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Figure 1: Our modular Primal-Dual optimization method can be applied to fluid guiding (left, right) and to simulate liquids with separating
boundary conditions (center).

Abstract

We apply a novel optimization scheme from the image processing and machine learning areas, a fast Primal-Dual method,
to achieve controllable and realistic fluid simulations. While our method is generally applicable to many problems in fluid
simulations, we focus on the two topics of fluid guiding and separating solid-wall boundary conditions. Each problem is posed
as an optimization problem and solved using our method, which contains acceleration schemes tailored to each problem. In
fluid guiding, we are interested in partially guiding fluid motion to exert control while preserving fluid characteristics. With
our method, we achieve explicit control over both large-scale motions and small-scale details which is valuable for many
applications, such as level-of-detail adjustment (after running the coarse simulation), spatially varying guiding strength, domain
modification, and resimulation with different fluid parameters. For the separating solid-wall boundary conditions problem, our
method effectively eliminates unrealistic artifacts of fluid crawling up solid walls and sticking to ceilings, requiring few changes
to existing implementations. We demonstrate the fast convergence of our Primal-Dual method with a variety of test cases for
both model problems.

1. Introduction

Advances in fluid simulation have had a tremendous effect in en-
gineering and graphics. Since fluids play an important role in our
everyday lives, smoke and liquid simulations now routinely appear
as regular elements in feature films, television and commercials.
While engineering applications are primarily concerned with accu-
racy, the focus in graphics lies in simulating realistic behavior that
can be controlled to tell a story. Therefore, it is important to provide
controllable and visually plausible fluid solvers. Visual plausibility
is crucial since people easily recognize unrealistic behavior due to

their daily interactions with a wide range of fluid phenomena, e.g.,
pouring a glass of water, boiling a kettle, or driving past a chimney.

However, it is a recurring challenge to simultaneously achieve
controllable and realistic behavior. Fluids are usually chaotic at
human scales; miniscule perturbations regularly trigger large-scale
behavior. It is almost impossible for artists to add small-scale de-
tails to a low-resolution simulation without changing the large-
scale motion. Even more challenging is to modify the domain or
rerun a simulation with different fluid parameters without affecting
the large-scale motion. These problems can be mitigated by guiding
the velocity within an optimization framework. We realize guiding
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by constraining the velocity at each time step to be arbitrarily close
to the current and the target velocity. At the same time, we en-
sure that the resulting motion is divergence-free, and we allow for
spatially varying guiding parameters. This framework also benefits
animators in the special effects industry who may wish to create fic-
titious but visually plausible fluid motion to increase entertainment
value.

Common fluid solvers typically feature boundary conditions
(BCs) that lead to fluid unnaturally crawling up walls and stick-
ing to ceilings, diminishing its visual plausibility. The culprit is the
solid-wall BC that enforces a normal velocity of zero at obstacle
walls, thus preventing fluids from separating. While it is physically
correct to leave a thin film of fluid on the wall, its thickness in
simulations is on the order of the discretization and usually far
too big for realistic animations. One proposed remedy by Batty
et al. [BBB07] is to integrate inequality constraints into the pres-
sure solve to allow for positive normal velocities at solid walls.
Unfortunately, this greatly increases the complexity of the pres-
sure solve of a fluid solver, and typically requires Quadratic Pro-
gramming solvers. Our goal is to implement flexible separating
BCs, while reusing the popular preconditioned conjugate gradient
method. First, we classify boundary cells into separating and non-
separating cells. We then enforce solid-wall BCs for the velocity at
non-separating cells while ensuring zero divergence.

To guide simulations and realize separating BCs, we take in-
spiration from convex optimization. Gregson et al. [GITH14] al-
ready established a connection between fluid pressure correction
and convex optimization. This connection allows us to impose all
required physical constraints on the velocity for both guiding and
separating BCs via an efficient alternating minimization algorithm
that exploits problem structure, removing the need for a monolithic
and slow framework. We introduce a novel optimization scheme
from the computer vision area, the fast, or first-order Primal-Dual
(PD) method proposed by Pock et al. [PCBC09]. It features an op-
timal convergence rate for non-smooth convex problems. Note that
a whole class of primal-dual methods exists, but we will hereafter
use the abbreviation PD to refer to this particular instance, which
we will focus on due to its fast convergence properties.

Specifically, our contributions are

• the introduction of a modular convex optimization approach for
fluids based on the PD method;
• a general method for handling the difficult problem of fluid guid-

ing that involves spatially varying operators;
• a fast method to approximately invert the linear system for flow

guiding in arbitrary domains; and
• a novel, practical way to handle separating BCs for liquids.

2. Previous Work

Fluid simulation has a long history in computer graphics [KM90].
One of the most widely used methods is the stable fluid solver
[Sta99], for which many extensions have been proposed over the
years, e.g., the grid-particle hybrid FLIP (Fluid Implicit Particle)
method [ZB05], which is particularly popular for liquid simula-
tions. A good overview of these methods is given in Bridson’s
book [Bri08]. A key component of incompressible fluid simulation
is ensuring that the time-evolved velocity is divergence-free (i.e.,

mass-preserving), which is typically implemented via Chorin-like
pressure-projections, e.g. [FF01] or [BBB07] for variational ap-
proaches.

Convex Optimization has become a powerful component of many
computer vision algorithms. Even before, the works of Boyd et
al. [BPC∗11] have laid the foundations for many popular op-
timization algorithms. Closer to computer graphics, Heide et
al. [HRH∗13] have proposed using the PD method to correct the
deficiencies of simple lenses. Recently, Heide et al. [HDN∗16]
have solved the difficult task of choosing the optimal image priors
and optimization algorithms for image processing tasks such as de-
convolution, denoising or inpainting by applying PD as well. Iter-
ated Orthogonal Projection (IOP), the algorithm proposed by Mole-
maker et al. [MCPN08], is a specialized method in the convex op-
timization area requiring all operators to be orthogonal projections.
Approaches such as position-based fluids (PBF) [MM13] also can
be seen as an iterative application of a set of constraint projections.
As the constraints are directly applied to the degrees of freedom,
PBF is more closely related to IOP than PD, which achieves im-
proved convergence by projecting the convex conjugate.

