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Abstract

This thesis investigates methods to simulate the interaction between air and water.
Ihmsen et al. [Ihm+12] proposed a secondary particle approach for Smoothed Particle
Hydrodynamics (SPH). Based on their model we present a new adaptation for Fluid-
Implicit-Particle (FLIP), which is a popular hybrid particle-grid method for fluid
simulations in computer graphics that has been suffering from the difficulty in capturing
small-scale effects coming from such interactions. With our new method it is possible
to create spray, foam and air bubbles that significantly augment the visual realism.

It is realized as a post-processing step that does not influence the underlying fluid
simulation. This means simulating the main water volume can be separated from
detail effects and thus supports the animators natural workflow, in first developing a
coarse concept and enhancing it later without the necessity of readjusting the basis.
Furthermore, this thesis contains a detailed discussion of the many user-defined
constants that allow very precise control over the simulation result and leave room for
artistic freedom.

Finally, we compare both methods in regard to their visual impression and evaluate
their performance. We demonstrate that our model can efficiently handle millions of
particles and is even slightly faster than our implementation of the method from Ihmsen
et al. [Ihm+12]. Our presented approach uses dissolving foam structures to enhances
small surface waves especially well. Without the secondary refinement these are easily
overlooked. The so-called surf zone where waves become unstable and start to break
receive spray particles that can compensate the insufficient droplet creation from FLIP.
In addition, air bubbles which are most beneficial for setups with low camera angles
are realistically created by impacts and near obstacles.
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1 Introduction

There are two fundamentally different approaches to simulate fluids, the Eulerian and
Lagrangian approach. The former is a grid-based method where the fluid is described
from stationary points in space. Quantities like density or pressure are saved and
computed for each grid cell. The latter is a particle-based method where particles that
are advected along with the fluid carry all the information. Several possible variations
and hybrid methods exist, but a typical one is FLIP, which utilizes particles solely for
advection while everything else is computed on grids.

Although they have different strengths and weaknesses, all the mentioned methods,
followed by appropriate rendering, are able to capture the characteristic appearance
of water: Incidence of light in steep angles leads to refraction caused by the different
densities of water and air. Low angles on the other hand result in reflection of light,
letting water look similar to a mirror. With its low viscosity water moves in all scales:
from large waves spreading over the entire surface to droplets smaller than a fingernail.
With all these effects combined it is possible to simulate rather calm waters like lakes
realistically, and even more turbulent small-scale simulations look convincing for
example pouring a glass of water.

But when it comes to large, highly turbulent waters such as oceans, basic fluid
simulations are stretched to their limits. The reason for this is the missing interaction
between water and air. While waves in a glass of water can be seen as small deviations
in the height of the surface, oceans create breaking waves. That means water is sprayed
in the air to generate mist, and air is dragged inside the water in the form of different
sized air bubbles and foam on the water surface. To create these details mostly multi-
scale methods that rely on adaptively changing the resolution or hybrid methods that
use other simulation techniques in detail areas were employed in the last years. The
problem with these approaches is that they are often relatively complicated and cannot
capture all the phenomena.

But to create visually convincing larger scaled fluids air bubbles, spray and foam
are essential and different methods were developed for instance in the movie industry
(see [FGP07] and [Gei+06]). However, these papers do not describe in detail which
regions inside the fluid are enhanced or how the secondary effects move along with the
water. This means it is difficult to recreate their results and add secondary simulations
to fluid solvers. Currently, only little other research on secondary effects exists as this
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1 Introduction

topic became relevant just recently, caused by faster hardware that can now handle
large bodies of water. One of the most impactful papers was the pioneering work from
Ihmsen et al. [Ihm+12] that presented secondary effects for SPH fluids. Yang et al.
[Yan+15] used a depth-image-based analysis to determine detail regions for FLIP, that
are enhanced with secondary particles as a tradeoff between quality and efficiency.

This thesis proposes a new adaption of the method from Ihmsen et al. [Ihm+12]
for FLIP that solely utilizes criteria from the fluid itself for better quality without
expensive high-resolution simulations. First, we show how to scale the data from FLIP
to a domain with higher resolution to exploit all the information contained in the
underlying simulation. The computations of the criteria, which are proposed by Ihmsen
et al. [Ihm+12] to define areas to be enhanced, are adapted for the different neighbor
structure in FLIP. The sampling process is only slightly adapted with randomization to
prevent regular patterns in the secondary material. Instead of hard-coded thresholds,
we refined the secondary particle classification with an adaptive neighbor ratio to get
more control over the advection. Details from our implementation regarding lifetime
initialization and boundary handling are shown, and we present the rendering setup
that produces visually pleasing results for our secondary effects. Then, our model is
compared to an implementation of the work from Ihmsen et al. [Ihm+12] regarding
visual impression and performance with three differently designed scenes. Finally,
we demonstrate that our method can control the amount of detail and the secondary
particle movement via the user-defined parameters.
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2 Related Work

Processors, memory and graphic cards are constantly increasing in speed and compu-
tation power. They greatly advanced the quantity and quality of fluid simulations in
the last two decades. Nevertheless, it is still challenging to efficiently simulate various
effects of fluid phenomena. We categorized existing work in three classes, according to
the fundamental idea in the way simulations are improved.

Combining different techniques to capture details. Using a combination of methods
can compensate weaknesses of a single one and thus lead to better results. Furthermore,
differently scaled approaches allow to simulate some regions with a high amount of
detail if necessary, while the computation speed of a coarser simulation can nearly be
preserved.

Thuerey et al. [TRS06] merged a 2D shallow water simulation with a 3D free surface
simulation. This enables the creation of many droplets, using a fluid turbulence model
that locally increases the fluid viscosity for small vortices. To simulate a fluid and
an air phase simultaneously, Hong and Kim [HK03] combined the volume-of-fluid
method and the front-tracking method. Wang et al. [Wan+13] used a hybrid approach
to combine the grid-based Lattice Boltzmann method with an SPH simulation that
interact over a coupling band. This enables large fluid volumes and preserves small
details at the same time. Additionally, dynamic spray, foam and bubble particles are
added to further enhance the surface details. A FLIP simulation for the fluid is linked
to an SPH simulation for droplets in the work of Yang et al. [Yan+14]. Furthermore,
they proposed a grid containing density values to represent spray and mist. To prevent
a loss of mass the three components are correlated to one another by a transition model.
Kim et al. [Kim+06] utilized the particle level set method to simulate water volumes
and created small splashes with marker particles. In the rendering stage they smoothed
the particle clusters which then contributed to the volumetrically rendered mist density
in the air.

Two-way coupled approaches for water and air. Besides the water, two-way coupled
approaches also simulate the air, either implicitly by handling the transition area or
as an explicit air phase. Thereby, water influences the air and vice versa. This creates
high visual realism but due to the computational overhead the simulation takes more
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time or the possible number of particles, respectively the maximum grid size is severely
decreased.

