
Hierarchical Vorticity Skeletons
Sebastian Eberhardt

Technical University of Munich

Ste�en Weissmann

Google Inc.

Ulrich Pinkall

Technical University of Berlin

Nils Thuerey

Technical University of Munich

Input ReconstructionHVS

Figure 1: Example of a �ow decomposition into a hierarchical vorticity skeleton (HVS) with four strength levels and the recon-
struction from the HVS. Our proposed algorithm generates, fully automated, the HVS of any given incompressible velocity
�eld. The HVS, which is su�cient for the complete reconstruction of the �ow, saves up to 99.5% of the stored data.

ABSTRACT
We propose a novel method to extract hierarchies of vortex �la-

ments from given three-dimensional �ow velocity �elds. We call

these collections of �laments Hierarchical Vorticity Skeletons (HVS).

They extract multi-scale information from the input velocity �eld,

which is not possible with any previous �lament extraction ap-

proach. Once computed, these HVSs provide a powerful mechanism

for data compression and a very natural way for modifying �ows.

The data compression rates for all presented examples are above

99%. Employing our skeletons for �ow modi�cation has several

advantages over traditional approaches. Most importantly, they re-

duce the complexity of three-dimensional �elds to one-dimensional

lines and, make complex �uid data more accessible for changing

de�ning features of a �ow. The strongly reduced HVS dataset still

carries the main characteristics of the �ow. Through the hierarchy

we can capture the main features of di�erent scales in the �ow and

by that provide a level of detail control. In contrast to previous

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior speci�c permission

and/or a fee. Request permissions from permissions@acm.org.

SCA ’17, Los Angeles, CA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

978-1-4503-5091-4/17/07. . . $15.00

DOI: 10.1145/3099564.3099569

work, we present a fully automated pipeline to robustly decompose

dense velocities into �laments.

CCS CONCEPTS
• Computing methodologies → Physical simulation;

KEYWORDS
Vortex �laments, scale separation, �ow Guiding, compression

ACM Reference format:
Sebastian Eberhardt, Ste�en Weissmann, Ulrich Pinkall, and Nils Thuerey.

2017. Hierarchical Vorticity Skeletons. In Proceedings of SCA ’17, Los Angeles,
CA, USA, July 28-30, 2017, 11 pages.

DOI: 10.1145/3099564.3099569

1 INTRODUCTION
Despite the widespread use of �uid simulations, they are di�cult

to deal with in practice: they produce large amounts of dense three-

dimensional �ow �elds which are unintuitive to look at, and even

more di�cult to edit. We propose a fundamentally di�erent rep-

resentation of �ow data: a hierarchy of vortex �laments that in-

tuitively captures rotating motions from fast large-scale motions

down to subtle small-scale �uctuations. As such, these hierarchies

represent time-varying skeletons of the �ow data which dramati-

cally reduce the amount of stored data and provide natural handles

to edit and modify the �ow. The �lament hierarchy can be computed

from any incompressible velocity �eld.

SCA ’17, July 28-30, 2017, Los Angeles, CA, USA Eberhardt, S. et al

Vortex �laments are lines of constant, concentrated vorticity.

They can o�er a simpli�ed representation of a �ow �eld from the

real world or from simulations. In our approach, several sets of

�laments, each with its own vorticity strength, are combined to

form a hierarchy. Each of these �lament sets represents a certain

scale in the �ow. In this way, they o�er a simpli�ed representation

of a �uid motion. In simulated data the number of vortices with

di�erent strengths can be very high. This poses a great challenge

when trying to �nd a collection of �laments with a limited number

of di�erent strengths which match a given �ow �eld as close as

possible. Our hierarchy o�ers an automated algorithm to achieve

this result.

While our algorithm is based on the �lament computation method

by Weißmann et al. [2014]. This algorithm has inherent shortcom-

ings in its original form. Most prominently, Weißmann [2014] pro-

poses an empirical choice of the �lament strength. A priori it is

completely unknown which choice of �lament strength will pro-

duce a good representation of the original �ow �eld, or whether

this strength will lead to �laments at all. Fig. 2 shows an example

of how strongly results can change when changing this parameter.

This �gure displays a series of smoke plumes reconstructed from

�laments computed with the original algorithm using a varying

�lament strength. It is apparent that none of the reconstruction

results is close to the simulation (far right panel). Thus, it requires

a signi�cant amount of manual experimentation to achieve good

results with previous work for computing �laments. From this fact

we draw our motivation to develop a novel approach for the robust,

automatic extraction of a set of �laments which represents the

original velocity �eld very closely. The central contributions of our

work are

• an algorithm to decompose a �ow �eld into a hierarchy of

vortex �laments,

• an automated strategy to determine circulation strengths,

• an algorithm to improve the �lament placement compared

to the previous extraction method,

• and a �lament-based paradigm for editing and modifying

�ows.

2 RELATEDWORK
Fluid simulations were made popular for computer animation by

the early works of Foster and Metaxas [1996], and J. Stam [1999].

Recently a new method based on the evolution of the Schrödinger

equation was introduced by Chern et al. [2016] which preserves

vorticity very well. We focus on smoke simulations here, but an

overview of the larger �eld is given, e.g., in the book by R. Brid-

son [2008].

Vortex �laments: A building block for our algorithm is a method

for �lament decomposition of velocity �elds by Weißmann et al.

[2014]. However, in contrast to this algorithm, we build a hierarchy

of �laments, which turns out to be highly useful for robustness

and automation of the decomposition, as well as for editing pur-

poses. It is also possible to directly simulate �uids using �laments as

shown in several previous works [Angelidis and Neyret 2005; Weiß-

mann and Pinkall 2009, 2010]. Vortex �laments have also proven

themselves useful for obstacle interactions [Vines et al. 2014].

Vorticity methods: Vorticity-based methods are a popular ap-

proach within the �eld, as rotating motions are a crucial component

of �ows relevant for graphics. An interesting method from the �eld

of computational physics is the vortex-in-cell method [Stock et al.

2008]. For animations, vortex methods have been used in the form

of vortex-sheets for liquids [Kim et al. 2009], mesh-based methods

[Brochu et al. 2012], or mesh-grid hybrids [Pfa� et al. 2012]. On the

other hand, Golas et al. [2012] proposed an interesting combination

of vortex-particles and grid-based simulations.

Reverting from vorticity back to velocity poses a challenge that

has been addressed in graphics as well. The classic approach is

the Biot Savart law, as done by Angelidis and Neyret [2005] and

Angelidis et al. [2006]. Zhang and Bridson [2014] redistributed the

vorticity of particles to a grid and compute the Biot Savart law

with a fast multipole method. The stream functions we employ for

converting between vorticity and velocity have likewise seen inter-

esting applications for �uid animations [Ando et al. 2015; Bridson

et al. 2007; Elcott et al. 2007].

Model-reduction: This area of research targets �nding lower di-

mensional representations from sets of velocity �elds. A �rst algo-

rithm for model-reduced �uid simulations for computer graphics

was proposed by Treuille et al. [2006]. Similar approaches have tar-

geted accurately representing individual stable �uids simulations

[Kim and Delaney 2013]. The latter algorithm was also speci�cally

used to target compressed �ow representations [Jones et al. 2016].