We extend upon the ideas presented by Gregson et al. [GITH14],
where the method Alternating Direction Methods of Multipli-
ers (ADMM) is applied, by introducing a more efficient split-
ting algorithm for flow guiding and BCs. Very recently, Narain et
al. [NOB16] animated deformable objects with an ADMM algo-
rithm combining a fast and robust nonlinear elasticity model with
hard constraints. Our method can be seen as preconditioned ver-
sion of ADMM, and its convergence is accelerated by an improved
update direction for each iteration. O’Connor et al. [OV14] found
ADMM outperforming PD for few iteration counts while using a
restricted version of PD which does not exploit PD’s full potential
of optimal update directions. We demonstrate the advantages of our
approach over both ADMM and IOP in Section 4.1.

Guiding A limitation of fluid simulation for computer graphics is
the issue of control. Simply changing the resolution of a simula-
tion can alter its behavior significantly. A popular class of methods
circumvents this problem by synthesizing smaller scales in a de-
coupled fashion [BHN07, KTJG08, PTSG09]. As a consequence,
the details are easy to fine-tune, but do not tightly integrate with
the base flow, which is left unmodified.

Fluid guiding is a challenging example of an inverse problem
for fluids. Adjoint methods have been used in engineering and
graphics [GP00, MTPS04] but require differentiation of the entire
fluid solver. Guide shapes [NB11] are able to add detail to free
surface flows by applying velocity conditions to high-resolution
simulations distant to the interface but are limited in volumet-
ric contexts. Other approaches aiming for high-level control have
proposed the use of Lagrangian coherent structures [YCZ11] or
sketches [PHT∗13] to give users intuitive controls. As our guiding
technique takes an arbitrary flow field as input to calculate plausi-
ble and tightly coupled detail, such approaches would be a good
complement for our method.

While Gregson et al. [GITH14] also demonstrate preliminary re-
sults for guided flows, their approach employed the fast Fourier
transform for filtering low-frequencies and pressure-projection.
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This is a very efficient approach, but it becomes impractical for
more complex geometries and spatially varying guiding.

A simpler approach to guiding is via control forces [SY05b,
FL04] or velocities [SY05a]. These approaches can result in artifi-
cially viscous flows, as noted by Thuerey et al. [TKRP06], who pro-
posed a multi-scale approach based on control particles that con-
trols low-spatial frequencies. Possibly the most similar approach to
ours is the one by Nielsen et al. [NCZ∗09, NC10] who use a multi-
scale formulation based on low pass filters. They arrive at a mono-
lithic system with four degrees of freedom per cell, requiring a spe-
cialized solver to reduce run time. In contrast, our control scheme
decouples into separate and more easily solved subproblems via
recent developments in non-smooth optimization. Furthermore, for
practical purposes, we introduce an upres method into our work-
flow [KTJG08, YCZ11, HMK11, RLL∗13, HK13] to facilitate the
separation of low-resolution and high-resolution guiding.

Boundary Conditions play a crucial role in fluid simulation, and
as such have received a significant amount of attention. Foster et
al. [FF01] describe how to allow for tangential motions of liquids,
and are the first to note problems with liquid unnaturally stick-
ing to domain boundaries. Batty et al. [BBB07] propose to solve
inequality constraints with Quadratic Programming, while Chen-
tanez et al. [CMF12] observe that they can incorporate these in-
equalities into their multigrid solver. Methods such as the FFT-
based one of R. Henderson [Hen12] are similar in spirit to our
method, as they separate the BCs from the divergence-free projec-
tion step, however, without targeting separating boundaries. Other
approaches realize unilateral incompressibility to allow for sepa-
ration effects [NGL10], [NGCL09], [GB13] but they also require
complex solvers to solve their proposed Quadratic Programming
Problems. We will demonstrate how to solve for separating mo-
tions with a regular conjugate gradient (CG) solver based on our
modular optimization framework.

3. Methodology

In graphics, fluids are typically simulated by solving the incom-
pressible Euler equations, written as

∂u
∂t

+u ·∇u = −∇p+ fext , (1)

∇·u = 0, (2)

where u is the flow velocity, p the pressure, and fext the external
body forces. Simulations commonly proceed via operator splitting
to satisfy both constraints. First, using all but the pressure term in
Eq. (1), an intermediate velocity field is computed. Then a pres-
sure projection is applied to satisfy the divergence-free condition
in Eq. (2). A pressure field that exactly counteracts the divergence
is computed to correct the velocity field. Orthogonality of the curl-
free and divergence-free components ensures that divergence-free
components of the flow are not affected and allows the pressure
projection to be interpreted as an Euclidean projection onto the
space of divergence-free velocity fields.

The splitting approach closely resembles convex optimization
approaches originally developed for imaging inverse problems and
machine learning involving non-smooth or constrained objective
functions. We show how several of these approaches can be adapted
to solve difficult problems in fluids.

Convex Optimization aims to solve problems of the form

minimize
x

h(x), (3)

where h is a convex function that may be non-smooth or even dis-
continuous. If h is the sum of two simpler functions (say h = f +g),
then we have

minimize
x

f (x)+g(x). (4)

A number of recently developed algorithms target this type of prob-
lem by employing an iterative divide-and-conquer approach. These
algorithms are known as proximal methods and are defined in terms
of so-called proximal operators (we use ξ exclusively to denote the
generic argument variable):

prox f ,σ(ξ) := argmin
x

(
f (x)+ σ

2
‖x−ξ‖2

)
. (5)

One such algorithm is the PD method [PCBC09], which solves a
slightly more general problem:

minimize
x

f (Kx)+g(x) (6)

for some linear operator K. PD solves the problem iteratively by
providing a series of variable updates that terminate when z con-
verges to the solution. The combination of x,z and y ensures that z
converges to the optimal value of Eq. 6. The updates are given by

xk+1 := prox f∗,1/σ(x
k +σKyk) (7)

zk+1 := proxg,1/τ(z
k− τK∗xk+1) (8)

yk+1 := zk+1 +θ(zk+1− zk), (9)

where {σ,τ,θ} are parameters that affect convergence, f ∗ and K∗

are the convex conjugates of f and K, respectively. For our prob-
lem, K is simply the identity, which leads to K∗ = KT = I. Note
that if additionally σ,τ,θ = 1, the iterative update scheme reduces
to ADMM. A more appropriate choice (σ,τ,θ 6= 1) leads to op-
timal control over convergence. As for f ∗, it is not necessary to
compute it directly. The proximal operator can be transformed us-
ing Moreau’s identity:

prox f∗,1/σ(ξ) = ξ−σprox f ,σ(ξ/σ). (10)

The variable updates are thus reduced to

xk+1 := xk +σyk−σprox f ,σ(
1
σ

xk +yk) (11)

zk+1 := proxg,1/τ(z
k− τxk+1) (12)

yk+1 := zk+1 +θ(zk+1− zk). (13)

A more in-depth discussion of PD can be found in [CP11].

