182. 10

[GSLF05] GUENDELMAN E., SELLE A., LOSASSO F., FEDKIW R.:
Coupling water and smoke to thin deformable and rigid shells. In ACM
SIGGRAPH 2005 Papers (New York, NY, USA, 2005), SIGGRAPH ’05,
ACM, pp. 973–981. doi:10.1145/1186822.1073299. 1

[HEVEDB09] HIJÓN C., ESPAÑOL P., VANDEN-EIJNDEN E.,
DELGADO-BUSCALIONI R.: Mori-zwanzig formalism as a practical
computational tool. Faraday Discussions 144 (Oct. 2009), 301–322.
doi:10.1039/B902479B. 3

[HK05] HONG J.-M., KIM C.-H.: Discontinuous fluids. ACM Trans.
Graph. 24, 3 (July 2005), 915–920. doi:10.1145/1073204.
1073283. 5

[IAAT12] IHMSEN M., AKINCI N., AKINCI G., TESCHNER M.: Uni-
fied spray, foam and air bubbles for particle-based fluids. The Visual
Computer 28, 6-8 (2012), 669–677. 1, 2, 7

[IOS∗14] IHMSEN M., ORTHMANN J., SOLENTHALER B., KOLB A.,
TESCHNER M.: SPH fluids in computer graphics. In Eurographics 2014
- State of the Art Reports (Strasbourg, France, 2014), Eurographics As-
sociation, pp. 21–42. doi:10.2312/egst.20141034. 2

[IS15] IOFFE S., SZEGEDY C.: Batch normalization: Accelerating deep
network training by reducing internal covariate shift. arXiv:1502.03167
(Feb. 2015). arXiv:1502.03167. 6

[JS17] JONES R., SOUTHERN R.: Physically-based droplet interaction.
In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (New York, NY, USA, 2017), SCA ’17, ACM,
pp. 5:1–5:10. doi:10.1145/3099564.3099573. 10

[JSS∗15] JIANG C., SCHROEDER C., SELLE A., TERAN J., STOM-
AKHIN A.: The affine particle-in-cell method. ACM Trans. Graph. 34, 4
(July 2015), 51:1–51:10. doi:10.1145/2766996. 2

[KB14] KINGMA D., BA J.: Adam: A method for stochastic optimiza-
tion. arXiv:1412.6980 [cs] (Dec. 2014). arXiv:1412.6980. 6

[KCC∗06] KIM J., CHA D., CHANG B., KOO B., IHM I.: Practical an-
imation of turbulent splashing water. In Proceedings of the 2006 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (Aire-la-
Ville, Switzerland, Switzerland, 2006), SCA ’06, Eurographics Associa-
tion, pp. 335–344. 1

[KNCA11] KHOSRAVI A., NAHAVANDI S., CREIGHTON D., ATIYA
A. F.: Comprehensive review of neural network-based prediction in-
tervals and new advances. IEEE Transactions on Neural Networks 22, 9
(Sept. 2011), 1341–1356. doi:10.1109/TNN.2011.2162110. 3

[KSH12] KRIZHEVSKY A., SUTSKEVER I., HINTON G. E.: Imagenet
classification with deep convolutional neural networks. In Advances in
Neural Information Processing Systems (2012), NIPS, pp. 1097–1105. 2

[LB12] LOSURE J. B. M., BAER K. M. M.: Liquids in the croods. SIG-
GRAPH Talks (2012). 4

[Lef11] LEFEBVRE A.: Atomization and Sprays. CRC Press, 2011. 10

[LJS∗15] LADICKÝ L., JEONG S., SOLENTHALER B., POLLEFEYS M.,
GROSS M.: Data-driven fluid simulations using regression forests.
ACM Trans. Graph. 34, 6 (Oct. 2015), 199:1–199:9. doi:10.1145/
2816795.2818129. 2

[LTKF08] LOSASSO F., TALTON J., KWATRA N., FEDKIW R.: Two-
way coupled SPH and particle level set fluid simulation. IEEE Trans-
actions on Visualization and Computer Graphics 14, 4 (2008), 797–804.
doi:10.1109/TVCG.2008.37. 2

[MCG03] MÜLLER M., CHARYPAR D., GROSS M.: Particle-based fluid
simulation for interactive applications. In Proceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (Aire-la-
Ville, Switzerland, Switzerland, 2003), SCA ’03, Eurographics Associa-
tion, pp. 154–159. 2