Later on we will demonstrate that our HVSs, when employed as a

data compression technique, can yield data sets that are smaller by

an order of magnitude.

Simulation upscaling: A di�erent class of algorithms focuses

on increasing the resolution of �ows without altering its coarse

behavior. These procedural turbulence methods have been proposed

in di�erent variations [Kim et al. 2008; Narain et al. 2008; Schechter

and Bridson 2008], but it is worth pointing out that they typically

employ a simple linear up-scaling of the velocities. In addition,

formulations for particle-based methods were developed [Shao

et al. 2015; Yuan et al. 2012]. In contrast to the above methods, our

�lament hierarchy provides a resolution independent description

of the �ow. Upsampling with �lament hierarchies adds detail to

the reconstruction since it is not a linear interpolation but adds

rotational motion for each �lament. These small motions become

more visible with increasing resolution of the reconstruction.

Fluid guiding and control: Ever since �uids were used in the

graphics area, guiding and controlling them has been an important

topic. Angelidis et al. [2006] control �uids during the simulation of

vortex �laments. We, however, propose a method to alter existing

�ow data using �laments. Other popular approaches are the ad-

joint method [McNamara et al. 2004], or force-based controls [Shi

and Yu 2005]. Additionally, works have focused on matching low-

and high-resolution behaviour with optimizations [Nielsen et al.

2009], particle sampling processes [Huang et al. 2011], or by using

appropriate boundary-conditions for liquids [Nielsen and Bridson

2011]. A recent variant additionally proposed a localized modi�ca-

tion of liquids [Pan et al. 2013]. We will demonstrate that our HVS

algorithm o�ers the possibility to modify �ows in a natural way.

Hierarchical Vorticity Skeletons SCA ’17, July 28-30, 2017, Los Angeles, CA, USA

h=2.0 h=10.0 h=18.0 h=26.0 simulationh=34.0 h=42.0

Figure 2: Comparison of several reconstructions employing the original method by Weißmann et al. [2014]. For comparison
we show the input simulation at the same time step δt = 150. The computational domain consists of 192 × 192 × 128 cells.

3 STATE OF THE ART
We base our method on existing algorithms for extracting �laments

from velocity �elds and computing velocity �elds from vorticity.

Both steps are described in the following section and the �lament

extraction is further detailed in Appendix A.

3.1 Filament Extraction and Reconstruction
The starting point of our algorithm is the computation of �laments

from a given velocity ~u0 as described by Weißmann et al. [2014]. For

this step we compute a complex eigenvector Ψ(~u) from which we

can obtain the �laments. During the extraction we always compute

Ψ(~u) as the smallest eigenvalue of a complex energy matrix Eδ . The

inputs to this computation are an incompressible velocity �eld ~u0

and a �lament strength h. The �lament strength is equivalent to the

circulation around a vortex line and is a physical property of any

vortex �lament. The Helmholtz theorems state that the strength of

a vortex �lament is constant along its length, and that �laments

have to be closed loops.

The second part in our pipeline is to convert a set of �laments

F into a velocity �eld stored on a grid. The concentrated vorticity

~ω of a �lament is distributed into a grid using a Gaussian kernel

with size s . As described by Batchelor [1967] we compute a stream

function
~ϕ with a Poisson equation of the form ∇2 ~ϕ = −~ω with

Dirichlet boundary-conditions from the redistributed ~ω. In a �-

nal step, the curl operator applied to the stream function yields a

velocity �eld: ~ur ec = ∇ × ~ϕ. The entire reconstruction operation

e�ectively computes ~ur ec = (∇×)−1~ω.

3.2 Discussion
Based on the previous section we can generate �laments of a given

strength h from a velocity �eld. We can also invert this operation.

The problem remains to choose h in such a way that the �laments

yield a velocity �eld ~ur ec that is as similar to the input velocity

�eld ~u0 as possible. In the following, our goal is to minimize the

kinetic energy ekin of the residual, i.e. the velocities not represented

with the �laments. The kinetic energy is the de�ning quantity of

many �ow �elds, and it is directly connected to the motion of the

�uid. Without our approach, this �nding the right reconstruction

strength h results in a signi�cant amount of trial and error.

As pointed out in the introduction, it is highly unlikely that one

of these trivial reconstructions ful�lls our requirement of being a

close representation of the original velocity, minimizing Eq. 3. To

0

0.5

1

1.5

2

2.5

3

10 14 18 22 26 30 34 38 42

0.39
ε 1

h

Figure 3: The residual kinetic energy ϵ1, Eq. 1, from single
staged reconstructions with strength h, is displayed by blue
bars. The horizontal dashed line marks the kinetic energy
of the input. The lowest residual is reached by h = 18, still
leaving 39% of the energy unrepresented.

demonstrate this fact, Fig. 2 displays a series of reconstructions done

with manually chosen �lament strength values using the original

method [Weißmann et al. 2014]. From the �gure it is apparent thath
has a signi�cant in�uence on the result. At the same time the �gure

shows that none of the reconstructions matches the simulation

(right most panel) very well. Besides the visual quality we evaluate

how much kinetic energy ekin is left in the residual by computing

ϵ1 =
ekin (~u0 − ~u1)

ekin (~u0)
, (1)

with u0 being the input velocity �eld and u1 the reconstructed

velocity.

Fig. 3 shows the energy residuals ϵ1 of the reconstructions in

Fig. 2. A value of 1.0 (horizontal line) indicates where the kinetic

energy of the reconstruction would be zero. These results demon-

strate that arbitrary choices of h can result in velocity �elds with

extremely high energy residual. The reconstruction with h = 10

in Fig. 2 and Fig. 3 illustrates this e�ect. On the other end of the

spectrum we can see that the lowest achievable value is 0.39 which

means that only 61% of the simulations kinetic energy is captured

by the �laments. We will show in Sec. 4.4 that our proposed algo-

rithm recovers more than 90% of the kinetic energy for the same

simulation. Our method also does not require a broad search of

suitable h values, such as the one from Fig. 3.

SCA ’17, July 28-30, 2017, Los Angeles, CA, USA Eberhardt, S. et al

Input simulation Complete HVS

Decomposition Reconstruction

Find filament
strength

Extract
filaments

Optional
deformation

Map HVS
to grid

Velocity recons.,
advection

∫
A
ωz dA

Stage loop

l = 1

l = 2

l = 3

Figure 4: Overview of our decomposition and reconstruction pipeline including the optional deformation step.

4 HIERARCHICAL DECOMPOSITION
Our goal in this work is to obtain a representation of an incompress-

ible input velocity �eld ~u0 expressed as a set of vortex �laments

F which represent the input as accurately as possible. We use the

kinetic energy ekin of the residual velocity

~ur es = ~u0 − ~ur ec (2)

as a minimization quantity

arg min

F

1

2

∫
V
(~u0 − ~u (F))

2dV = arg min

F
ekin,r es (~u0 − ~u (F)) (3)

to �nd the set of �laments F . Here V is the volume for which the

kinetic energy is calculated, ~u0 the input velocity �eld, and ~u (F)
the velocity �eld after our reconstruction from �laments.