The advantage of using proximal methods is that the optimiza-
tion can be performed separately for the two objective functions,
allowing difficult optimizations to be split into more manageable
components. Also, depending on the form of f and g, many special
cases can be significantly simplified [BPC∗11] by exploiting their
mathematical structures.

To the best of our knowledge, PD has not yet been applied to
fluid problems, despite its provably optimal convergence properties
for the class of problems of Eq. (6). A pseudocode implementation
of our PD-based optimization method is given in Algorithm (1)
for one time step. Comparing to previous methods, the improved
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convergence is achieved with only a minimal increase in compu-
tational cost. A few more vector additions and multiplications are
necessary, which typically are negligible compared to the cost of
the proximal operators. We demonstrate the convergence of our
method and compare it to other methods in Sections 4.1 and 5.1.
For reference, we briefly review IOP and ADMM in Appendix B.

Convex Optimization of Fluids In fluid simulation, we often en-
counter problems of the form

minimize
x

f (x)

subject to x ∈CDIV,
(14)

where x is the velocity field we seek, and CDIV is the space of
divergence-free velocity fields. f must be a convex function. Prac-
tically, this can be either a quantity we are trying to minimize, or a
hard constraint that must be satisfied (in which case, f would be an
indicator function).

The second constraint requires x to be divergence-free. Remov-
ing the divergent part of the flow can also be viewed as an orthog-
onal projection [Cho68, PB13]. Gregson et al. [GITH14] made the
key observation that the proximal operator for CDIV can be easily
computed via a pressure projection. In other words, we have

proxg,1/τ(ξ) = ΠDIV(ξ), (15)

where ΠDIV denotes a projection onto CDIV with a commonly used
Poisson solver. Hence, formulating a fluid problem this way allows
the optimization algorithm to be easily integrated into a common
fluid solver—we simply replace the call for a pressure projection
subroutine with a call to the PD optimization step outlined in Algo-
rithm (1). We check for convergence using a threshold parameter ε,
and stop the algorithm once the per-iteration change of z falls be-
low this threshold (Algorithm (1), line 12). Note that we define the
pressure projection to include only the calculation of the pressure
values, and a subtraction of the pressure gradient from x, excluding
any optional modifications of the velocity field.

The pressure projection implemented by a CG solver is usually
the most expensive part in regular fluid simulation, and its effect
is magnified in our algorithm due to its iterative nature. However,
this iterative set-up gives us an opportunity to apply an adaptive

Algorithm 1 Our PD-based method for fluid simulation

1: procedure PD(uc, ut , τ, σ, θ)
2: while k < maxIters do
3: // x-update
4: xk+1← xk +σyk−σproxF(σ, 1

σ
xk +yk)

5: // z-update (using adaptive CG accuracy)
6: zk+1←ΠDIV(zk− τxk+1)
7: // y-update
8: yk+1← zk+1 +θ(zk+1− zk)
9: // check stopping criterion

10: rk+1← zk+1− zk

11: ε←√ndimεabs + εrel

∥∥∥zk+1
∥∥∥

12: if
(∥∥∥rk+1

∥∥∥≤ ε

)
then break

13: return z

scheme. Let εCG be the accuracy of the CG solver. We choose its
value starting with a high threshold (e.g., εCG = 10−2) and then
adaptively decrease it over the PD iterations. We decrease εCG as
soon as the per-iteration change of z is close to ε; until εCG reaches
the desired final accuracy (e.g., εCG = 10−5). Using this adaptive
CG scheme greatly accelerates the performance by cutting down
on CG iterations in the beginning of the optimization when the
divergence-free constraint does not need to be strictly enforced.

Algorithm (1) summarizes the general framework of our method
as it applies to fluid simulation. Specific applications call for dif-
ferent definitions of f , which in turn affects how the x-update is
computed. In the following sections, we discuss how to apply this
method to the fluid guiding and the separating BC problem. For
each application, we define the appropriate f and discuss how to
compute its proximal operator.

4. Fluid Guiding

In fluid guiding, the goal is to minimize the change applied to the
current velocity field such that the resulting velocity field follows
the large-scale motions of a given target velocity. The objective
function f is given by

f (x) = ‖G(x−ut)‖2 +‖W (x−uc)‖2 , (16)

where uc is the current velocity field (after advection and before
pressure projection), ut is the target velocity field, x is the guided
velocity field, W is the guiding weights matrix, and G is the Gaus-
sian blur matrix. The first term of this objective function is minimal
for a solution that matches the target velocity when blurred by G,
while the second term penalizes solutions far away from the current
flow field.

In order to keep the application general, both matrices in
our objective function are spatially varying (Nielsen and Chris-
tensen [NC10] also performed fluid guiding with spatially varying
guiding weights, but not with spatially varying blur). W = W (x)
is a diagonal matrix containing spatially varying weights that con-
trol the guiding strength (larger entries denote weaker guiding), and
G = G(β,x) is the Gaussian blur matrix that applies a blur of radius
β only to fluid cells so that we can handle boundaries and obstacles
in our domain.

Our objective function in Eq. (16) is quadratic. That is, it can be
expressed as

f (x) = 1
2 xT Ax+bT x+ c, (17)

where

A = 2(GT G+W 2) (18)

b =−2(GT Gut +W 2uc) (19)

c = uT
t GT Gut +uT

c W 2uc. (20)

Note that W TW =W 2 since W is symmetric.