Pre-print

http://dx.doi.org/10.1145/2508363.2508395
http://dx.doi.org/10.1109/TVCG.2012.87
http://dx.doi.org/10.1109/TVCG.2012.87
http://dx.doi.org/10.1145/2461912.2461982
http://dx.doi.org/10.1145/2159516.2159522
http://dx.doi.org/10.1145/2159516.2159522
http://dx.doi.org/10.1145/1276377.1276502
http://dx.doi.org/10.1109/TVCG.2016.2578335
http://dx.doi.org/10.1109/TVCG.2016.2578335
http://arxiv.org/abs/1704.07854
http://dx.doi.org/10.1145/3072959.3073643
http://dx.doi.org/10.1145/566654.566645
http://dx.doi.org/10.1145/3130800.3130878
http://dx.doi.org/10.1145/2508363.2508430
http://dx.doi.org/10.2312/EGWR/EGSR07/171-182
http://dx.doi.org/10.2312/EGWR/EGSR07/171-182
http://dx.doi.org/10.1145/1186822.1073299
http://dx.doi.org/10.1039/B902479B
http://dx.doi.org/10.1145/1073204.1073283
http://dx.doi.org/10.1145/1073204.1073283
http://dx.doi.org/10.2312/egst.20141034
http://arxiv.org/abs/1502.03167
http://dx.doi.org/10.1145/3099564.3099573
http://dx.doi.org/10.1145/2766996
http://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1109/TNN.2011.2162110
http://dx.doi.org/10.1145/2816795.2818129
http://dx.doi.org/10.1145/2816795.2818129
http://dx.doi.org/10.1109/TVCG.2008.37

Um et al. / Liquid Splash Modeling with Neural Networks

[MKS∗13] MNIH V., KAVUKCUOGLU K., SILVER D., GRAVES A.,
ANTONOGLOU I., WIERSTRA D., RIEDMILLER M.: Playing atari with
deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013). 2

[NW94] NIX D. A., WEIGEND A. S.: Estimating the mean and vari-
ance of the target probability distribution. In IEEE International Con-
ference on Neural Networks, 1994. IEEE World Congress on Compu-
tational Intelligence (June 1994), vol. 1, pp. 55–60. doi:10.1109/
ICNN.1994.374138. 3, 6

[PP02] PAPOULIS A., PILLAI S. U.: Probability, Random Variables, and
Stochastic Processes, fourth ed. McGraw Hill, 2002. 4

[SP09] SOLENTHALER B., PAJAROLA R.: Predictive-corrective incom-
pressible SPH. ACM Trans. Graph. 28, 3 (July 2009), 40:1–40:6.
doi:10.1145/1531326.1531346. 2

[ten16] TensorFlow, 2016. URL: http://tensorflow.org/. 6

[TFK∗03] TAKAHASHI T., FUJII H., KUNIMATSU A., HIWADA K.,
SAITO T., TANAKA K., UEKI H.: Realistic animation of fluid with
splash and foam. Computer Graphics Forum 22, 3 (2003), 391–400.
doi:10.1111/1467-8659.00686. 1

[TSSP17] TOMPSON J., SCHLACHTER K., SPRECHMANN P., PERLIN
K.: Accelerating eulerian fluid simulation with convolutional networks.
In Proceedings of Machine Learning Research (July 2017), pp. 3424–
3433. 2

[UBH14] UM K., BAEK S., HAN J.: Advanced hybrid particle-grid
method with sub-grid particle correction. Computer Graphics Forum
33, 7 (Oct. 2014), 209–218. doi:10.1111/cgf.12489. 2

[UHT17] UM K., HU X., THUEREY N.: Perceptual evaluation of liq-
uid simulation methods. ACM Trans. Graph. 36, 4 (July 2017), 143:1–
143:12. doi:10.1145/3072959.3073633. 1

[XFCT18] XIE Y., FRANZ E., CHU M., THUEREY N.: tempoGAN:
A temporally coherent, volumetric gan for super-resolution fluid flow.
arXiv:1801.09710 [cs] (Jan. 2018). arXiv:1801.09710. 2

[YLHQ14] YANG L., LI S., HAO A., QIN H.: Hybrid particle-grid mod-
eling for multi-scale droplet/spray simulation. Computer Graphics Fo-
rum 33, 7 (Oct. 2014), 199–208. doi:10.1111/cgf.12488. 2

[YLX∗15] YANG L., LI S., XIA Q., QIN H., HAO A.: A novel inte-
grated analysis-and-simulation approach for detail enhancement in FLIP
fluid interaction. In Proceedings of the 21st ACM Symposium on Virtual
Reality Software and Technology (New York, NY, USA, 2015), VRST
’15, ACM, pp. 103–112. doi:10.1145/2821592.2821598. 2

[YYX16] YANG C., YANG X., XIAO X.: Data-driven projection method
in fluid simulation. Computer Animation and Virtual Worlds (Jan. 2016),
415–424. doi:10.1002/cav.1695. 2

[ZB05] ZHU Y., BRIDSON R.: Animating sand as a fluid. ACM
Trans. Graph. 24, 3 (July 2005), 965–972. doi:10.1145/1073204.
1073298. 2

Pre-print

http://dx.doi.org/10.1109/ICNN.1994.374138
http://dx.doi.org/10.1109/ICNN.1994.374138
http://dx.doi.org/10.1145/1531326.1531346
http://tensorflow.org/
http://dx.doi.org/10.1111/1467-8659.00686
http://dx.doi.org/10.1111/cgf.12489
http://dx.doi.org/10.1145/3072959.3073633
http://arxiv.org/abs/1801.09710
http://dx.doi.org/10.1111/cgf.12488
http://dx.doi.org/10.1145/2821592.2821598
http://dx.doi.org/10.1002/cav.1695
http://dx.doi.org/10.1145/1073204.1073298
http://dx.doi.org/10.1145/1073204.1073298