While the method described by Weißmann et al. [2014] provides

a set of �laments for a single given �lament strength h and velocity

�eld ~u, the velocity �eld reconstructed from these �laments will

not minimize Eq. 3, as discussed above. Therefore we introduce an

automated algorithm which operates hierarchically with several

�lament extraction cycles, and which automatically determines

suitable values for the �lament strength h.

In addition to condensing a velocity �eld into �laments, we also

strive to obtain meaningful �laments from the velocity. Thus, we

want to extract �laments that correspond to di�erent spatial scales

of the input �ow. Filaments with large h represent stronger, large

scale features, while �laments with low h represent weaker, small

scale features. Thus, we aim to successively extract �laments with

declining h. The key mechanic of our velocity decomposition to

achieve scale separation is a repeated, hierarchical application of

the previously described steps. The obtained collection of �laments

F0...L from all stages is what we consider to be the Hierarchical
Vorticity Skeleton (HVS) of the velocity �eld.

To compute a velocity �eld from a full HVS with �laments of

di�erent strengths, we make use of the fact that the curl is a linear

operator. Hence, we accumulate all vorticity of the �laments in an

HVS into a single vorticity �eld by

~ω =
L∑
l=1

~ωl (4)

with L de�ned as the total number of stages, and then compute its

velocity by a single stream-function solve as described in Sec. 3.1.

~ω

~u

~r

S

F

x

y

s

a) b)

S

Figure 5: a) Circulation around a vortex line. b) Moving area
over which the �ow’s circulation is computed. The blue
shading indicates the Gaussian in the square area to approx-
imate the circulation during reconstruction.

4.1 Filament Strength Calculation
As previously outlined, we require an automatic way of determin-

ing a strength value �tting the provided velocity �eld to realize a

hierarchical decomposition into �laments. In accordance with An-

gelidis and Neyret [2005] we make use of the fact that the �lament

strength h and the circulation Γ(S) around a single vortex line are

equal. The circulation of a velocity �eld ~u around a closed curve

S is the line integral

∮
S~u · dS , illustrated in Fig. 5a). With Stokes-

theorem, the line integral can be transformed into the vorticity �ux

through an area A

Γ(S) =

∮
S
~u · dS =

∫
A
~ω · ~n dA. (5)

The maximum max(Γ(S)) = Γ∗ for a typical feature size in the �ow

domain is a good starting point for the �lament extraction, as it rep-

resents the maximum local circulation occurring in the �ow. Other

measures such as velocity or vorticity can not be used directly,

as the �laments typically represent larger regions of the �ow. We

typically use the Gaussian kernel size s as a starting point (details

will be given in Sec. 4.4). We aim to extract the dominant features

of the given velocity �eld by using the maximum circulation in

each stage. Therefore we search for the maximal circulation Γ∗ by

evaluating the vorticity formulation of Eq. (5) with a sliding win-

dow over the whole domain. The principle is visualized in Fig. 5b).

This mechanism robustly computes a suitable �lament strength for

arbitrary velocity �elds, as we will demonstrate in Sec. 4.4.

Hierarchical Vorticity Skeletons SCA ’17, July 28-30, 2017, Los Angeles, CA, USA

We compute the entries of the energy matrix Eδ for the face

between cell j and k by

Eδjk = −e
−iη̂jk , Eδk j = Ēδjk , E

δ
j j = d, η̂jk =

2πδ

h
~ujk (6)

with grid spacing δ and the number of neighboring cells d of cell

j. The calculation of Eδjk imposes a lower limit on the �lament

strength h. Because η̂jk = 2πδ (u/h) in Eq. 6 is the argument of

a complex number, it has to be in the interval [0, 2π [. Due to the

rotational nature of e−iη̂jk , a η̂jk > 2π will generate the same

�laments as η̂jk − 2π . Therefore, we make sure that large velocities

extracted �rst with the �nal strength value as

h =max (Γ∗,umax) (7)

with h being the �nal strength, umax the highest velocity in the

velocity �eld and Γ∗ the circulation obtained from the sliding box

mechanism explained above. While using a lower h than the one

obtained from Eq. 7 is not destructive to the algorithm, it lowers the

e�ciency of the extraction. The reason behind this is that a strength

that is to small will result in unnecessarily small contribution to the

reconstructed velocity �eld. This leads to a large residual, which

would require more reconstruction stages for reaching the same

�nal residual.

When using the strength search in our hierarchy, we use an

initial �lter size slmax which equals 5% of the domain size and

typically stop the stage iteration after four stages. To account for

the weaker and smaller features, in each stage the size s is gradually

decreased in accordance with the reconstruction strength, i.e., we

apply scaling factor sl = sl−1

√
hl /hl−1

.

4.2 Optimization of the residual energy
As outlined in Sec. 3.1, �laments are computed from the eigenvector

corresponding to the smallest eigenvalue of the energy matrix Eδ .

In practice, the values of the smallest eigenvalues are extremely

small, e.g., we found that the smallest 100 eigenvalues are often

below 0.2% of the largest eigenvalue for our inputs. Therefore, it

is possible that other eigenvalues than the smallest one represent

important features of the input �ow.

To illustrate this more clearly we provide an example in Fig. 6.

In a), the �gure shows the smoke distribution of a rising plume

simulation and the �rst stage �laments extracted from it. The �la-

ments in the lower section are much smaller in diameter than the

plume. This phenomenon can be reproduced with the arti�cial test

in Fig. 6b). The gray area has a pure upwards velocity u = (0, 1, 0)
and the remaining domain has no velocity at all, which generates a

simpli�ed representation of the smoke plume’s lower section. The

circles mark the locations at which the �laments cut through the

drawing plane. Each color marks �laments computed from a di�er-

ent eigenvalue. Black �laments belong to the smallest eigenvalue

Ψ1. Those �laments exhibit the same behavior of intuitively being

too far on the inside, as we expect them to be located at the border

of the gray region where the vorticity is highest. Two other sets of

�laments from di�erent eigenvalues, here Ψ3 and Ψ9, show that it is

possible to �nd �laments which partially match the expected loca-

tion much better than the ones from Ψ1. Those could be combined

and used for an overall improved placement of �laments. However,

as there is no way of determining upfront which eigenvalues will

match a certain �ow pattern best, there is no upfront analysis to

�nd the optimal eigenvalue(s).