In the work of Takahashi et al. [Tak+03] water and air are explicitly simulated
with the Cubic Interpolated Propagation method. Spray and foam particles that move
along in a velocity grid are added in the transition region. Mihalef et al. [MMS09]
used a Eulerian-Lagrangian method for the two phases and added sub-scale droplets
and bubbles according to the physics-based Weber number. With small adjustments
their method can be converted to a post-processing step, at the cost of visual realism.
Patkar et al. [Pat+13] utilized bubbles conserved in the level set of a grid-based
simulation in combination with Lagrangian particles in under-resolved areas for a
bubble simulation. Complex interactions between bubbles like merging and chaotic
movement are considered. They also propose a boundary handling scheme for bubbles
and a creation criterion near obstacles according to their surface roughness. In a very
similar way, the work of Hong et al. [Hon+08] adds bubbles that behave like SPH
particles to a Eulerian fluid simulation on an octree grid and models interaction between
them. Ihmsen et al. [Ihm+11] likewise employed Lagrangian bubbles for an SPH fluid
simulation. Cleary et al. [Cle+07] simulated beer and other carbonated drinks with
a mesh-free SPH method. They used a physically motivated model to simulate the
transition from dissolved gas to discrete bubbles. The latter two approaches used a
foam model in addition. For shallow water simulations, Thuerey et al. [Thu+07b]
proposed a model where bubbles are represented as spherical vortices and particles.
Foam is created using an SPH approach with surface tension for clustering. Two-way
coupled methods allow to combine water with other phases too. For example Baek et
al. [BUH15] simulated muddy water with sand and water particles. In addition they
modeled the transition from a suspension with medium sized particles to a colloid with
small particles to a state where water and sand are mostly separate.

One-way coupled methods and secondary details. A general one-way coupled ap-
proach exclusively computes the influence of the water on a representation of air and
not vice versa. Often, they can be detached from the main simulation as a secondary
effect. As less interactions are computed, these methods are typically less accurate but
allow to simulate more details in less time than two-way coupled simulations.

The simplest and fastest way to add detail is applying textures for rendering. This is
especially useful for real-time applications where speed is the most important factor and
realism only comes second. Chentanez and Müller [CM11] used wave textures and foam
maps to enhance their real-time large cell grid simulations. Thousands of particles for
spray, mist and foam further improved the visual realism. In a similar way, the method
proposed by Thuerey et al. [Thu+07a] for real-time shallow water simulations employed
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foam textures. Normally, shallow water simulations cannot represent breaking waves
due to the height field as their main component and adding foam would not be
particularly useful. But Thuerey et al. determined regions where waves are supposed
to overturn and added a particle-based fluid sheet that is moved along with the wave
and benefits from foam. For fast bubble simulations, Greenwood and House [GH04]
created a method for one-way coupled, particle-based bubbles that are generated in
under-resolved regions of a particle level set. The reason for the improved speed is
that bubbles are passive, that means they do not influence one another during the
simulation. Losasso et al. [Los+08] combined the particle level set method with SPH in
a two-way coupled simulation. Afterwards, they utilized a one-way coupled secondary
air simulation to add fine detailed foam and mist effects. The method by Yang et al.
[Yan+15] is very closely related to our approach, since they used diffuse material in
the form of spray, foam and bubble particles as a secondary simulation for FLIP as
well. The main difference is the way how regions to enhance are detected: they used
time-space analysis of a depth image of the fluid to capture detail regions, while we
determine the criteria from the fluid itself. Last and most important, this thesis builds
on the work from Ihmsen et al. [Ihm+12]. We implemented their approach to generate
unified spray, foam and bubble particles for SPH fluids and adapted it to work for
FLIP and grids in general. Both concepts do not feature interactions among secondary
particles and this enables the efficient handling of millions of particles.

Additionally, there is research on pure foam, bubble or spray simulations: The work
of Kück et al. [KVG02] describes how to simulate foam with spheres and reconstruct
the foam surface during rendering. Yue et al. [Yue+15] examined how foam can be
simulated as a continuum instead of several single structures that represent bubbles.
For instance, this is used to create realistic shaving foam or whipped cream. The
method proposed by Zheng et al. [ZYP06] is capable of simulating soap bubbles with
a thin liquid film and surface tension using the regional level set method. Last but
not least, Nielsen and Østerby [NØ13] proposed a two-way coupled, two-continua
approach where water and air coexist at each point in space to simulate spray more
accurate than Eulerian methods.
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3 SPH and FLIP

The established physical model to describe the behavior of fluids are the Navier-Stokes
Equations. As it is still unknown if an analytical solution in three dimensions exists,
fluid solvers compute a numerical solution for it instead.

∂u
∂t

+ (u · ∇)u = −∇P
ρ

+ ν∇2u + g (1)

This equation describes the conservation of momentum inside the fluid. Here u denotes
the velocity, P is the pressure the fluid exerts, ρ is the fluids density and usually
assumed to be constant, ν is the kinematic viscosity coefficient that indicates the
thickness of the fluid and g is the acceleration due to gravity. In nature fluids do change
their volume and therefore their density to a certain degree, for instance acoustic sound
waves in water are nothing more than regions with different densities. But simulating
compressible flow correctly is complicated and expensive, instead Equation (2) is used
to simulate incompressible flow.

∇ · u = 0 (2)

It is called the incompressibility condition which ensures that the fluid does not change
its volume. Fluid solvers can be divided in two groups that generally follow contrasting
paradigms.

The Lagrangian approach is relatively intuitive: the fluid consists of particles, con-
ceivable as molecules or small drops, that can move arbitrarily in space. They influence
one another, for instance two particles coming close repel each other similar to rigid
body collisions of spheres. All fluid quantities such as pressure, velocity etc. are stored
on the particles. This makes mass conservation effortless and advection very accurate,
at the cost of high computational effort for the neighborhood calculation.

The Eulerian approach represents the simulation domain as a grid. Typically it uses a
staggered grid, which defines velocities at the cell faces and other quantities at the cell
centers. For the most basic simulations every cell is marked either as fluid, empty or
solid. The fluid moves by changing the marked cells, but the grid itself is static. On the
one hand, this method results in faster simulations than the Lagrangian approach as the
regular grid structure simplifies the computation of neighborhood relations and spatial
derivatives. On the other hand advection and conserving the mass by keeping the
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3 SPH and FLIP

velocity grid divergence-free is relatively complicated. The main issue of this approach
is that it is not possible to preserve fluid details without a dedicated algorithm.

Bridson and Müller-Fischer [BM07] give a very descriptive analogy with weather
observation to better understand the two ideas. The Lagrangian approach is like using
a weather balloon. It flies along with the fluid, in this case air, and measures the fluid
quantities in a radius around it. The Eulerian approach is the analogue to weather
stations at different locations on the ground. They always stay in the same place and
can only measure the fluid that happens to move near them.

3.1 Smoothed Particle Hydrodynamics (SPH)

The following section is a short summary of the current state-of-the-art report on SPH
fluids from Ihmsen et al. [Ihm+14b] that only covers the basic idea of SPH that is
necessary for the following chapters.

Algorithm 1: basic SPH algorithm.

foreach fluid particle i do
update particle neighbors j;

end
foreach fluid particle i do

compute density ρi;
compute pressure Pi;
Fi = Fpress

i + Fvisc
i + Fbound

i + Fgrav
i ;

vi(t + ∆t) = vi(t) + ∆tFi/m;
xi(t + ∆t) = xi(t) + ∆tvi(t + ∆t);

end

The SPH method proposed by Mon-
aghan [Mon92] is a Lagrangian approach
and describes how any quantity Aj can
be interpolated to arbitrary particle posi-
tions xi from the surrounding particles xj.