We can combine f ′(x) = 0 (three equations per cell in 3D) and
the divergence-free constraint (one equation per cell) into a linear
system Lx = d. But since this system is overconstrained, we solve
it in the least-squares sense by considering

LT Lx = LT d, (21)
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where L =
(

A
∇·
)

and d =
(b

0
)
. This quadratic system can be solved

using an iterative solver such as the CG solver. However, this ap-
proach is infeasible since the number of elements in the matrix
grows by O(N), where N is the volume of the simulation domain.
Thus PD is still a good choice even for seemingly simple quadratic
energies. We will see later how this direct CG solver compares to
our algorithm in terms of performance.

Instead, we make use of the quadratic property of f to simplify
its proximal operator to

prox f ,σ(ξ) = (A+σI)−1(σξ−b). (22)

Factoring out uc, we obtain

prox f ,σ(ξ) = uc +M−1(σξ+q), (23)

where

M = 2GT G+2W 2 +σI (24)

q = 2GT G(ut −uc)−σuc. (25)

Computing M−1(σξ+q) for every iteration is slow. Instead, we
precompute q and M−1 since they do not rely on previous iter-
ations. In fact, using the Sherman-Morrison-Woodbury formula,
M−1 can be approximated as

M−1 ≈ (2W 2 +σI)−1−2(2W 2 +σI)−1GT G(2W 2 +σI)−1.
(26)

See Appendix C for derivation details.

Lastly, spatially invariant Gaussian blurs are symmetric, so
GT G = G2. They are also separable, and can be applied indepen-
dently in each dimension. This combined with the matrix inversion
approximation greatly speeds up the x-update. For Gaussian blurs
with spatial variation, we still use a symmetric and hence separable
Gaussian blur (with different blur radii) for each cell, but G itself
is no longer symmetric. However, if the spatial variation is limited
(e.g. different blur radii on the left and right sides of the simulation
domain), we approximate G2 by GT G, since GT G≈G2 for regions
of constant blur. We found our approximation to work well in prac-
tice, and we will show examples using this approximation later.
Our PD guiding scheme is independent of the particular choice and
implementation of the blur kernel. Given a fast implementation for
calculating GT , it would be straight-forward to extend our method
with a full evaluation of GT G.

Additionally, our approach for applying the blur kernel easily
allows for interior boundaries by using a blur radius of zero for
obstacle cells. This is a key difference from guiding scheme based
on the fast Fourier transform [GITH14], which typically require
periodic domains without internal boundaries.

Algorithm (2) summarizes how prox f ,σ(ξ) is approximated.
Note that the two extra parameters W and β in Algorithm (2) as
compared to Algorithm (1) are specific to the guiding application.

Evaluation In this section, we will first demonstrate the efficacy
of our method using 2D examples, followed by more impressive
3D results. To simplify the notation, when the guiding weight is
spatially invariant (say, c everywhere), we will write W = c. And
when the guiding weight is spatially varying (say, c1 and c2 on the
left and right side on the simulation domain, respectively), we will

Algorithm 2 Approximation for prox f ,σ(ξ) in fluid guiding

1: procedure PROXF(σ, ξ, W , β)
2: q = 2GT G(ut −uc)−σuc // can be precomputed
3: γ = (2W 2 +σI)−1 // inverse of diagonal matrix
4: return uc + γ(σξ+q)−2GT Gγ

2(σξ+q)

write W = (c1,c2). Similarly, spatially varying blur radii would be
written as β = (r1,r2).

We first compare our method to two naïve guiding methods,
with a counterclockwise circular velocity field as the target ut , as
shown in Figure 2a. Linear velocity blend computes the new veloc-
ity as a linear combination of the current velocity and the target ve-
locity: unew = ruc +(1− r)ut , where 0≤ r ≤ 1. Detail-preserving
guiding [TKRP06] subtracts the large-scale (i.e., blurred) mo-
tions from the current velocity before adding the target velocity:
unew = uc−Guc +ut . The idea is to create a new velocity with
large-scale motions from ut and small-scale details from uc. Both
methods are followed by a pressure solve to ensure zero divergence.

With linear velocity blend, guiding strength is increased with
smaller r. The method’s main weakness is that small fluid details
are smoothed out with strong guiding, and more details come at the
expense of reduced trajectory control (see Figure 2b).

Detail-preserving blend allows guiding of large-scale motions
towards the target velocity while preserving details. However, the
details are difficult to control and have an unnatural frosted glass
appearance (see Figure 2c).

In contrast, our method has much more flexible motion control
when applied to fluid guiding, with W affecting the large-scale
guiding strength and the blur radius β controlling the small-scale
details. Figure 3 shows how the parameters affect guiding for a 2D
smoke simulation with a circular target velocity. Notice that larger
W values allow for more freedom to deviate from the target, while
larger β values lead to the formation of larger vortices.

We also compare our algorithm to wavelet turbulence [KTJG08],
as shown in Figure 4. Although wavelet turbulence is fast—since it
is purely a postprocessing technique—the resulting vortices do not
couple as tightly and realistically as with our method.

Performance Next, we examine our method in relation to other
proximal methods, namely, ADMM and IOP (see Appendix B for
details). ADMM is fairly straightforward to apply due to its sim-
ilarity to PD. IOP can be interpreted as a fluid-specific version of
the Projection onto Convex Sets (PoCS) algorithm [BB96], which
solves convex feasibility problems (locating an intersection point
of convex sets) rather than the more general problem solved by
ADMM and PD. Applying IOP naïvely alternates between the min-
imizer of f and its closest divergence-free neighbor but does not
yield the divergence-free minimizer of f , as illustrated by the fail-
ure case in Figure 5. In practice, we discovered instances for which
IOP found plausible approximate solutions in a short time, but its
reliability is limited for general guiding applications. As such, we
focus on only comparing our method to ADMM. All performance
measurements were done on PCs with Intel Xeon E5-1650 CPUs.

For fairness of comparison, we experimented with several test
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(a) Target velocity (b) Linear velocity blend (c) Detail-preserving blend

Figure 2: Naïve guided simulations with circular targets.

Figure 3: Guided simulations with circular targets, using our
method with varying W and β for multi-scale motion control.

Figure 4: Upsampling from 642 to 2562 using wavelet turbulence
(top) and using our method (bottom). Our method yields signifi-
cantly more coherent vortices.