Algorithm 1 Filament optimization

1: procedure OptimizeFilaments(Fl , ~ωl−1
)

2: for f ∈ {Fl } do
3: L2,min ← +∞

4: ~c ← (
∑
~x)/np

5: while i < imax do
6: xn ← (~xn − ~c) αf ,i + ~c

7: ~ωr ec ← MapVorticityToGrid(Fl ,h)
8: L2 ← ||~ωl−1

− ~ωr ec | |2
9: if L2 < L2,min then

10: αf [i]← αf ,i

11: i ← i + 1

12: Fl ← ApplyAllAlphas(Fl ,αf)

Therefore we always use Ψ1 for the basic �laments and employ

a posterior approach which scales the �laments to compute the

minimization

arg min

α
| |~ω0 − ~ω

(
f (α (~xn − ~c) + ~c)

)
r ec
| |2 (8)

where ~c is the geometric center of a �lament f , ~xn the points

on a �lament line and α a scaling factor. In practice, we choose

the range of α such that it shrinks or grows �laments no more

than 2δ . In Eq. 8 the di�erence of the input vorticity ~ω0 and the

reconstructed vorticity ~ωr ec,f with the deformed �lament f is used

for the minimization of the L2 error. The optimization is done by

computing the geometric center of each �lament line, see Alg. 1

line 4, and repeatedly expanding the �lament around it with a

varying factor αf ,i , in line 6. This results in a line search algorithm

which computes the minimization factor αf for each �lament f that

minimizes the L2 error. After an αf has been found and stored (line

10) for each �lament all �laments are scaled with their respective

factor before reconstructing the velocity �eld. For all our examples

we used imax = 10 steps in this search. For performance reasons

we use a di�erent optimization criterion than before in Eq. (3). We

will evaluate this choice in more detail below.

After iterating through all �laments, a complete reconstruction

is done with all optimized �laments. The rising smoke example

discussed in detail in Sec. 4.4 demonstrates a clear improvement

when optimizing �lament positions as described above.

4.3 The Complete HVS Algorithm
The previous sections describe all components of our HVS extrac-

tion. In summary, the procedure consists of the steps shown in

Alg. 2 to generate the HVS: The procedure loops through time steps

δt until it reaches the �nal timeT . The algorithm computes for each

stage l the strength h, extracts the �laments Fl , optimizes them and

if desired, applies a deformation to the �laments. In practice we use

four stages, i.e., lmax = 4. Following the extraction, the vorticity

ωl from the �laments is mapped to the grid, and a Poisson solve

computes the stream function
~ϕl . The residual velocity ~ur es then

is computed with the curl operator from the stream function.

SCA ’17, July 28-30, 2017, Los Angeles, CA, USA Eberhardt, S. et al

20

0 20 40

40

0

x

y

Ψ9

Ψ1

Ψ3

a) b)

Figure 6: a) Rendering of the smoke plume simulation with
overlaid �laments. b) Synthetic reproduction of the lower
smoke plume with �laments (circles) of the di�erent eigen-
vectors Ψ1, Ψ3 and Ψ9. Both show �laments smaller than the
plume diameter.

Algorithm 2 Generate the complete HVS

1: procedure ComputeHVS(~usim ,h,bend)

2: for δt in T do
3: ~u1 ← ~usim
4: ~ur ec ← 0

5: for l in [1, lmax] do
6: ~ul ← ~ul−1

− ~ur ec
7: h ← ComputeStrength(~ul)
8: Fl ← ComputeFilaments(~ul ,h)
9: Fl ← OptimizeFilaments(Fl , ~ul−1

)
10: ωl ← MapVorticityToGrid(Fl ,h)
11: ϕl ← SolvePoisson(~ωl)
12: ~ur ec ← ∇ × (ϕl)
13: ∆ekin ← ekin (~ul − ~ur ec)
14: l = l + 1

15: ~ur es ← ~ul − ~ur ec

The remaining ~ur es after the last stage is the residual velocity

of the procedure. The aim of the hierarchical decomposition is to

subsequently extract features of the �ow that are less and less dom-

inant. This essentially is a scale separation with the most dominant

and large coarse features of the �ow being extracted in the early

stages, and the less dominant and �ne structured features in the late

stages. Below we will demonstrate that the �laments can be com-

bined and reconstructed into a velocity �eld with very low residual

kinetic energy ekin . Before, we will investigate the e�ectiveness of

our hierarchical extraction without the optimization step.

4.4 Evaluation
To demonstrate the scale separation capability of our algorithm,

we execute the decomposition into an HVS on a simple example.

It consists of a manually created velocity �eld induced by three

vortex rings with strengths h1 = 20, h2 = 10 and h3 = 5 in a 32
3

grid, as shown in Fig. 7a). We then compute the HVS with three

stages using the original strength values starting with h1 in the �rst

stage, h2 in the second and h3 in the last stage. The result, shown

in Fig. 7b) in blue, successfully recovers each ring, and shows very

h1 = 20

x y

z

h2 = 10

h3 = 5

a)

stage 1

x y

z

stage 2

stage 3

b)

Figure 7: Arti�cial example on a 32
3 computational grid. a)

Input vortex rings with their respective strengths h1,h2,h3.
b) Reconstructed �laments from three-stages, each stage re-
covers the isolated ring of the corresponding strength.

L = 1 L = 2 L = 3 L = 4

Figure 8: Comparison of reconstructions with increasing
number of total stages L. Each stage adds more small scale
detail and realism to the reconstruction.

close agreement with the original rings in gray. After the three

stage decomposition and reconstruction only 3% of the energy is

left in the residual.

Our reconstruction always takes into account the accumulated

velocities from all vortex rings. This leads to a slight over-estimation

of the �lament strengths, and the slightly smaller radii visible in

Fig. 7. However, this example demonstrates that our method is

successful at extracting and separating vortex rings of di�erent

strengths from a single velocity �eld.

After analyzing the synthetic example, we demonstrate our

method on simulation data. We consider the same buoyancy driven,

rising smoke plume, as in Fig. 2. The simulation is carried out on

a 192 × 192 × 128 cells grid and uses slip wall boundaries on the

sides and bottom. The top boundary condition is of convective type

as described by Dimakopoulos et al. [2012]. To visualize the recon-

structions we advect a scalar smoke density in the reconstructed

velocity �elds, which are rendered with Mitsuba [2010] (this is done

for all our examples).

For the example discussed in this section four stages, ekin de-

creases between stages three and four only by 1.54%. This shows

that the algorithm converges to a certain limit. We argue this limit

exists because we project the input velocity ~u0 �eld onto a space

of velocities which can be represented by �laments, but ~u0 is not

completely contained within the �lament space. We use this con-

vergence as a criterion for stopping the algorithm.

We demonstrate the visual improvement of our method through

staged decomposition with Fig. 8. The �gure displays the e�ect of

conducting reconstructions with an increasing number of stages.

From a) to d) the total number of stages L increases from one to

Hierarchical Vorticity Skeletons SCA ’17, July 28-30, 2017, Los Angeles, CA, USA

nf,1 = 10 nf,2 = 98 nf,3 = 241 nf,4 = 370

h1 = 14.8 h2 = 12.7 h3 = 7.1 h4 = 5.9

Figure 9: The complete four stage HVS of a simulation from
a single time step, displaying the descending strength levels
hl and increasing number of �laments nf ,l .