Ai = ∑
j

mj

ρj
AjW(xij, h) (3)

W(xij, h) is a kernel function that weights
surrounding particles according to their
distance xij and the smoothing length
h that restricts the influence of particles
with xij > h. Several different kernel func-
tions are used, but most common is the cubic spline [Mon92].

With Equation (3) and one of many ways to approximate the spatial derivatives
from Equation (1), Ihmsen et al. [Ihm+14b] show how to compute all the quantities
necessary for the simulation: ρi can be computed with Equation (3), Pi can for instance
be determined by an equation of state, pressure and viscosity forces can be calculated
directly from Equation (1) and there are some other forces to consider, like gravity and
boundary forces.

This leads to a very basic SPH algorithm, shown in Algorithm 1. Many improvements
exist, for example the neighborhood search can be accelerated by uniform grids,
different versions of index sort algorithms or with hashing methods like compact
hashing. Instead of computing the pressure with an equation of state it is also possible

7



3 SPH and FLIP

to solve a pressure Poisson equation for better performance. For a more detailed
explanation of the SPH concept we suggest the work of Monaghan [Mon92], Ihmsen
[Ihm13] and Ihmsen et al. [Ihm+14b].

3.2 Fluid-Implicit-Particles (FLIP)

The FLIP method, which was first introduced into graphics by Zhu and Bridson [ZB05],
is based on a grid-based solver following the Eulerian approach. In this thesis we
will not discuss how grid-based simulations work in general and instead refer to the
paper from Bridson and Müller-Fischer [BM07] to understand the basic concept. For an
efficient implementation for example the approach from Chentanez and Müller [CM11]
can be used.

Algorithm 2: FLIP algorithm.

foreach grid velocity cell do
compute weighted average of nearby particle velocities;

end
save grid velocity;
perform all non-advection steps of a grid-based fluid solver;
foreach updated grid velocity cell do

subtract updated velocity from saved velocity;
end
foreach particle do

add interpolated velocity difference to particle velocity;
update particle position using grid velocity;
push outside of boundaries;

end
output particles;

FLIP aims to eradicate the biggest weakness of grid-based schemes, specifically
advecting the fluid correctly. This is accomplished by utilizing particles as their
strength is a highly accurate advection. Algorithm 2 shows one time step of the FLIP
process. Coarsely summarized, the first step is to map the particle velocities to a grid
velocity by computing a weighted average and solve the non-advection tasks on the
grid. Next, the particle velocity is updated using the interpolated grid velocity. Finally,
the particles are moved according to their velocity, for instance with a standard ODE
solver.
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3 SPH and FLIP

This technique allows to keep the simulation speed of grid-based approaches and
outperforms SPH by a lot. There are approaches combining SPH with FLIP to get
the benefits of both methods with increased speed, for example from Cornelis et al.
[Cor+14].

In the general FLIP method small details are only partially preserved due to the grid
representation and other artifacts exist as well. One of them are thin fluid filaments
when small amounts of fluid are in mid-air and the particles tend to stick together.
This is caused by the transfer from the grid to the particles and the other way around,
where velocities are smoothed twice due to the interpolation. This has a high impact
on the visual quality of our method that can be seen in Chapter 5.
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4 Secondary Particles for SPH and
Adaptations for FLIP

Figure 1: Our method (top) significantly enhances the typical FLIP simulation (bottom)
in visual realism using secondary particles, that capture interesting effects of
air bubbles, spray, and foam.

After the basic fluid simulation is completed the effects of spray, foam and air bubbles
have to be simulated using secondary particles, in the following also called diffuse
particles or diffuse material. There are three conceptually different categories of effects
that represent the classification of secondary particles in our model (also see Figure 1):

• spray: small droplets that move in the air with no connection to the major water
volume (left and middle)

• foam: many slowly dissolving air bubbles surrounded by a thin liquid film
floating on the water (middle and right)

• bubbles: air enclosures inside the water volume that rise to the surface (middle)

In the following chapters we will refer to our implementation of the secondary
particle method presented by Ihmsen et al. [Ihm+12] as SPH method and to our new
adaptation that can be used for FLIP and other grid-based fluids as FLIP method.
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4 Secondary Particles for SPH and Adaptations for FLIP

The general steps of both methods are relatively similar, at first the data from the
fluid simulation has to be processed as described in Section 4.1. Afterwards the
likelihood to create diffuse material is determined for each region inside the fluid in
Section 4.2. Therefor, three different physically-based potential values are computed
for each fluid particle in the SPH method and for each fluid cell in the FLIP method
respectively. Section 4.3 discusses the number and position of secondary particles for
their initialization. Next, according to the list above each diffuse particle is advected
with respect to its classification, which is shown in Section 4.4. Section 4.5 and 4.6
provide details about how secondary particles are dissolved and how we handled
boundaries like borders of the simulation domain or other static obstacles. In the final
Section 4.7 we summarize the entire secondary particle algorithm and explain how the
images used in this thesis were rendered.

4.1 Loading Simulation Data

As a first step, we need to load the data from the basic fluid simulation. For the SPH
method the particle positions and velocities for the current time step and the particle
positions in the next time step are used later on. Because no further treatment is
necessary here, loading the data is trivial.

For the FLIP method it is possible to employ a similarly simple solution: First, we
would load the grid where cells are marked as fluid, air or obstacle and then the grid
with the current fluid velocity for each cell. FLIP typically utilizes the sub-resolution
value two; this means in 3D every cell is sampled by 23 FLIP particles. Thus, we would
end up using only half of the possible resolution in each dimension for the diffuse
material. Therefore, most of the information contained in the FLIP simulation would
be neglected. This means small-scale details in the fluid flow would influence the
secondary particle distribution only coarsely or not at all.

To address this issue, we propose to make use of a grid with doubled resolution in
each dimension and this can be generalized to an arbitrary upscale factor s. Using the
coarse grid to create the fine grid is hardly possible as the details are already lost and
cannot be restored. Instead, we load the FLIP particles from the basic simulation, scale
each particle position by s and mark each grid cell that contains at least one particle as
fluid. But due to the non-uniform distribution of FLIP particles, this leads to empty
grid cells inside the fluid even for small s.

To correct this we created a particle level set ϕ from the FLIP particles and mark
every grid cell where ϕ < 0 holds as fluid cells. It is important to employ an influence
radius high enough to erase the gaps. For our implementation with a grid cell size
of 1, an influence radius of 1.1 gave good results. For information about the level set
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4 Secondary Particles for SPH and Adaptations for FLIP

method in general and details on how to create particle level sets the reader may look
into the work of Osher and Fedkiw [OF03] or Enright et al. [EMF02]. As ϕ is used
later to compute the surface normals, this does not add computational overhead to the
simulation.

The scaled grid velocity can then be obtained by using standard trilinear interpolation
of the FLIP particle velocities, but afterwards each velocity component has to be
multiplied by s to compensate the larger grid size.

4.2 Potentials for Diffuse Material

In nature there are two different scenarios for a large amount of foam or air bubbles
in the water. On the one hand much foam can be observed at large waves: it mostly
appears on the crest of the wave and only when it starts to break. The reason for this
phenomenon is the interaction of water and air at the wave crest: both phases form a
mixture, as water and air are not combined chemically. A good example for this are
ocean waves reaching a beach, where the water return flow from the previous wave
enforces the overturning of following waves and thereby the generation of foam.