Figure 5: A divergent target velocity leads to IOP failure, while
ADMM and PD converge successfully. In this case, even though
the IOP solution is divergence-free, it lands on an isocontour farther
from the center than the PD/ADMM solution, which is the true
minimum.

scenes to deduce as-optimal-as-possible parameter sets for both
ADMM and our method. These parameters, on average, produce
the fastest convergence rates under various guiding weights and
blur radii. The optimal parameters are correlated with the guid-
ing weight; we analyzed their relationship and define the param-
eters in terms of the average guiding weight, W̄ , which is simply
the mean of the diagonal terms of W . For our method, we chose
(τ,σ,θ) = (0.58/W̄ ,2.44/τ,0.3), and for ADMM, ρ = 1.4W̄ 2. Be-
fore comparing their performance, it is important to note that we
apply one of our contributions crucial for performance (the matrix
inverse approximation and the separable Gaussians) to both meth-
ods.

We compare the performance of ADMM and our method for 2D
and 3D problems. The 2D problem is a 2562 simulation guided by
a circular target velocity, similar to the one shown in Figure 3, but
with spatially varying weights and β = 1. Specifically, the guid-
ing weight is fixed at 1 for the right side of the domain, while the
left side takes values from {2,4,8,16}. Figure 6a compares, for the
two methods, the mean number of iterations required to reach con-
vergence. When the spatial variation is low, both methods perform
decently. However, as the spatial variation increases, ADMM takes
much longer to converge.

The 3D problem is a 1203 simulation with an obstacle, similar
to the one in Figure 13, but with the same W and β parameters as
the 2D problem. The performance results are shown in Figure 6b.
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(a) 2D circular example
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(b) 3D obstacle example

Figure 6: Mean number of iterations per time step for guiding.

Guiding weight W
(2,1) (4,1) (8,1) (16,1)

2D
Our method 0.14 0.17 0.26 0.38

ADMM 0.26 0.41 0.76 1.89

3D
Our method 16.6 19.5 26.3 38.4

ADMM 30.4 67.8 176.9 325.6

Table 1: Mean run time (in seconds) per time step for guiding.

Again, our method outperforms ADMM. In fact, the difference in
convergence rates is even more apparent for the 3D example for
large spatial variations. The run times for both ADMM and our
method very closely correlate with the mean iteration counts. For
brevity, the run times are given in Table 1.

In addition to the comparison with ADMM, we also analyze how
our method scales as the resolution increases. In Figure 7a, we run
the guided 3D tornado simulation shown in Figure 1 at five dif-
ferent resolutions and compare the mean run time per time step.
The scaling factor is with respect to the lowest resolution 402×60;
for instance, a scaling factor of 3 corresponds to the resolution
1202× 180. Notice that even at the largest resolution 2002× 300,
each time step takes less than four minutes to complete. However,
since the run times appear to scale exponentially with respect to
resolution, we plot the mean run time per grid cell (see Figure 7b)
to show that the scaling is in fact linear.

1 2 3 4 5

Scaling factor (in 3D)

0

50

100

150

200

Ti
m

e
(s

)

0.4 6.2

32.2

92.5

209.0

(a)

1 2 3 4 5

Scaling factor (in 3D)

0

5

10

15

20

Ti
m

e
(µ

s)

4.6

8.1

12.4

15.1

17.4

(b)

Figure 7: Performance of our method on the 3D tornado example at
various resolutions, including (a) the mean run time per time step,
and (b) the mean run time per time step per grid cell.

β = 5 β = 9

(a) with up-res

β = 5 β = 9

(b) without up-res

Figure 8: Simulations guided by a star-shaped target.

Previously, we mentioned that applying a CG solver also works
for the guiding problem, although its poor performance renders it
infeasible. To test this, we ran a small 1282 example with a circular
target velocity field and found the direct CG solver (see Eq. (4))
approach to be 4000 times slower than our method.

The performance tests above are all done with our generic guid-
ing method, which handles spatially varying weights and blurs.
In the special case with spatially invariant weights, we can ap-
ply a non-iterative method to greatly speed up the simulation. The
method involves defining f (x) in terms of the non-divergent com-
ponents of the input velocities and then finding its minimizer. Since
differentiation commutes with convolution, the result will be auto-
matically divergence-free for spatially invariant weights. Although
this non-iterative method offers potential speed-up, we focus on the
general case of spatially varying operators that requires iterating.

4.1. Guiding Results

To realize interesting guided flows, we found an iterative up-res
workflow that works well in practice. This is in line with previous
work, where a low-resolution input is refined in subsequent stages
to yield a final result [KTJG08, YCZ11, HMK11, RLL∗13, HK13].
Examples of this process are shown in Figure 8a. We start with a
642 simulation guided by a synthetic star-shaped velocity field with
W = 1 and β = 1. Then we run 2562 high-resolution simulations
with various β values. If the same guiding is done without up-res,
that is, if we run the 2562 guided simulation directly as shown in
Figure 8b, then we lose the ability to guide the fluid to desirable
shapes at multiple levels.

We further demonstrate this up-res process for 3D simulations.



8 T. Inglis, M.-L. Eckert, J. Gregson & Nils Thuerey / Primal-Dual Optimization for Fluids

Figure 9 shows a simple plume example. We first run a low-
resolution (502×100) simulation to capture the velocities. Then
a 2002×400 resimulation is performed, guided by the upsampled
velocity field. The blur radii can be kept spatially invariant or spa-
tially varying for different effects. In particularly, increasing the
blur radius introduces more small-scale details. In our spatially
varying example, we use a blur kernel with a sharp transition be-
tween two blur radii to contrast between the two guided regions.
If desired, this obvious seam can be softened via a more gradual
transition between the two blur radii. Note that even though the
simulation uses the approximation GT G = G2, it works quite well
in practice.

Our second example in Figure 10 shows 3D simulations follow-
ing star-shaped input velocities. We use a 503 target velocity as
guide for a 2503 final resolution, with β = 2. Here we make use of
spatially varying weights, with W = 1 on the left side of the do-
main, and W ∈ {1,5,7} on the right. The precomputation time is
negligible compared to the overall run time: around 1.5 seconds
per time step for a 2503 simulation.