0

5

10

15

10 50 90 130

a)

h
1
,h

2
,h

3
,h

4

dt

0

0.2

0.4

0.6

0.8

1

10 50 90 130

b)

ε 1
,ε

2
,ε

3
,ε

4

dt

Figure 10: a) Strength h for all four stages of all time steps,
b) recovered ekin during each stage of all time steps. Colors:
stage 1 in blue, 2 purple, 3 green, and 4 black.

four, and likewise, with growing L, the �ow details captured by the

reconstruction are increasing. This becomes more evident when

looking directly at the �laments in Fig. 9. The �gures clearly show

an increase in �lament number and small scales with each stage.

Furthermore, the �lament strength h decreases, as expected, for

each stage. Fig. 10a) demonstrates the development of the �lament

strengths through all time steps for the plume simulation. The

smoke plume develops from the inlet over time growing in size

and speed over the course of the simulation. This explains the

increase of all strength levels over time. The consistent decrease

of strengths through our hierarchy is also clearly visible when

looking at the data points of a single time step. Fluctuations seen

in the strength originate from the transient nature of the plume,

with �ow features, e.g. vortices, developing and decaying while the

simulation progresses.

Fig. 10b) very clearly demonstrates the high level of kinetic en-

ergy ekin recovered with our method from the simulation’s velocity

�eld ~u0 by plotting the ratios of energies

ϵl = 1 −
ekin (~u0 −

∑
l (~ul))

ekin (~u0)
. (9)

The subscript 0 denotes the input �eld and subscript l marks stage

l . On average ϵ4 is 90.2% and peaks at 93% in time step 84 after the

fourth stage.

Furthermore the graphs show the robustness of the HVS algo-

rithm: Firstly, the recovered energy converges to a maximum which

lies near the level of stage four. The convergence is observable in

Fig. 10 as the strength and energy lines of stage three to four are

simulation reconstructionHV S

a) c)b)

Figure 11: a) Rising smoke plume simulation, b) complete
HVS (colors correspond with the stages in Fig. 9), c) recon-
struction. Time step δt = 150.

located very close to each other. The result in Fig. 8 con�rms the

convergence as the visual di�erence between panels L = 3 and

L = 4 is very small.

0.8

0.9

1

10 50 90 130

ε 4

dt

Figure 13: Recovered ekin
for the standard algorithm
(dashed blue), and with opti-
mization (black).

Secondly, in the region

between time steps 20 and

50 of Fig. 10, h1 does not

perfectly �t the current �ow

�eld, as the recovered en-

ergy is low relative to the

adjacent time steps. Since

the search size s1 of the �rst

stage is constant through-

out the entire simulation,

it is possible that the size

is not optimal in the �rst

stage during some of the

time steps. This can happen

due to local features, such

as a vortex which exists for

a short range of time steps.

Sinceh is global for each stage, this will have an e�ect on the overall

�lament extraction. Our algorithm compensates for this e�ect with

a higher strength h2 for the next level, extracting the additional

information in stage two. This evens out the recovered energy after

the fourth stage to an almost constant value, see topmost line in

Fig. 10b).

A single, exemplary time step of the reconstruction is displayed

in Fig. 11. The demonstrated high level of recovered kinetic en-

ergy is supported by the very good visual agreement of simulation

and reconstruction. Only minor, mostly noisy features from the

simulation are absent in the reconstruction.

When the optimization, Sec. 4.2, is applied to the reconstruction,

the recovered kinetic energy increases further. The ratio ϵ4 in Eq. 9

after stage four is plotted in Fig. 13 for the standard reconstruction,

and the optimized version. A clear improvement can be seen for the

optimized version. The average recovered ekin increases to 93.48%

and peaks at 96.85% in timestep 95. Note that our optimization

could also be evaluated with velocities instead of the vorticity in

Eq. (8). While this yields slightly better results, the computational

SCA ’17, July 28-30, 2017, Los Angeles, CA, USA Eberhardt, S. et al

δt = 1 δt = 75 δt = 150

Figure 12: Stanford bunny �lled with hot smoke simulated and reconstructed on a 200 × 300 × 200 grid. The panels are at time
steps δt = 1, δt = 75, and δt = 150, the �laments are from the �rst stage. These illustrations display a very good agreement of
the simulation’s dominating features and their reconstruction.

cost increases due to the very high number of required Poisson

solves. Using velocities for the example above recovers 94.9% on

average, with a maximum of 98.3%.

5 APPLICATIONS
In the following section we present �ow decomposition examples

of varying complexity and use them to demonstrate the key aspects

of our decomposition and modi�cation method.

5.1 Compression
Using an HVS to represent a three-dimensional velocity �eld yields

a specialized, yet powerful compression mechanism for �uid mo-

tions. The information which needs to be saved in order to recon-

struct the �ow from an HVS are the (1) �lament lines Fl , (2) �lament

strength hl and (3) the reconstruction radius sl . Smoke density does

not need to be saved as it can be reconstructed by advecting a pas-

sive scalar through the reconstructed velocity �eld at almost no

cost (see advection cost in Tab. 2). Since there is a small residual

velocity which is lost, the compression by HVS is a lossy one.

To demonstrate the generality of the HVS compression we pro-

vide additional examples of reconstructions. All examples are listed

in Tab. 1. We achieved the best compression with the simulation

of a bunny shaped, heated smoke volume, displayed in Fig. 12. It

amounts to less than 0.5% of the size of the input simulation. Besides

the compression ratio, the table lists the number of �laments in all

stages for all decompositions. The increasing number of �laments

with increasing stage l underlines the scale separation achievable

with the HVS decomposition.

We want to emphasize that all listed decompositions save more

than 99% of storage space when comparing the �laments to three-

dimensional velocity �elds. In order to not make the comparisons

look unnecessarily bad, all datasets have been saved in a gzip com-

pressed binary format. With uncompressed raw data the compres-

sion ratio of HVSs would be even larger.

5.2 Flow editing
Vortex �laments also provide a more intuitive way of editing �ows

than directly working with volumetric velocity or density �elds. We

can understand the HVS as a skeleton representation of a �ow. This

skeleton is made up from simple closed lines which could easily

be edited by a user. To demonstrate a global deformation of the

�ow �eld, we use the rising smoke setup introduced in Sec. 3.2.

Table 1: Size and compression information of all examples
in this work. The table demonstrates the scale separation
by increasing �lament numbers through stages l and a very
high compression by saving more than 99% of data in all ex-
amples. All data sets include the complete simulations.

Smoke plume Stanford bunny Buoyancy sphere

l = 1 2981 3943 16884

l = 2 3499 6265 18789

l = 3 28267 68022 99742

l = 4 47534 117087 186336

total 82281 195317 321751

�lament size [MB] 41.7 93.4 125.6

% [MB] of ~u0 0.59 0.49 0.76

number of timesteps 150 150 200

~u0 resolution 192
2 × 128 200

2 × 300 200
3

a) b)

Figure 14: a) Original HVS �laments, b) deformed HVS �la-
ments translated and rotated along the red spline.

Fig. 14 displays the original �laments of the HVS together with the

deformed �laments and the deformation curve in red. To achieve the

deformation, we de�ne a cubic Hermite spline with its starting point

at the base of the plume. The points ~xi of all �laments in the HVS

are easily translated and rotated with this spline deformation. A

direct shearing deformation of the density results in a very stretched

result, especially in the mid-section, as demonstrated in Fig. 15b).