On the other hand air bubbles are typically created when water surrounds a larger
portion of air and drags it inside the water. This happens mostly when breaking waves
hit the shallow water surface at the ocean or when water hits an obstacle like a boulder.

Additionally, faster streaming water is more likely to mix with air. This effect is not
as obvious but when looking at a river after a day of heavy rain and the same river after
a week of mild weather, the difference becomes visible. Of course there are other effects
to consider in this example as well. But to correlate the amount of spray, bubbles and
foam to the speed of the water flow as a simplified model should be precise enough.

In the SPH method there are three main criteria to recreate these effects: for all SPH
particles three different values, called kinetic energy potential Ik, trapped air potential
Ita and wave crest potential Iwc, are computed that influence the number of diffuse
particles created by each SPH particle. Out adaptation computes the potentials for all
fluid cells from FLIP, and this requires some changes presented in the next sections.
Since all calculations lead to arbitrarily high values for each potential, a clamping
function Φ is necessary to normalize the potentials to the interval [0, 1].

Φ(I, τmin, τmax) =
min(I, τmax)−min(I, τmax)

τmax − τmin (4)

Here τmin and τmax denote user-defined thresholds, we describe their effect in detail in
Section 5.3.1.

Two of the criteria, the trapped air potential and the wave crest potential, need
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4 Secondary Particles for SPH and Adaptations for FLIP

neighboring particles or grid cells for their computation. Therefore, a kernel function
is necessary to weight the contribution to the computation similar as seen in Section
3.1. With increasing distance the weight should approach zero relatively fast. For the
SPH method commonly used kernels [MCG03], for instance the cubic spline [Mon92],
give mediocre results at free surfaces because of the low number of neighbors in these
regions. For higher accuracy Ihmsen et al. [Ihm+12] propose a different radially
symmetric weighting function, and our experiments showed that for the FLIP method
it is more appropriate too.

W(xij, h) =

{
1− ||xij||

h if ||xij|| ≤ h

0 otherwise
(5)

In this weighting function h is the kernels smoothing length, also called support
radius. For the SPH method h should be equal to the influence radius of the fluid
simulation. For the FLIP method we adapted h as described in Section 4.2.2. xij denotes
the distance vector from the current position i where the kernel is employed to the
neighbors position j. Since the position of a grid cell is not unique; we define it to be
the cells center.

At this point the reader may be asking himself why computing all quantities for grids
is necessary although FLIP already features particles that could be used instead. The
crucial point is that FLIP particles are not distributed uniformly while SPH particles are.
For instance a small SPH region, being not near the surface, will contain approximately
the same number of particles over the entire simulation time. But a FLIP region may
have a large deviation of the particle number over a few time steps. Starting from
the premise that all particles from FLIP create secondary particles this leads to high
distortions in the number of secondary particles created in each region and would
notably reduce the visual quality. Creating secondary particles for each grid cell instead
guarantees that all regions with the same potentials create a similar number of particles.

4.2.1 Kinetic Energy Potential

To measure the flow speed of the water in the SPH method the kinetic energy Ek,i =

0.5 mi v2
i for every particle i is used. Correspondingly, we can compute the kinetic

energy of the fluid in each grid cell j by Ek,j = 0.5 mj v2
j . The resulting kinetic energy

potential is Ik = Φ(Ek,j, τmin
k , τmax

k ), where τmin
k and τmax

k are user-defined constants.
Note, that the mass mj could be computed exactly as density and volume of the

simulated liquid are known. But since τmin
k and τmax

k can be chosen as desired and
have to be fine-tuned, it is possible to just use an arbitrary constant for the mass when
adjusting the thresholds accordingly.
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4 Secondary Particles for SPH and Adaptations for FLIP

4.2.2 Trapped Air Potential

Air gets trapped in the water where it forms vortices and other highly turbulent
areas. Thus, the curl operator can be a reasonable choice for detection. But to capture
impacts as well, for example when a breaking waves hits the shallow surface, the FLIP
method relies on scaled velocities differences of neighboring fluid cells. This idea was
first introduced by Ihmsen et al. [Ihm+11] and originally used to create air bubble
simulations for SPH. Later it was advanced by Ihmsen et al. [Ihm+12] for the secondary
particle model for SPH.

vdiffi = 0 vdiffi > 0 fluid cells

current cell i

influencing cells j

cell position x

cell velocity v

Figure 2: Schematic side view of a wave crest (light blue) hitting the water surface (dark
blue).

To compute the velocity differences for the grid cell i we iterate over all neighbor
cells j having a maximum metric, also called chessboard distance, of less or equal than
a radius r. In 3D this leads to a neighbor cube with cell i in the middle, consisting of
(2r + 1)3 − 1 cells. The red tiles in Figure 2 show a 2D example of this concept.

We have to weight all cells j according to their distance to i, using the weighting
function W from Equation (5). We set h =

√
3 r as this describes a circumscribed sphere

of the cell centers using the entire neighbor cube (dashed circles in Figure 2).
Summing up the weighted velocity differences results in ∑j‖vij‖W(xij, h). Addi-

tionally, the SPH method scales the velocity differences with (1− v̂ij · x̂ij) to increase
the importance of particles that move towards each other and decrease it for par-
ticles moving away from each other. As before, this works in the same way for
grids, here x̂ij = (xi − xj)/‖xi − xj‖ is the normalized distance vector and analogue
v̂ij = (vi − vj)/‖vi − vj‖ is the normalized relative velocity. Due to the definition of the
scalar product

v̂ij · x̂ij =


∈ [−1, 0) if v̂ij and x̂ij are directed towards each other

0 if v̂ij and x̂ij are perpendicular

∈ (0, 1] if v̂ij and x̂ij are directed apart from each other

(6)
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multiplying (1− v̂ij · x̂ij) has the desired scaling effect. So the scaled velocity difference

vdi f f
i reads:

vdi f f
i = ∑

j
‖vij‖(1− v̂ij · x̂ij)W(xij, h) (7)

Finally, the trapped air potential is computed as Ita = Φ(vdi f f
i , τmin

ta , τmax
ta ). Again,

with two user-defined clamping thresholds τmin
ta and τmax

ta . The left half of Figure 2
illustrates a scenario where the trapped air potential for the red cell is zero as the
surrounding velocities point in the same general direction. On the right it is large
because the fluid cells from the surface below now influence the computation.

4.2.3 Wave Crest Potential

Foam and spray occur on wave crests, especially when the wave starts to overturn. The
waves top part is no longer supported by water below it, so it can only mix with air.
Additionally, high speed differences between air and water on larger waves enforce
this phenomenon. Similar to the SPH method, we use surface normals to estimate the
surface curvature and detection functions to differentiate wave crests from other highly
curved regions.

κi > 0

δxnij = 1

κi > 0

δxnij = 0

fluid cells

current cell i

influencing cells j

cell position x

position difference xij

cell normal n̂

convex region

concave region

Figure 3: Schematic side view of a wave (blue) containing two exemplary regions of
interest (magenta and orange). Both red cells possess high surface curvature
κ caused by the orientation of the neighboring normals.