Next, we show a tornado simulation. We first run a low-
resolution (402×60) simulation using a cylindrical target velocity
with a small upward component. Once the general shape is fixed,
a 2002×300 resimulation is performed, guided by the upsampled
velocity field. The results in Figure 11 show the effectiveness of
varying β to achieve different levels of turbulence.

Finally, Figure 12 demonstrates an example with obstacle, for
which we upsampled from 403 to 2003 with W = 1 and β = 5.
This high-resolution version captures the input motion, but devel-
ops many interesting small-scale details. Figure 13 shows a similar
simulation with β = 1 and spatially varying weights, where the left
side has W = 1 while the right side has W = 100. The result has
little detail on the left side due to strong guiding from the low-
resolution simulation, whereas the right side behaves like a reg-
ular smoke simulation due to weak guiding. This guided simula-
tion with an obstacle is a case that cannot be handled by previ-
ous Fourier-domain guiding schemes [GITH14] due to the interior
boundaries. Arbitrary boundaries are easily handled by our sepa-
rable approximation to the fluid guiding proximal operator while
remaining highly efficient and easily parallelizable.

5. Separating Solid-Wall BCs

Another application of our PD-based method is the realization of
separating solid-wall BCs. As a motivational example, consider
Figure 14, which shows a 2D breaking dam simulation. When gen-
erated by a common CG pressure solver (top row), the fluid exhibits
the undesirable behavior of sticking to the ceiling and getting stuck
in corners. In contrast, our method (bottom row) features a clean
separation of the fluid from all solids. In many visual effect set-
tings that aim for large-scale fluid flow, the separation is preferable
due to its improved realism.

We achieve this behavior by implementing separating solid-wall
BCs in the form of an inequality constraint u · n̂≥ 0 (with u and
n̂ denoting velocity and obstacle normal) without transforming the
linear system of equations for the pressure solve into a more com-
plicated problem. As outlined in Section 3, we split the problem
into two simpler objective functions, with f controlling the BCs

and g enforcing zero divergence (see Eq. (15)). With this setup, a
regular CG solver is employed to compute g, while f is handled by
an efficient projection and classification scheme, as described next.

Velocity BCs The proximal operator prox f ,σ(ξ) ensures that ve-
locities at obstacle surfaces never point into the solid (i.e., negative
normal velocity components at fluid-solid faces). Separating ve-
locities (i.e., positive normal components), on the other hand, are
allowed and thus left alone. We assume an obstacle is static and has
a velocity of zero at its surface. BCs that form a linear constraint
on the velocity field, like requiring velocity components to be zero,
can be expressed as orthogonal projections [MCPN08]. Therefore,
prox f ,σ(ξ) reduces to a projection onto the space of velocities with-
out flows into obstacles. In its simplest form, this proximal oper-
ator sets normal velocity components to zero wherever u · n̂ < 0.
The pressure solver, on the other hand, is unaware of any obstacle
boundaries and uses free surface Dirichlet BCs at liquid surfaces.
Later, we present an accelerated version that makes the pressure
solver partially aware of obstacles. For now, all obstacles are fully
handled by f .

Although this simple velocity projection works for exact solu-
tions, it breaks down when solving up to finite accuracy. The pres-
sure solver can accumulate small positive velocities during itera-
tions of our optimization procedure, leading to small separating
motions where the liquid should only be standing still or moving
tangentially. This can happen for hydrostatic cases, for instance,
where the final velocity at the wall should be exactly zero. We ad-
dress this problem by introducing a classification step with hystere-
sis.

We assume by default that our cells are separating boundary cells
with a Dirichlet p = 0 condition, and then create a list of cells that
are explicitly not allowed to separate. For the classification, in each
iteration of our algorithm, we accumulate all motions into a wall
returned by the CG solver for a cell i and store it in mi. This al-
lows for a solid cell classification with temporal coherence. A non-
separating cell only becomes separating if the magnitude of its ve-
locity component away from the wall ui · n̂i exceeds the magnitude
of mi. Additionally, a change in the separation classification is only
made if the absolute value of ui · n̂i is greater than the accuracy of
the CG solver εCG. Otherwise, the cell keeps its previous state. The
last two steps effectively implement a hysteresis that prevents cells
from changing status due to numerical errors, which is crucial for a
reliable convergence of our method.

Figure 15 illustrates this process. It shows two possible fluid be-
haviors at the face of a solid: non-separating (left) and separating
liquid (right). Both velocities fulfill |ui · n̂i|> εCG (black bars), and
can thus potentially change state. On the left of Figure 15, the cell
face has a large accumulated value mi (red arrow). Assuming that
the face velocity ui · n̂i (green arrow) exceeds the threshold εCG,
the cell is classified as non-separating, and ui · n̂i is later on set to
zero despite its positive value. In contrast, a positive normal ve-
locity component greater than |mi| indicates that fluid is currently
separating from the solid cell. The liquid boundary is treated as a
free surface in this case, and its velocity is left unmodified.

Algorithm Summary Algorithm (3) shows pseudocode for the
classification and the proximal operator for separating BCs. The
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Figure 9: A 502×100 simple plume simulation (left) is upsampled to 2002×400 with constant blur (middle, β = 5) and spatially varying
blur (right, β = (1,10)).

Figure 10: A 2503 star-shaped guided simulation upsampled from a 503 guided simulation with spatially varying weights.

Figure 11: A 2002×300 guided simulation upsampled from a 402×60 guided simulation with varying β.
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Figure 12: A 403 simulation with an obstacle (inset) is upsampled to 2003 with W = 1 and β = 5.

Figure 13: Guided obstacle scene with spatially varying weights.

classification proceeds as outlined above, updating the list of non-
separating cells Snsep based on the velocity field u. The normal ve-
locity components at non-separating cell faces are set to zero in the
proximal operator prox f ,σ(ξ). The variable ξ is a generic argument
variable being a combination of multiple velocity fields, including
dual variables.

The PD algorithm solving for separating BCs follows the generic
PD implementation outlined in Algorithm (1). We exchange the

Figure 14: 200× 140 Breaking Dam, Non-Separating (top) versus
Separating BCs (bottom) at t = 75,112,150.