5.3 Resolution Changes
The HVS and vortex �laments in general provide a representation

of a �ow which is independent of the grid on which the simulation

Hierarchical Vorticity Skeletons SCA ’17, July 28-30, 2017, Los Angeles, CA, USA

δt = 100 δt = 120 δt = 150

a)

b)

Figure 15: Time development of smoke being advected
through a) ~ur ec generated by bent �laments showing the
original dynamic behavior of the �ow and b) the simu-
lation’s smoke density shifted along the spline showing
strong stretching and grid artifacts.

a)

c)

δt = 1 δt = 66 δt = 132 δt = 200

b)

Figure 16: a) Simulation on a n = 200
3 grid, b) Filaments of

all stages (HVS), c) reconstruction on a n = 200
3 grid. The

setup is a spherical �ow driven by radial buoyancy. The re-
construction stays very close to the input.

has been carried out. As a consequence, the reconstruction can be

done with an arbitrary resolution of choice, potentially also much

higher ones than the original �ow �eld.

To demonstrate this e�ect we simulate a smoke sphere which

is driven by buoyancy pointing radially outward from the spheres

center. A time series of images displaying the simulation and re-

construction, both conducted on a 200
3

grid, is shown in Fig. 16.

In Fig. 17a) we linearly upscaled a reconstruction from a n = 200
3

grid to n = 400
3
. This version lacks sharpness and detail despite

the increase in resolution. In contrast we provide a result of �l-

aments which have been directly reconstructed on the n = 400
3

grid in Fig. 17b). The �gure shows that the direct high resolution

reconstruction clearly features more small scale details and sharp-

ness than the simple linear upscaled version. This is due to the

fact that small scale motions by the �laments of stages three and

four become more visible in a high resolution grid, an e�ect which

sets the HVS approach further apart from the original single stage

algorithm.

n = 4003 n = 4003

a) b)

Figure 17: a) Reconstruction on a n = 200
3 resolution grid,

linearly upscaled to n = 400
3, b) Reconstruction from the

HVS directly on a n = 400
3 grid. The direct reconstruction

clearly adds detail and quality. Time step δt = 100.

5.4 Implementation and Performance
To compute the smallest eigenvalue and it’s eigenvector of Eδ we

use the PRIMME [Statopoulos and McCombs 2010] eigen-solver

with AGMG [Notay 2014] preconditioning, expanding the complex

entries of Eδ into real-valued matrices [Weißmann et al. 2014]. All

remaining functionality for the extraction and reconstruction of

HVSs is implemented in manta�ow [Thuerey and Pfa� 2015].

As long as no optimization is used, during the generation of �la-

ments the eigenvalue computation with PRIMME is the most time

consuming part. The optimization then adds further substantial

duration to the runtime of the decompositions. The exact addi-

tional time depends linearly on the number of �laments which are

generated. In our examples the optimization using | |~ω | |2 adds a

factor between two and �ve, although we want to point out that

our implementation of this step is not fully optimized. A detailed

breakdown of the average computational times per time step is

given in Tab. 2 for all presented decompositions. The row denoting

the total time sums up the time relevant to the HVS algorithm with

respect to the total runtime. All measurements were collected on a

workstation PC with an Intel Xeon E5-1650 and 32Gb of random

access memory.

During the reconstruction of �laments loaded from disk, the

Poisson solve for the stream function consumes most of the com-

putation time. Since the Poisson solve is the computationally most

expensive part in regular simulations as well, the reconstruction

operates in a similar time frame. The time for advecting smoke

density through a velocity �eld is extremely short, see Tab. 2.

SCA ’17, July 28-30, 2017, Los Angeles, CA, USA Eberhardt, S. et al

Table 2: Average run times for optimized and non-optimized
versions for a single time step of all presented examples.

Smoke plume Stanford bunny Buoyancy sphere

no optimization

advect 0.1s 0% 0.3s 0% 0.2s 0%

hl 0.5s 0.1% 1.3s 0.1% 0.8s 0.2%

Fl → ~ωдr 1.1s 0.3% 3s 0.3% 1.3s 0.2%

Ψl 278s 70.2% 624s 62.2% 373s 69.7%

Fl (Ψl) 6s 1.6% 26.1s 2.6% 7s 1.4%

Φl 105s 26.5% 340s 33.8% 145s 27.1%

total 396s 98.7% 1005s 99.0% 535s 98.6%

| |~ω | |2 optimization (used for all presented examples)

advect 0.1s 0% 0.3s 0% 0.2s 0%

hl 0.5s 0.1% 1.3s 0% 0.8s 0%

Fl → ~ωдr 2.1s 0.2% 5.4s 0.2% 2.7s 0.1%

Ψl 264s 38.1% 651s 24.9% 373s 14.2%

Fl (Ψl) 7s 1.1% 34s 1.3% 10.1s 0.3%

Φl 107s 15.4% 349s 13.3% 148s 5.6%

optimize 313s 45.2% 1572 60.2% 2091s 79.6%

total 694s 99.8% 2614s 99.9% 2626s 99.8%

5.5 Limitations and Discussion
The decomposition of a �ow into an HVS can be viewed as a com-

pression accompanied by a certain loss of information. Small and

weak features are can be removed. We argue that this is to be

weighed against the extremely large compression factors demon-

strated in Sec. 5.1. In some cases, omitting these small scale features

can actually lead to improvements in the form of a less noisy appear-

ance. Additionally, our method works well with smaller resolutions

for the large-scale �laments. We have veri�ed this, but all examples

in this paper use a �xed resolution. Using coarser resolutions could

further reduce extraction time.

We also note the computational cost required for reconstructing

the �nal velocities. However, the reconstruction step could poten-

tially be sped up by using solvers based on Fast Multipole Methods.

Especially for large resolutions, this could lead to signi�cantly re-

duced runtimes.

The �lament extraction operates on a per time step basis, mean-

ing there is no temporal coherence between �laments of di�erent

time steps. This can cause jitter if �laments are played back as a

video. However, we do not consider this an issue as our algorithm

optimizes for a low residual energy, and not for �laments to be

visualized directly.

While it may seem an alternative to use the �uid simulation

itself as a means of compression, we believe that this is not a prac-

tical alternative. Using the �uid simulation itself always requires

complete boundary conditions and force �elds, as well as a poten-

tially complex implementation in order to retrieve the �ow �eld.

For practical applications, e.g., in visual e�ects, complex bound-

ary interactions can require huge triangle meshes, and thus large

amounts of memory. Our method, on the other hand, only requires

three simple Poisson solves to reconstruct a velocity via the stream

function, thus it is independent of a particular choice of solver, and

does not require any information about the boundary conditions

of the simulation that generated the original �ow �elds.

Note that obstacles in the �ow �eld would not be problematic for

our method, as long as the obstacle is represented in the velocities.

I.e., our method does not make any assumptions about the inputs,

and is general in the sense that it will represent arbitrary divergence-

free �ow �elds, no matter what their content is.