At first, we can re-utilize the level set ϕ that was used to fill the gaps in the marker
grid in Section 4.1 to compute the surface normals. This is done by using the gradient
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of ϕ as it is equal to a vector perpendicular to the tangent plane of the surface. This
only works for differentiable points of the level set but we can assume this without
loss of generality. We want to create normals only near the surface because inside the
fluid the gradients Euclidean norm is very small, so normalizing can lead to normals
pointing in nearly arbitrary directions. Therefore, we extrapolate ϕ to create a signed
distance function [Bri16]. Additionally to indicating if a cell is below the surface or not,
it also contains the distance to the surface. It is then used to restrict the normal creation
to areas near the surface. Next, all normals n are normalized according to n̂ = n/‖n‖.

Considering two cells i and j with corresponding normals n̂i and n̂j. With the same
reasoning as seen in Equation (6) (1− n̂i · n̂j) is roughly zero when the normals face in
the same direction and is larger for greater angles between the normals. To estimate
the surface curvature κ for cell i, we can iterate over all neighbors in a neighbor cube
and weight them in the exact same way as for the trapped air potential.

κi = ∑
j
(1− n̂i · n̂j)W(xij, h) (8)

Figure 3 contains several fluid cells with high surface curvature, two of them are
marked in red. Evidently, high curvature does not only appear on wave crests, but
for instance at the waves bottom right in the transition zone to the relatively shallow
surface too. To distinguish a wave crest from other highly curved regions, its convexity
can be used since wave crests are inevitably convex and never concave. A convexity
detection function can look like this:

δxn
ij =

{
0 if x̂ij · n̂i ≥ 0

1 if x̂ij · n̂i < 0
(9)

To understand why this function detects convex regions, both regions in Figure 3
feature the position difference vectors xij in light green and the normal ni. The term
x̂ij · n̂i indicates if the angle between xij and ni is acute and therefore the region is
concave or if the angle is obtuse and thus the region convex.

But there is one small problem when using convexity: there are some convex regions
that are not wave crests. They typically occur when fluid is added to the simulation
or due to the boundaries of the domain. The reason therefor are artificial edges, for
example the simulation borders almost always contain edges and the water is forced
to form an edge there as well. Excluding these regions can be done by checking if the
fluid moves in the normal direction because that is not possible at almost all artificial
edges. Equation (10) shows a simple way to do this utilizing the scalar product to
verify that both vectors, the normal and the velocity of the current cell, point in similar
directions. The value 0.6 was heuristically determined by Ihmsen et al. [Ihm+12] and
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worked for our adaptation likewise. If some artificial edges are still recognized we
suggest to increase it accordingly, but too high values can mean that some actual wave
crests are not enhanced correctly.

δvn
i =

{
0 if v̂i · n̂i < 0.6

1 if v̂i · n̂i ≥ 0.6
(10)

Summarizing, the adjusted surface curvature κ̃i that discards concave regions and
artificial edges can be computed by multiplying κi with both detection functions
accordingly.

κ̃i = δvn
i ∑

j
δxn

ij (1− n̂i · n̂j)W(xij, h) (11)

Due to the convexity detection function δxn
ij the concave regions end up with κ̃i = 0

while the convex regions yield κ̃i > 0. With two more thresholds τmin
wc and τmax

wc given
by the user, the wave crest potential is Iwc = Φ(κ̃i, τmin

wc , τmax
wc ).

4.3 Sampling and Initialization

With the three potentials computed for each particle in the SPH method and for all fluid
cells for the FLIP method respectively, we can now add the secondary particles to the
simulation. Ihmsen et al. [Ihm+12] construct a cylinder around every SPH particle for
this purpose. It has the same radius as the fluid particle and its height is determined by
the particles current position at time step t and the position at the next time step t + ∆t
in direction of the particles velocity. The secondary particles are distributed uniformly
inside this cylinder and their number is determined by the three potentials.

Our adaption for grids works in a similar fashion. Due to the regular alignment of
the grid using the center x f of fluid cell f as a starting point for the sampling process
is not a good idea, because this leads to unrealistic regular foam patterns like strips.
To avoid this, three random variables X∆x, X∆y and X∆z each uniformly distributed in
range [−r f , r f ] are used, where r f is half of the cells diameter. The new starting point
x̃ f of the sampling process is now uniformly distributed over the entire volume of f ,
with:

x̃ f =

X∆x
X∆y
X∆z

+ x f (12)

An illustration with exemplary assigned random variables can be seen in Figure 4.
To get the current velocity vector v at x̃ f standard tri-linear interpolation of the grid
velocity can be employed.
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2rf

xf

X∆z

X∆y X∆x

x̃f

ê1

ê2
∆t v

x̃f (∆t)

rf
θ

Figure 4: Secondary particles (purple) generated by a fluid cell f , sampled uniformly
in a cylinder with radius r f positioned at x̃ f . The velocity for each secondary
particle is determined by their position relative to x̃ f and the velocity v.

The bottom of the cylinder is represented by the orthogonal plane to v with the
origin x̃ f and the orthogonal unit direction vectors ê1 and ê2 shown in orange in Figure
4. These are obtained when normalizing

e1 =

1 0 0
0 0 0
0 0 −1

 · v and e2 = v× e1. (13)

To estimate the position x̃ f (∆t) where the portion of fluid currently inside cell f ends
up in the next time step ∆t, the vector v can be scaled with ∆t and its norm is the
height of the sampling cylinder.

Alongside with the SPH method, we introduce two more constants kta and kwc that
allow the animator to control the amount of detail by limiting the maximum number of
diffuse particles generated per fluid cell and time step. We describe their influence in
Section 5.3.2. The number of secondary particles for each cell can then be computed
according to Equation (14).

n f = Ik(kta Ita + kwc Iwc)∆t (14)

To initialize them inside the cylinder, three additional random variables Xr, Xθ , Xh
that are uniformly distributed in the interval [0,1] are employed. Similar to polar
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coordinates r = r f
√

Xr indicates the particles distance to x̃ f on the cylinders base plane
and θ = Xθ 2π is the azimuth or angular position that shows the rotation around the
cylinders axis. Additionally, h = Xh ‖∆tv‖ is the particles distance from the base plane
or height inside the cylinder. Together they form a cylindrical coordinate system that
can describe all points inside the cylinder and due to the random variables it is sampled
uniformly. Figure 4 features a schematic depiction of it in red. The uniform sampling
is very important as the volumetric impression of foam and spray is entirely lost when
the particles are not distributed properly. Finally, the position of each diffuse particle
xd can be described by:

xd = x̃ f + rê1 cos θ + rê2 sin θ + h
v
‖v‖ . (15)

Supplementary to the fluid velocity, secondary particles get an additional amount of
laterally directed velocity relative to their distance to the cylinder axis. This is necessary
to add the possibility of splashes different from the main fluid movement.

vd = rê1 cos θ + rê2 sin θ + v (16)

The purple vectors representing secondary particle velocities in Figure 4 show the
influence of Equation (16). Particles near the axis have velocities with almost identical
direction as v, while particles further at the outside tend to move more sideways.

4.4 Advection

The next step is moving the diffuse material. Both models do not consider interactions
among secondary particles, which is the main reason why it is efficiently possible to
simulate large amounts of spray, foam and bubbles. Instead, the particles are advected
by the fluid movement. To accomplish this, we once again iterate over neighboring fluid
cells in a neighbor cube and weight their velocity according to the distance difference.
This time a commonly used kernel K(‖xij‖, h) like the cubic spline is sufficient for
weighting.

