



#### Data-Driven Synthesis of Smoke Flows with CNN-based Feature Descriptors

Mengyu Chu, Nils Thuerey Technical University of Munich

## Introduction



• High resolution smoke generation



- Numerical viscosity
- Expensive calculations

# Introduction



#### • Related work



#### **Data-driven Fluid Simulations using Regression Forests**

Ľubor Ladický<sup>\*†</sup> ETH Zurich SoHyeon Jeong<sup>\*†</sup> Barbara Solent ETH Zurich ETH Zuric

Barbara Solenthaler<sup>†</sup> Marc Pollefeys<sup>†</sup> ETH Zurich ETH Zurich Markus Gross<sup>†</sup> ETH Zurich Disney Research Zurich



#### LazyFluids: Appearance Transfer for Fluid Animations

 $\begin{array}{ccc} Ondřej Jamriška^{1*} & Jakub Fišer^1 & Paul Asente^2 & Jingwan Lu^2 & Eli Shechtman^2 & Daniel Sýkora^1 \\ & {}^1CTU \text{ in Prague, FEE} & {}^2Adobe Research \end{array}$ 



#### Data-driven projection method in fluid simulation

Cheng Yang, Xubo Yang\* and Xiangyun Xiao

School of Software, Shanghai Jiao Tong University, Shanghai, China

# Accelerating Eulerian Fluid Simulation With Convolutional Networks

Jonathan Tompson and Google Inc.

d Kristofer Schlachter, Pablo Sprechmann, Ken Perlin New York University

### **Proposed approach**























• Descriptor learning



• Descriptor learning





Descriptor learning

 Input: pair of fluid data





- Descriptor learning
  - Input: pair of fluid data
  - Output: similarity (scalar)





- Descriptor learning
  - Input: pair of fluid data
  - Output: similarity (scalar)
  - Flow similarity, 1 as similar, -1 as dissimilar





- Descriptor learning
  - Input: pair of fluid data
  - Output: similarity (scalar)
  - Flow similarity, 1 as similar, -1 as dissimilar
  - Labelled input pairs





Data generation





Low resolution (Re-synchronized every 20 steps) High resolution

#### Data generation

Example of input pairs Extracted per frame, 120 frames per patch



#### Data generation

Example of input pairs Extracted per frame, 120 frames per patch



#### Data generation

Example of input pairs Extracted per frame, 120 frames per patch





• Structure





Structure
 Siamese structure





Structure
 Siamese structure



∏]]] ⊙ ♥♥ ⊘

- Structure
   Siamese structure
   Descriptor learning
  - Invariants
    - resolution
    - numerical viscosity





- CNN structure Siamese structure
- Loss function

$$l(x_1, x_2) = \begin{cases} + \|d_w(x_1) - d_w(x_2)\| , & y = 1 \\ - \|d_w(x_1) - d_w(x_2)\| , & y = -1 \end{cases}$$



- CNN structure Siamese structure
- Loss function







- CNN structure Siamese structure
- Loss function





- CNN structure Siamese structure
- Loss function Hinge loss

$$l_e(x_1, x_2) = \begin{cases} \max(0, -a_p + ||d_w(x_1) - d_w(x_2)||), & y = 1\\ \max(0, a_n - ||d_w(x_1) - d_w(x_2)||), & y = -1 \end{cases}$$





- CNN structure Siamese structure igodol
- Loss function Hinge loss ullet

$$l_{e}(x_{1}, x_{2}) = \begin{cases} \max(0, -a_{p} + ||d_{w}(x_{1}) - d_{w}(x_{2})||), & y = 1\\ \max(0, a_{n} - ||d_{w}(x_{1}) - d_{w}(x_{2})||), & y = -1 \end{cases}$$

 $a_n$ 





- CNN structure Siamese structure
- Loss function Hinge loss

$$l_e(x_1, x_2) = \begin{cases} \max(0, -a_p + ||d_w(x_1) - d_w(x_2)||), & y = 1\\ \max(0, a_n - ||d_w(x_1) - d_w(x_2)||), & y = -1 \end{cases}$$





Error minimization problem

 $E = \lambda E_{defo} + E_{adv}$ 



االاا 🥑 🧡 🥑

• Error minimization problem

$$E = \lambda E_{defo} + E_{adv}$$
  
-  $E_{adv} = \sum ||v_i - v_i'||^2$ ,  $v' = adv(v_{t-1})$   
-  $E_{defo} = \sum ||v_i - v_i^*||^2 = \sum ||v_i - \sum A_j v_j||^2$ 

•  $v_i^*$ , based on Laplacian coordinates [Sorkine et al. 2004]





Naive advection

Ours,  $\lambda = 0.02$ 







#### **Patch anticipation**



• Fading in  $\rightarrow$  Anticipation



#### **Patch anticipation**



- Fading in  $\rightarrow$  Anticipation
- Fading out ill-suited ones



#### **Patch anticipation**



- Fading in  $\rightarrow$  Anticipation
- Fading out ill-suited ones



- Fluid repository
  - Space-time data
- Synthesis
  - Reusing the repository
- Lagrangian
  - Stable & reusable
  - Resolution independent













- Forward pass
  - Sampling, matching







- Forward pass
  - Sampling, matching







- Forward pass
  - Sampling, matching







- Forward pass
  - Sampling, matching



- Forward pass
  - Sampling, matching
  - Forward advection
- Backward pass





# Synthesis

- Forward pass
  - Sampling, matching
  - Forward advection
  - Fading out ill-suited
- Backward pass





# Synthesis

- Forward pass
  - Sampling, matching
  - Forward advection
  - Fading out ill-suited
- Backward pass
  - Backward anticipation & advection





# Synthesis



- Forward pass
  - Sampling, matching
  - Forward advection
  - Fading out ill-suited
- Backward pass
  - Backward anticipation & advection

Advantages:

- Calculation: Coarse resolution
- Storage:
  - Descriptors only
  - Output: patch ID, cage vertices' pos, fading weights









#### Rendering:

- Loading patches,
  - fading weights
  - spatial weights



#### **Rendering:**

- Loading patches,
  - fading weights
  - spatial weights
- Normalization



|||\_|| ⊙ ♥ ⊙

#### Rendering:

- Loading patches,
  - fading weights
  - spatial weights
- Normalization





#### **Rendering:**

- Loading patches,
  - fading weights
  - spatial weights
- Normalization
- Independent frames





#### **Evaluation**

||||| ⊙ ♥♥ ⊘

• Recall over rank — the percentage of correctly matched pairs within a given rank







Input



#### Density descriptor only



Density and curl descriptors









Density descriptor only



Density and curl descriptors

#### **More results**

# Horizontal Plume

Resolution: 108x60x60 Avg. no of patches: 388 Avg. time per frame: 5.3s



# **Obstacle Flow**

Resolution: 76x64x64 Avg. no of patches: 362 Avg. time per frame: 3.9s



# **Colliding Jets**

Resolution: 90x60x60 Avg. no of patches: 486 Avg. time per frame: 4.0s



#### Wavelet turbulence



### Conclusion

# Discussions



- Contributions
  - CNN fluid descriptors
  - Patch advection
  - Fluid repository
  - Synthesis

- Limitations
  - Fully divergence-free
    - Velocity synthesis
  - Spatial blending
  - Storage

#### **Future directions**





- More data-driven approaches
- Neural networks

# Thank you!

More information: http://ge.in.tum.de/publications/2017-sig-chu/ Code online: https://github.com/RachelCmy/mantaPatch/