6 CONCLUSION
We have presented a novel way to decompose �uid simulation

data into sets of individual vorticity lines of varying strength. Our

approach simultaneously serves as a scale separation, as well as

a compression mechanism for arbitrary divergence-free velocity

�elds. Additionally, we demonstrated that our Hierarchical Vorticity
Skeletons enable animators to modify �ows in an intuitive way. Our

approach makes computing �laments a fully automated process

that eliminates the need for parameter tuning in order to achieve a

good reconstruction.

In the future, our HVS-based compression could potentially be

used for data driven �uid simulations. Since the HVS compression

automatically provides a way of saving huge amounts of storage

space, it could be a starting point to let artists work work with large

collections of �ow data.

ACKNOWLEDGEMENTS
This work was �nancially supported by the European Research

Council (ERC) grant realFlow (StG-2015-637014), and we thank the

Leibniz Super Computing Center (LRZ) in Garching for providing

resources for rendering. We would also like to thank Albert Chern

and Peter Schröder for the matlab version of the �lament extraction.

REFERENCES
Ryoichi Ando, Nils Thuerey, , and Chris Wojtan. 2015. A Stream Function Solver for

Liquid Simulations. Transactions on Graphics (SIGGRAPH) 34 (2) (August 2015), 8.

Alexis Angelidis and Fabrice Neyret. 2005. Simulation of Smoke Based on Vortex

Filament Primitives. In Symposium on Computer Animation (SCA ’05), Ken Anjyo

and Petros Faloutsos (Eds.). ACM-SIGGRAPH/EG, ACM Press, Los Angeles, United

States, 35–48. DOI:https://doi.org/10.1145/1073368.1073380

Alexis Angelidis, Fabrice Neyret, Karan Singh, and Derek Nowrouzezahrai. 2006. A

controllable, fast and stable basis for vortex based smoke simulation. In Proceed-
ings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation.

Eurographics Association, 25–32.

G. K. Batchelor. 1967. An Introduction to Fluid Dynamics. Cambridge University Press.

Robert Bridson. 2008. Fluid Simulation for Computer Graphics. AK Peters/CRC Press.

Robert Bridson, Jim Houriham, and Marcus Nordenstam. 2007. Curl-noise for proce-

dural �uid �ow. ACM Transactions on Graphics (TOG) 26, 3 (2007), 46.

Tyson Brochu, Todd Keeler, and Robert Bridson. 2012. Linear-time smoke animation

with vortex sheet meshes. In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation. Eurographics Association, 87–95.

Albert Chern, Felix Knöppel, Ulrich Pinkall, Peter Schröder, and Ste�en Weißmann.

2016. SchröDinger’s Smoke. ACMTrans. Graph. 35, 4, Article 77 (July 2016), 13 pages.

DOI:https://doi.org/10.1145/2897824.2925868

Yannis Dimakopoulos, George Karapetsas, Nikolaos A. Malamataris, and Evan Mit-

soulis. 2012. The Free (Open) Boundary Condition at in�ow boundaries. Jour-
nal of Non-Newtonian Fluid Mechanics 187âĂŞ188 (2012), 16 – 31. DOI:https:

//doi.org/10.1016/j.jnnfm.2012.09.001

Sharif Elcott, Yiying Tong, Eva Kanso, Peter Schröder, and Mathieu Desbrun. 2007.

Stable, circulation-preserving, simplicial �uids. ACM Transactions on Graphics
(TOG) 26, 1 (2007), 4.

Nick Foster and Dimitri Metaxas. 1996. Realistic Animation of Liquids. Graph. Models
Image Process. 58, 5 (Sept. 1996), 471–483. DOI:https://doi.org/10.1006/gmip.1996.

0039

Abhinav Golas, Rahul Narain, Jason Sewall, Pavel Krajcevski, Pradeep Dubey, and

Ming Lin. 2012. Large-scale �uid simulation using velocity-vorticity domain de-

composition. ACM Transactions on Graphics (TOG) 31, 6 (2012), 148.

Ruoguan Huang, Zeki Melek, and John Keyser. 2011. Preview-based sampling for con-

trolling gaseous simulations. In ACM SIGGRAPH/Eurographics Symp. on Computer
Animation. 177–186.

https://doi.org/10.1145/1073368.1073380
https://doi.org/10.1145/2897824.2925868
https://doi.org/10.1016/j.jnnfm.2012.09.001
https://doi.org/10.1016/j.jnnfm.2012.09.001
https://doi.org/10.1006/gmip.1996.0039
https://doi.org/10.1006/gmip.1996.0039

Hierarchical Vorticity Skeletons SCA ’17, July 28-30, 2017, Los Angeles, CA, USA

Wenzel Jakob. 2010. Mitsuba renderer. (2010). http://www.mitsuba-renderer.org.

Aaron Demby Jones, Pradeep Sen, and Theodore Kim. 2016. Compressing �uid sub-

spaces. In Proc. Symposium on Computer Animation. ACM/Eurographics, 77–84.

Doyub Kim, Oh-young Song, and Hyeong-Seok Ko. 2009. Stretching and wiggling

liquids. In ACM Transactions on Graphics (TOG), Vol. 28. ACM, 120.

Theodore Kim and John Delaney. 2013. Subspace Fluid Re-simulation. ACM Transac-
tions on Graphics 32, 4, Article 62 (July 2013), 9 pages.

Theodore Kim, Nils Thürey, Doug James, and Markus Gross. 2008. Wavelet Turbulence

for Fluid Simulation. ACM Trans. Graph. 27, 3, Article 50 (Aug. 2008), 6 pages. DOI:
https://doi.org/10.1145/1360612.1360649

Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. 2004. Fluid Control

Using the Adjoint Method. ACM Transactions on Graphics 23, 3 (2004), 449–456.

Rahul Narain, Jason Sewall, Mark Carlson, and Ming C. Lin. 2008. Fast animation of

turbulence using energy transport and procedural synthesis. ACM Trans. Graph.
27, Article 166 (December 2008), 8 pages. Issue 5.

Michael B. Nielsen and Robert Bridson. 2011. Guide Shapes for High Resolution

Naturalistic Liquid Simulation. ACM Trans. Graph. 30, 4, Article 83 (July 2011),

8 pages. DOI:https://doi.org/10.1145/2010324.1964978

Michael B. Nielsen, Brian B. Christensen, Nafees Bin Zafar, Doug Roble, and Ken

Museth. 2009. Guiding of Smoke Animations Through Variational Coupling of

Simulations at Di�erent Resolutions. In Proc. Symposium on Computer Animation.

ACM, New York, NY, USA, 217–226. DOI:https://doi.org/10.1145/1599470.1599499

Yvan Notay. 2014. AGMG software and documentation; see
http://homepages.ulb.ac.be/˜ynotay/AGMG.

Zherong Pan, Jin Huang, Yiying Tong, Changxi Zheng, and Hujun Bao. 2013. Interactive

Localized Liquid Motion Editing. ACM Transactions on Graphics (SIGGRAPH Asia
2013) 32, 6 (Nov. 2013).

Tobias Pfa�, Nils Thuerey, and Markus Gross. 2012. Lagrangian vortex sheets for

animating �uids. ACM Transactions on Graphics (TOG) 31, 4 (2012), 112.