4.4.1 Classification

Secondary particles are divided in three types: spray flying through the air, foam near
the water surface and air bubbles inside the water (see Figure 5). Since all types are
advected differently, at first we need to classify each particle in one category. Our
implementation of the SPH method does this by building a neighbor list l for all diffuse
particles p that contains their respective fluid neighbors. Then the actual classification is
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done via constant thresholds on its size |l|, for instance using the following classification
function with thresholds determined by Ihmsen et al. [Ihm+12]:

type(p) =


spray if |l| < 6

air bubble if |l| > 20

foam else

(17)

Other ideas to classify particles exists as well, for example Müller et al. [MCG03]
use the gradient of the density field to find particles near the surface but because we
consider the fluid to be nearly incompressible, using the number of neighbors is simpler
and gives similar results.

Figure 5: Particle classification with nearly transparent water and particles rendered as
discrete spheres instead of volume rendering. Spray particles are red, foam is
blue and air bubbles are green in all images. The four upper images show the
initial frame and the classified particles in their respective color. The bottom
row displays all of them combined, with volume rendering on the right and
without it on the left.

For the FLIP method we propose an approach that can handle different radii of the
neighbor cube without additional effort and at the same time simplifies advection near
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boundaries. First, we calculate the total number of neighbors nall = (2r + 1)3 − 1 for
each fluid cell i and subtract the number of neighbors that are boundary or obstacle
cells nwall . This results in the maximum number of cells that could be potentially fluid
cells nmaxFluid = nall − nwall . Secondly, we count the number n f luid of actual neighboring
fluid cells. With these two quantities a neighbor ratio

nr =
n f luid

nmaxFluid
∈ [0, 1] (18)

can be obtained for every cell, that indicates to what extent it is surrounded by fluid.
For example, nr = 1 means i is entirely encompassed by fluid cells or nr = 0 implies
that no fluid cells are around.

With the neighbor ratio and two user-defined classification thresholds cs and cb it is
easy to determine the type of a diffuse particle p positioned in fluid cell i with Equation
(19). This is now independent from the size of the neighbor cube r and from the upscale
factor from Section 4.1.

type(p) =


spray if nr(i) < cs

air bubble if nr(i) > cb

foam else

(19)

Here, cs and cb control the transition between air bubbles and foam respectively foam
and spray. A detailed description of their influence can be found in Section 5.3.3.

4.4.2 Spray

Spray particles have only very few neighboring fluid cells and their influence on the
particle movement is negligible. Therefore, we can update the spray particle position
and velocity with a simple semi-implicit Euler step. Only gravity g and external forces
Fext have a considerable influence on the movement.

vspray(t + ∆t) = vspray(t) + ∆t (
Fext(t)

m
+ g) (20)

xspray(t + ∆t) = xspray(t) + ∆t vspray(t + ∆t) (21)

This works in the exact same way for the FLIP and the SPH method.

4.4.3 Foam

To the contrary, foam is heavily influenced by the surrounding fluid flow because it is
supposed to be floating along on the water surface. As a first step in the FLIP method,
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it is necessary to find the fluid cell in which the current diffuse particle i is located.
We can build a neighbor cube of edge length r like in Section 4.2.2 consisting of cells
j around it. Note, that here boundary cells have to be explicitly excluded from the
computation, otherwise foam particles would sometimes stick the to walls.

To move the foam along with the fluid we use the weighted averaged velocity

ṽi(t + ∆t) =
∑j vj(t)K(‖xij‖, h)

∑j K(‖xij‖, h)
(22)

from the surrounding fluid. The SPH method uses vj(t + ∆t) = (xj(t + ∆t)− xj(t))/∆t
instead of vj(t) in the numerator, where j denotes neighboring fluid particles. xj(t + ∆t)
can simply be loaded from one time step ahead. But for grids we do not know xj(t+∆t)
as in contrast to particles there is no correlation between the time steps. But we can
estimate xj(t + ∆t) = xj(t) + ∆t vj(t) with the current velocity. Plugging this term
into the formula used by the SPH method leads to Equation (22) because through
rearranging, xj(t)− xj(t) resolves to zero and ∆t can be canceled. We tried to load the
grid velocity from the next time step too and just evaluate vj(t + ∆t) in the neighbor
cube there, but that did not produce visually plausible results. The reason is that
this would mean to consider velocities from fluid portions which are not near i in the
current time step.

Finally, the foam particle is updated with the weighted averaged velocity. Since foam
particles should be restricted to the water surface, only their positions and not their
velocities are updated.

x f oam(t + ∆t) = x f oam(t) + ∆t ṽi(t + ∆t) (23)

4.4.4 Bubbles

In a very similar way, the water flow is a strong influence on the air bubbles and drags
them along. Additionally, bubbles rise to the water surface due to the high density
difference between water and air. The drag effect is created as above with the weighted
averaged velocity. The buoyancy effect can be modeled by an inverse gravity that is
directed upwards. The two effects are multiplied with two constants kd and kb, allowing
the user to control the bubble movement (see Section 5.3.4 for a comparison of different
values for kd and kb).

vbubble(t + ∆t) = vbubble(t) + ∆t (−kbg + kd
ṽi(t + ∆t)− vbubble(t)

∆t
) (24)

xbubble(t + ∆t) = xbubble(t) + ∆t vbubble(t + ∆t) (25)
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4.5 Dissolution

At the transition zone between water and air foam dissolves after a short time. For
example, this can be observed when ships move across the water as they leave behind
a trail of foam that is wide directly behind the ship and becomes narrower further
behind. Foam is a paragon of the law of exponential decay, that means at the start it
dissolves rapidly and then steadily slower, approaching a state without foam. This can
be verified with the simple act of pouring a glass of beer and measuring the height of
the beer foam at constant time intervals. Plotting the measured points will always lead
to an approximation of an exponential function with a negative exponent.

For the dissolution each secondary particle gets a lifetime value l at its initialization
that is reduced by ∆t every time step. Once l is below or equal to zero the particle is
removed.

To capture the effect of the exponential decay in a visually plausible but simple
way, our experiments showed that it is sufficient if large foam clusters will persist
longer than smaller ones. Therefor, we can initialize large particle groups with a high
value of l and isolated particles with a low value. Computing additional quantities
is not required as we already have a measurement of regions where a large number
of particles is created, with the potentials from Section 4.2. The lifetime can then be
initialized according to the three potentials of the generating fluid particle or fluid cell
respectively, where each potential contributes equally:

l = (lmax − lmin)
Ik + Ita + Iwc

3
+ lmin + 0.1Xl (26)

Xl is a random variable in range [0, 1] that is not stringently required, but helps if some
regions with few diffuse particles dissolve with a regular pattern. The factor in front of
it can be bigger to suppress regular dissolution even further. However, too large values
may destroy the impression of realistic foam, because particles disappear too randomly.
Equation (26) enforces l ∈ [lmin, lmax + 0.1] where lmin and lmax denote thresholds for
maximum and minimum lifetime. Their effect is shown in Section 5.3.5.

4.6 Boundaries

The neighbor ratio presented in Section 4.4.1 ensures that in the FLIP method secondary
particles are advected correctly near boundary cells. But the SPH method uses a simpler
classification with neighbor lists. In our SPH implementation obstacles are realized
using stationary particles on its borders that apply repelling forces to nearby fluid
particles. These stationary particles are added to the neighbor lists as well because
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otherwise some secondary particles could be incorrectly classified as foam, for instance
near the ground due to a lower number of surrounding particles there.