Figure 15: Classification of solid cells into non-separating (left) and
separating (right). The green and red arrows denote ui · n̂i and mi
respectively, while the black bars indicate εCG.

generic proximal operator by our BC specific projection from Al-
gorithm (3). Additionally, we call the classification function with z
after line 6 of Algorithm (1).

We adopt two smaller modifications from previous work that
improve convergence. The first is a Krylov method from IOP
[MCPN08], which we identified to work nicely within our BC
solver (the full algorithm can be found in Appendix B). Addition-
ally, we use the adaptive parameter scheme [CP11] for dynamic
values of τ, σ and θ. The parameter updates are the following af-
ter choosing a suitable value for γ, τ

0 and σ
0 (we use γ = 200,

τ
0 = 150, σ

0 = 1/τ
0): θ

k ← 1/
√

1+2τk−1γ, τ
k ← τ

k−1
θ

k, and
σ

k← σ
k−1/θ

k.
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Algorithm 3 Classification and prox f ,σ for BCs

1: procedure CLASSIFY(u, m, εCG, Snsep)
2: for all boundary faces i, with |ui · n̂i| ≥ εCG do
3: if ui · n̂i ≤ 0 then
4: Snsep← Snsep∪{i} // non-separating
5: mi← mi +ui · n̂i
6: else if ( |ui · n̂i| ≥ |mi| ) then
7: Snsep← Snsep \{i} // make separating
8: mi← 0
9: procedure PROXF(ξ, Snsep)

10: // velocity projection for marked cells
11: for all i ∈ Snsep do ξi← ξi− (ξi · n̂)n̂
12: return ξ

Both methods reduce the overall run time, but are specific exten-
sions for proximal operators given by orthogonal projections. As
such, we use the extensions for all BC problems, but not for our
guided simulations.

Accelerated BC Solver So far, the solid-wall BC handling is
fully done in f while g simply ensures incompressibility. This
is in line with the standard splitting approach in other methods
[MCPN08,Hen12], and we demonstrate in the next section that our
optimization scheme very efficiently calculates the solution in this
case.

However, in practice, the total number of iterations can be re-
duced significantly by letting the pressure solver take care of all
BCs that it is capable of enforcing correctly: retaining the input
normal velocity components at fluid-solid faces by enforcing a zero
pressure gradient at walls. For this version of our solver, we update
the BCs of the pressure solver in g in accordance with our classifi-
cation: Neumann BCs for non-separating cells, and Dirichlet (free
surface) BCs for separating ones. This effectively locks the clas-
sification after few iterations, leading to a stable solution within
the next iteration. However, it prevents non-separating cells from
changing their state back to separating ones. Thus, the accelerated
BC solver does not yield the same result as the standard version, but
achieves much higher performance while featuring only negligible
differences. A summary of our accelerated solver with pseudo-code
can be found in Appendix D.

5.1. Evaluation and Results

We now evaluate the performance of our BC solver, and demon-
strate the importance of allowing liquid to separate from walls in
high-resolution simulations.† To validate that our PD solver yields
the correct results, we use our method to calculate regular non-
separating boundaries for a 200× 140 breaking dam setup, which
can also be handled by a regular CG solver. In this case, we can
achieve arbitrary accuracies depending on the choice of parameters
for CG and our scheme. These experiments show that our method
converges to the correct solution.

† Thresholds for our algorithm are set to εCG = 10−5 (as liquids are more
sensitive to mass loss) and εabs = εrel = 10−3.

For separating boundaries, we can no longer compare to a regu-
lar CG solver. Instead, we evaluate the performance of our method
against methods from previous convex optimization work: IOP and
ADMM. IOP has been applied to enforce non-divergence and com-
plex BCs simultaneously in [CMF12]. For the standard BC solver
simulating a 2D breaking dam, our method converges six times
faster than ADMM, and more than twice as fast as IOP, as shown
in Figure 16c. Figure 16a and Figure 16b show the mean number of
IOP/ADMM/PD and CG iterations. Our method generally requires
a lower number of PD iterations compared to ADMM and IOP. Due
to our adaptive CG accuracy scheme, the number of PD iterations
is increased while the total amount of CG iterations is decreased.
Both numbers influence the performance, but the total number of
CG iterations more strongly influences runtime as shown in Fig-
ure 16c. Similar behavior is observed for a 3D complex breaking
dam simulation (see Figure 18 for a visual example). The run time
measurements are shown in Figure 17 where ADMM is omitted
due to its impractical run time. The accelerated solver speeds up all
methods significantly. In this case, our PD-based method performs
on par with IOP, which we attribute to the low number of itera-
tions required in this case; the higher-order convergence of the PD
method does not develop its full potential in such a setting.

Figure 18 highlights that regular non-separating walls often yield
undesirable results in practical settings. We simulate a complex 3D
scene with liquid splashing onto multiple obstacles with a resolu-
tion of 256×230×256. A regular solver leads to large amounts of
liquid crawling along ceilings, and sticking to walls, while our sep-
arating boundaries give a much more believable large scale look,
with liquid naturally separating from obstacle boundaries. For this
setting, our accelerated BC solver requires 38.7s on average per
frame. Comparing the overall time to generate this result (includ-
ing surface generation) to a version with a regular pressure solver,
our method increases run time by only 12%, with the added benefit
of enabling separating BCs. This is a very practical result, consid-
ering that it was achieved based on a regular CG solver, without
the need for specialized methods, such as Linear Complementarity
Problems solvers [GB13]. Although solving LCPs has been stud-
ied in detail, these methods still fall into complexity classes that
make large scale solves infeasible. An indication for this can be
found in [GB13], where solving times of ca. 25s per LCP solve
were given for a 1003 example.

6. Discussion and Conclusion

We presented a general framework for incorporating the Primal-
Dual method into fluid simulation, and demonstrated two applica-
tions: fluid guiding and separating BCs. We proposed a generic ver-
sion of the Primal-Dual based optimization scheme with fast con-
vergence for general proximal operator subproblems. In addition,
we discussed several extensions that are particularly well-suited for
optimizations with orthogonal projections as subproblems. Addi-
tionally, we demonstrated a novel formulation for the flow guiding
problem, and an efficient approach for simulating liquids with sep-
arating BCs.