H. Schechter and R. Bridson. 2008. Evolving sub-grid turbulence for smoke animation.

In ACM SIGGRAPH/Eurographics Symp. on Computer Animation. 1–7.

Xuqiang Shao, Zhong Zhou, Jinsong Zhang, and Wei Wu. 2015. Realistic and stable

simulation of turbulent details behind objects in smoothed-particle hydrodynamics

�uids. Computer Animation and Virtual Worlds 26, 1 (2015), 79–94. DOI:https:

//doi.org/10.1002/cav.1607

Lin Shi and Yizhou Yu. 2005. Taming Liquids for Rapidly Changing Targets. In Proc.
Symposium on Computer Animation. ACM, New York, NY, USA, 229–236. DOI:
https://doi.org/10.1145/1073368.1073401

Jos Stam. 1999. Stable �uids. In SIGGRAPH 1999. 121–128.

A. Statopoulos and J.R. McCombs. 2010. PRIMME: PReconditioned Iterative Multi-

Method Eigensolver: Methods and Software Description. ACM Trans. Math. Softw.
37, 2 (2010), 21:1–21:30.

Mark J Stock, Werner JA Dahm, and Grétar Tryggvason. 2008. Impact of a vortex ring

on a density interface using a regularized inviscid vortex sheet method. J. Comput.
Phys. 227, 21 (2008), 9021–9043.

Nils Thuerey and Tobias Pfa�. 2015. MantaFlow. (2015). http://manta�ow.com.

Adrien Treuille, Andrew Lewis, and Zoran Popović. 2006. Model reduction for real-time

�uids. ACM Transactions on Graphics 25, 3 (July 2006), 826–834.

Mauricio Vines, Ben Houston, Jochen Lang, and Won-Sook Lee. 2014. Vortical inviscid

�ows with two-way solid-�uid coupling. Visualization and Computer Graphics,
IEEE Transactions on 20, 2 (2014), 303–315.

Ste�en Weißmann and Ulrich Pinkall. 2009. Real-time Interactive Simulation of Smoke

Using Discrete Integrable Vortex Filaments. In Workshop in Virtual Reality Interac-
tions and Physical Simulation V̈RIPHYS(̈2009), Hartmut Prautzsch, Alfred Schmitt,

Jan Bender, and Matthias Teschner (Eds.). The Eurographics Association. DOI:
https://doi.org/10.2312/PE/vriphys/vriphys09/001-010

Ste�en Weißmann and Ulrich Pinkall. 2010. Filament-based Smoke with Vortex Shed-

ding and Variational Reconnection. ACM Trans. Graph. 29, 4, Article 115 (July 2010),

12 pages. DOI:https://doi.org/10.1145/1778765.1778852

Ste�en Weißmann, Ulrich Pinkall, and Peter Schröder. 2014. Smoke Rings from Smoke.

ACM Trans. Graph. 33, 4, Article 140 (July 2014), 8 pages. DOI:https://doi.org/10.

1145/2601097.2601171

Zhi Yuan, Ye Zhao, and Fan Chen. 2012. Incorporating stochastic turbulence in particle-

based �uid simulation. The Visual Computer 28, 5 (2012), 435–444.

Xinxin Zhang and Robert Bridson. 2014. A PPPM Fast Summation Method for Fluids

and Beyond. ACM Trans. Graph. 33, 6, Article 206 (Nov. 2014), 11 pages. DOI:
https://doi.org/10.1145/2661229.2661261

A FILAMENT EXTRACTION
Without loss of generality, we assume a Cartesian grid with uniform

cell spacing δ and staggered velocities for the following description.

We begin the calculation with the complex minimizer Ψ of the

energy

E (Ψ) =
~2

2

| |d∇Ψ| |2 (10)

with ~ = h/2π and d∇Ψ := dΨ − iη̂Ψ (η̂jk = (δ/~)~ujk , see Eq. 11).

The minimizer Ψ can be computed as the eigenvector corresponding

to the smallest eigenvalue of a Laplace-like energy matrix. The

matrix entries Eδ for the cell interface between cells j and k are

calculated from the velocity �eld ~u as

Eδjk = −e
−iη̂jk , Eδk j = Ēδjk , E

δ
j j = d, η̂jk =

δ

~
~ujk (11)

with uc being the velocity component at the face between two

cj

ck
cl

cm

Figure 18: Naming convention for the cell indices at the cen-
ters of four adjacent cells.

grid cells, d the number of neighboring cells and grid spacing δ .

For a zero velocity in 3D, these matrix entries yield the typical

�nite-di�erence Laplace stencil, while larger values yield di�erent

o�-diagonal entries.

The vortex �laments are given by the intersection lines of the

smallest eigenvector Ψ, the iso-surfaces of Re(Ψ) = Im(Ψ) = 0.

These zero curves can be found via a combination of the winding

numbernjklm and a tri-linear interpolation of Ψ, with a line version

of Marching-cubes. The winding number njklm is calculated as

njklm =
1

2π

(
arg

(
Ψk
Ψj

)
+ arg

(
Ψl
Ψk

)
+ arg

(
Ψm
Ψl

)
+ arg

(
Ψj
Ψm

))
(12)

were Ψj,k,l,m are the Ψ values on the centers of four consecutive

cells in the grid, see Fig. 18 and the arд function computes the arc

tangent. The resulting winding number can only be minus one,

zero or one. The zero intersection curves of Ψ only intersect cells

with winding number ±1. The location of these line intersections

is calculated using

0 = (1 − ν) ((1 − u)Ψj + uΨk) + ν ((1 − u)Ψm + uΨl). (13)

Because the winding number in intersecting cells is ±1, we know

that one of the (u,v) coordinate pairs from Eq. (13) lies in (0, 1) ×
(0, 1).

While it would be possible to post-process the extracted line

segments to further reduce the size of the data to be stored to

represent the �laments, we have not done so in this work.

https://doi.org/10.1145/1360612.1360649
https://doi.org/10.1145/2010324.1964978
https://doi.org/10.1145/1599470.1599499
https://doi.org/10.1002/cav.1607
https://doi.org/10.1002/cav.1607
https://doi.org/10.1145/1073368.1073401
https://doi.org/10.2312/PE/vriphys/vriphys09/001-010
https://doi.org/10.1145/1778765.1778852
https://doi.org/10.1145/2601097.2601171
https://doi.org/10.1145/2601097.2601171
https://doi.org/10.1145/2661229.2661261

	Abstract
	1 Introduction
	2 Related Work
	3 State of the art
	3.1 Filament Extraction and Reconstruction
	3.2 Discussion

	4 Hierarchical Decomposition
	4.1 Filament Strength Calculation
	4.2 Optimization of the residual energy
	4.3 The Complete HVS Algorithm
	4.4 Evaluation

	5 Applications
	5.1 Compression
	5.2 Flow editing
	5.3 Resolution Changes
	5.4 Implementation and Performance
	5.5 Limitations and Discussion

	6 Conclusion
	References
	A Filament Extraction