But with the stationary particles, now spray particles near walls are considered to be
foam as the lower spray threshold from Equation (17) is exceeded. This causes them
to stick to walls because they cannot be advected with the fluid flow as there is now
fluid around. To prevent this, we additionally check if the neighbor list solely consists
of obstacles particles and use spray advection if it is the case.

Due to estimates in the particle creation and advection process, and additionally to
small numerical errors, it is effectively impossible to prevent some diffuse particles
from ending up inside obstacles or boundaries. We tried several boundary handling
approaches for them, each resulting in a different artifact:

Position correction. Moving penetrating particles out of the walls along the walls
normal leads to large amounts of diffuse material clumping when a wave hits a wall.
This is enforced by the high trapped air potential in these regions. As a result, the noise
and the duration of the rendering process is increased drastically.

Repelling forces. Adding repelling forces ensuing from the boundary particles or
boundary cells respectively results in similar problems. Furthermore, spray particles
can obtain implausible trajectories.

Reflection. Reflecting the velocity of each particle on the walls surface normal in dif-
ferent (physically impossible) angles causes many visually noticeable wrong trajectories,
but prevents clumping.

Deletion. Deleting penetrating particles prevents clumping and incorrect spray move-
ment, but can cause the impression that walls suck in nearby diffuse material and
absorb it. In general, this leads to the least visual disturbances so we employed it for
our implementation.

Depending on the scene setup, very thin obstacles like walls may cause problems as
fast moving particles can end up in front of a wall in one time step and already passed
through it in the next step. This effect is known as tunneling. Here it can help to check
if obstacles are in the current trajectory of each secondary particle by simulating smaller
time steps. This is done by temporarily multiplying rising factors from [0, 1] to ∆t in
the position updates in Section 4.4 and checking if the resulting position lies in a cell
that is marked as an obstacle. If that is the case the particle is deleted. Too many anti
tunneling checks for each particle can decrease the performance; then we recommend

24



4 Secondary Particles for SPH and Adaptations for FLIP

to broaden the walls in the scene or change the setup to reduce the fluid speed before
the impact.

4.7 Implementation and Rendering

Algorithm 3 summarizes all tasks that have to be completed during one time step to
add spray, foam and air bubbles in the form of secondary particles to a fluid simulation.
We always utilized r = 2 from Section 4.2.2 to create the neighbor cube, that is used for
the wave crest potential, the neighbor ratio and all advection steps. The only exception
to this is the trapped air potential where r = 1 already produced high values for the
velocity differences.

Algorithm 3: One time step for the
secondary particle algorithms for
SPH and FLIP.
load data from fluid simulation;
scale data to higher grid resolution;
compute particle level set ϕ;
foreach fluid particle / fluid cell do

compute surface normal;
compute potential Ik, Ita and Iwc;
initialize secondary particles;
update neighbor ratio;

end
foreach secondary particle do

update particle neighbor list;
classify and advect particle;
handle boundaries;
update lifetime;
delete if dissolved;

end
output secondary particles;

For the fluid simulations we employed an
IISPH [Ihm+14a] with adaptive time step-
ping similar as proposed by Ihmsen et al.
[Ihm+10] and the FLIP implementation pre-
sented by Zhu and Bridson [ZB05]. Our
adaptation of the secondary particle model
for FLIP can easily be transferred to entirely
grid-based simulations since all quantities
are computed on grids. Obviously, the up-
scale factor has to be smaller or equal to one
then, because in contrast to the FLIP method
no additional information exists that could
be used for a higher resolution.

Using a level set generated from the SPH
and FLIP particles in an upscaled domain,
we created a fluid mesh for every frame with
the marching cubes algorithm.

For rendering we used the ray-tracing ren-
der engine called Cycles included in the
open-source software Blender v2.78. The
fluid mesh is then rendered with a blue
tinted glass shader combined with volumet-
ric absorption to adjust the amount of light
in deeper water regions. For some images in Section 5.3 where the air bubbles are focus
of the image, additionally a transparent shader was applied.

Next, for each frame a cubical three dimensional density texture with a resolution of
5123 voxels is built from the secondary particles. The particles influence the density
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value for the voxel they are mapped to and its neighborhood with a volume radius and a
density factor. The finished texture is then applied to a domain cube which is rendered
with a volume render technique through a shader that combines volumetric absorption
and volumetric scattering. Thereby, the texture is accessed via a bounding volume
hierarchy for more efficient ray tracing. To create a smooth, foam-like impression the
density values are interpolated with tri-linear interpolation.

We used two different textures for most of our renders, one for foam and bubbles and
the other only consisting of spray particles. This can achieve increased realism as spray
needs to look more compact and sharper, for example by employing a slightly smaller
volume radius, a higher density factor and nearest-neighbor interpolation instead.
Some images even required a single texture for every particle type, for instance when
coloring the particle types with three different tints in Figure 5. These renders used up
large amounts of memory due to the dynamically created textures, and the rendering
speed decreased by a lot as nested volumes are really expensive to render. This means
render times can exceed simulation times by up to two orders of magnitude.

Nevertheless, using density textures looks a lot better than rendering every particle
as a single sphere by creating a slightly blurred look, similar to real foam and spray (as
a comparison see the bottom row of Figure 5). In addition, this prevents an issue for a
large number of particles with specular or transparent surfaces that are rendered as
discrete spheres: the exponential growth in the number of reflection and transmission
rays. That makes appropriate ray tracing very difficult and can cause much noise in
the resulting images. This is a well-known problem, for example mentioned by Jakob
and Marschner [JM12]. A different rendering approach was proposed by Teschner et
al. [Aki+13]. It is a GPU-based multi-pass technique that combines images in screen
space for increased rendering speed, while still producing visually similar results to
our method.
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In the following, we present the results of our work by showcasing three different FLIP
simulations enhanced with our secondary particle model. Then, their visual impression
is compared to our implementation of the SPH method proposed by Ihmsen et al.
[Ihm+12] in Section 5.1. In the second Section 5.2 we analyze the performance of both
methods and also mention the speed of the underlying fluid simulations. Finally, an
overview of the influence of most user-defined constants from our model is given in
Section 5.3.

Table 1: Domain size, frames, particle numbers and simulation timings for all scenes.
Scene Size (l x h x w) Frames #Fluid #Diffuse (max. / avg.) Time (fluid / diffuse)

Cube FLIP 166 x 156 x 56 300 664k 3.30m / 1.42m 15.7 min / 24.1 min
Cube SPH 134 x 126 x 46 300 341k 4.06m / 1.35m 375.7 min / 34.5 min
Stairs FLIP 206 x 206 x 106 300 853k 7.82m / 4.25m 46.2 min / 53.1 min
Stairs SPH 166 x 166 x 86 300 444k 4.77m / 2.91m 543.7 min / 52.1 min

Swirl FLIP small 206 x 86 x 206 500 2.76m 2.03m / 0.99m 81.9 min / 116.4 min
Swirl FLIP large 206 x 86 x 206 500 2.76m 7.43m / 3.50m 81.9 min / 139.0 min

Table 1 contains data for the scenes used in the following; the constant comparisons
from Section 5.3 are not included. For the secondary simulations for FLIP we always
used an upscaling factor of two, leading to a domain with an eight times larger volume
than the underlying fluid simulation. All simulations were performed and measured
on a Windows machine with a quad-core Intel i5-6500 CPU with 3.20 GHz.