Limitations One limitation of our fluid guiding method is a lack
of shape controls. Unlike smoke, liquids can require shape con-
straints to achieve a desired outline or shape. We have focused on
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(a) IOP/ADMM/PD Iter
(b) Sum of CG Iter

(c) Runtime in seconds

Figure 16: 2D breaking dam, mean quantities per time step.

Figure 17: 3D complex breaking dam, mean run time per time step.

velocity guiding in this work, so controlling the shape of liquids
will require extensions that take the position of the liquid’s surface
into account. Such constraints should integrate well into our over-
all pipeline, and we plan to investigate this topic as future work.
Another area of improvement is bridging the gap between our op-
timization framework and an artist’s workflow. Although we gave
examples of different target velocities used for guiding, there is still
a lot more to explore in terms of how to achieve various artistic vi-
sual effects intuitively. A limitation of our accelerated separating
BC solver is that it can lead to slight deviations from the accu-
rate, standard solution. We have not encountered visual artifacts
resulting from these inaccuracies, and we believe that the improved
performance typically outweighs these slight deviations. The spe-
cialized multigrid solvers [CMF12] could possibly outperform our
BC solver. We believe that the attractiveness of our BC solver stems
from its modularity and fast convergence. Adding support for wall
separating BCs given an existing pressure solver requires little code
with our method.

Outlook Our method is a very generic approach applicable to a
large range of problems in fluid simulation. The price of this gener-
ality is that it may not be as fast as specialized methods tailored to
specific problems. However, the modularity of our approach makes
it easy to incorporate into existing implementations. As such, it has

the potential to add powerful functionality, such as high-level flow
guiding, into existing solvers without the need for complicated ex-
tensions.

Furthermore, there is a large number of interesting avenues to
be explored with high-level optimizations of fluids flows. For ex-
ample, we are interested in exploring shape optimization to adapt
the geometry of obstacles with respect to their flow properties, and
partial resimulations of regions in a flow.
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Appendix A: Notation

For reference we provide a quick description of our notation. More detailed
descriptions can be found in the body of the paper.

• f : first objective function in PD (application-dependent)
• g: second objective function in PD for incompressibility
• ξ: general input velocity field for several algorithms, a combination of

several velocity fields, possibly dual variables
• x, z, y: variables with iterative updates in PD
• τ, σ, θ: PD parameters controlling convergence rate
• α, β, G, q, M, ut , uc, L: variables specific to fluid guiding
• u: fluid velocity for the BC problem
• n̂: normal of a solid cell
• m: memory velocity field
• Snsep: set of non-separating fluid-solid faces

Appendix B: ADMM and IOP

Iterated Orthogonal Projection (IOP) [MCPN08]—a method similar to von
Neumann’s alternating projections [BPC∗11]—requires both subproblems
to be expressed as orthogonal projections

xk+1 = Π f (zk) (27)

zk+1 = Πg(xk+1). (28)

The Krylov method can improve its convergence rate:
1: procedure KRYLOV(zk , zk−1, k, εk−1)
2: εk = error(zk)

3: if k > 1 then
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Figure 18: A 256×230×256 scene with complex obstacles. Regular, non- BCs lead to the liquid sticking to walls (left), while our solver
allows for naturally separating liquids (right).

4: zεdif = zk− zk−1 // correction vector
5: εratio = εk/εk−1

6: zεtmp = zk− εratiozεdif

7: εεtmp = error(zεtmp )

8: if ε
εtmp < εk then zk = zεtmp

The Alternating Direction Method of Multipliers (ADMM) [BPC∗11,
GOSB14] is a proximal method more general than IOP given by

xk+1 := prox f ,ρ(z
k−yk) (29)

zk+1 := proxg,ρ(x
k+1 +yk) (30)

yk+1 := yk +xk+1− zk+1. (31)

Instead of the three parameters {τ,σ,θ} in PD that control convergence
rate, ADMM only has one such parameter, ρ.

Appendix C: Inverse Matrix Approximation for Fluid Guiding

Here we present the details for deriving the inverse matrix approximation
in Eq. (26).

We want to invert a matrix of the form M = A + (2GT G), where
A = 2W 2 +σI contains the large diagonal terms and 2GT G the small off-
diagonal terms. By the Sherman-Morrison-Woodbury Formula,

M−1 = A−1−2A−1GT (I +2GA−1GT )GA−1. (32)

Now since G and A−1 both contains small value entries, 2GA−1GT is ap-
proximately zero. Hence

M−1 ≈ A−1−2A−1GT GA−1 (33)

= (2W 2 +σI)−1−2(2W 2 +σI)−1GT G(2W 2 +σI)−1. (34)

Note that the calculation of A−1 is trivial since A = 2W 2 +σI is diagonal.

Appendix D: Accelerated BC Solver

Below, we summarize our accelerated solver for separating solid-wall BCs.
Instead of fully handling the solid-wall BCs in a proximal operator outside
of the pressure projection, our accelerated solver employs the commonly
used Neumann BCs during the pressure projection depending on the current
classification of solid-wall cells. First, all solid wall cells are classified as
separating (i.e. Dirichlet BCs for the pressure solver). Depending on the
initial velocity field, solid wall cells with u · n̂ < 0 are classified as non-
separating cells (Neumann BCs for the pressure solver). We then iteratively

set the velocity BCs, apply a regular CG pressure solver and re-classify
solid cells with the CLASSIFY procedure.

In our standard BC solver (Section 5), a memory field m is used to de-
termine whether a cell is allowed to change its state to separating. In the
accelerated case, m is not used, instead the pressure solver enforces solid
wall BCs for non-separating cells. This prevents the normal velocity from
becoming positive, and from changing its state back to separating. In the
following procedure, m is replaced with the placeholder "·".
1: procedure SOLVEPRESSUREWITHSEPARATINGBCS(u, ε)
2: Snsep = 0 // no cell is classified as non-separating yet
3: CLASSIFY(u, ·, ε, Snsep)
4: while Snsep did not change in last call of CLASSIFY do
5: PROXFBC(u, Snsep)
6: ΠDIV(u, ε)
7: CLASSIFY(u, ·, ε, Snsep)
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