5.1 Comparison between SPH and FLIP

Cube Scene. Figure 6 shows different frames of the Cube Scene. It consists of a
breaking dam and a small cuboid as an obstacle to generate additional splashes and
more air entrainment. On the left half the water is simulated with FLIP and on the
right with SPH. The outer columns solely show the underlying fluid simulations. While
FLIP produces thin fluid sheets and filaments, SPH generates many small droplets in
the top row. The wave in the middle row looks similar although SPH still has more
details. FLIP has less splash details, but small waves on the water surface are preserved
much finer and longer as visible in the bottom row.
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Figure 6: Cube Scene. Comparison of FLIP (left half) and SPH (right half), each with
and without diffuse material. The frames 40, 96 and 189 are displayed from
top to bottom.

As shown in Figure 6, the diffuse material alleviates the differences between SPH
and FLIP such that their simulation results look more alike. The general weaknesses
of the underlying fluid remain but are attenuated: SPH produces more realistic spray
while the spray in the FLIP method tends to stick together seen in the top row. In the
bottom row the small surface waves for SPH are enhanced but FLIP still looks more
convincing here. Air bubbles only play a minor role for the visual impression and even
some bubble formations in calm water on the left side only slightly harm the realism.
These are produced by small errors in the marker grid in the upscale process from
Section 4.1, caused by inaccurate regions in the particle level set.

Stairs Scene. The Stairs Scene presented in Figure 7 comprises three steps with equal
height difference and a cube of water on top of the uppermost. Small railings prevent
the water from pouring straight downwards and instead force it in a sinuosity similar
to the shape of some fish ladders. Afterwards, it drops into a cube of stagnant water
below as a small waterfall. With its more continuous flow, this scene creates a more
natural look than the Cube Scene. Because of the thin walls, it is a challenge for both
methods especially with respect to tunneling and boundary handling. Without the
diffuse material in Figure 7 the SPH method looks better in both frames due to the
impact and the waterfall with a lot more splashes. Once again the secondary particles
weaken the divergent impression and increase the visual plausibility.
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The upper images with the diffuse particles emphasize the impact of water on the
railing. The SPH method has the edge over the FLIP method, but without the direct
comparison our adaptation can still be classified to create convincing spray. Apart from
the basic fluid movement the waterfall in the lower image looks very similar. Once
more the foam patterns are much more detailed in our FLIP method than for SPH.

Figure 7: Stairs Scene. Comparison of FLIP (left half) and SPH (right half), each with
and without diffuse material. Frame 91 is shown in the upper row, Frame 299
below.

In conclusion, the strengths and weaknesses of the two approaches are closely related
to the underlying fluid simulations. On the one hand SPH looks better for spray effects
as it spreads diffuse material relatively uniformly along with the small fluid droplets.
FLIP produces spray that seems to stick together because the fluid does this too and
spray is only created by fluid cells. On the other hand FLIP excels at foam structures
due to the better preserved small surface waves that are quickly removed by the quite
chaotic movement of SPH particles. For air bubbles both methods look similar, but can
definitely not compete with the highly realistic, two-way coupled bubble simulations
presented in Chapter 2.

Swirl Scene. Here, a thin layer of water covers the entire floor of the simulation
domain. Four cuboids of water on top of it and four walls reaching through it are
radially symmetric arranged to form a large whirlpool in the center. We only simulated
this scene with FLIP but employed two different secondary simulations, one with few
and one with much diffuse material to show how the number of particles influences
the resulting images for the same body of water.
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The second row in Figure 8 features the frames from the pure FLIP simulation in
the third row, enhanced with an average of nearly one million secondary particles per
frame. Spray is generated at wave crests, but appears relatively thin in some places of
the first two images. Most of the larger surface waves are covered with foam on the
right hand side but tiny details are not visible. In the first row about 3.5 times more
diffuse material is present on average. This means spray looks more smooth and even
the smallest surface details receive some number of foam particles. The comparison
shows that large numbers of secondary particles do look better, but even few particles
are sufficient to create a much more realistic impression than water alone.

Figure 8: Swirl Scene. Comparison of different amounts of diffuse material: The top
row uses 3.5 times more diffuse materials than the middle row, and the bottom
row shows the basic FLIP simulation. The frame numbers are 45, 145, 245,
and 499 (left to right).

5.2 Performance

Figure 9 displays the timings for the underlying fluid simulations without any enhance-
ment. On the left, the SPH simulations take about one to three minutes per frame
resulting in an average time of 1.25 minutes for the Cube Scene and 1.81 minutes for
the Stairs Scene. For the Cube Scene we had to reduce the time step to 0.0008 seconds
for all frames smaller than 20 and between 145 and 175 manually to avoid well-known
artifacts from the IISPH (see [Ihm+14a]) that could not be handled by the adaptive
time stepping. Otherwise, the simulation would become unstable due to repeated
compression and decompression inside the fluid. As a result the orange plot shows
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significant spikes at the respective frames.
The basic FLIP simulations, drawn on the left hand side of Figure 9, are one order

of magnitude faster with average simulation times per frame of 3.14 seconds for the
Cube Scene, 9.24 seconds for the Stairs Scene and 9.83 seconds for the Swirl Scene. The
critical factor for the simulation times for SPH is the number of particles while for FLIP
the grid size and the number of fluid cells, and therefore the number of particles, are
important.
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Figure 9: Detailed performance of the underlying fluid simulations from Table 1. The
time for the SPH scenes increases by a factor of roughly ten with respect to
the FLIP scenes. The remaining frames 300–500 from the Swirl Scene are not
displayed.

Figure 10 shows the number of secondary particles for every simulation in black. The
general shapes of the plots for the scenes in each row are closely related although they
are different in height. The upper colored line in each diagram represents the simulation
time of the corresponding secondary particle algorithm. It always follows the black
curve as more particles obviously need more time to compute. The dotted, colored
line below shows what remains when subtracting the time used for the simulations
bottleneck that scales most with the number of secondary particles as outlined in the
next paragraphs. This should be the starting point of future performance improvements.

For the FLIP method two significant bottlenecks exist, each taking roughly the same
amount of time: the advection step and outputting the secondary particles. The latter
is very specific and depends on the operating system, the fluid framework and the
required input for the rendering software, so improvements for this are not particularly
useful. In our implementation the advection step is relatively inefficient and can most
likely be optimized, for instance by avoiding to recompute the entire neighbor cube or
by reducing the number of cache misses with dedicated data structures, but we leave
the details to future work. Apart from some minor variations the resulting plots for
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Figure 10: Performance of both secondary particle algorithms. For each scene the
number of diffuse particles is drawn in black with the corresponding scale
on the left. The colored plots belong to the scale on the right and show the
entire simulation time for every frame in each scene. The dotted, colored plot
below indicates the base time for each frame i.e., without the time-critical
step that scales most with the number of secondary particles.
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FLIP are entirely flat and only depend on the number of fluid cells from the underlying
simulation, shown clearly in the last row of Figure 10. This nearly constant function
allows quick estimates for the lower limit of the entire duration of the secondary
simulation with only few simulated frames.

For the SPH method the bottleneck is the computation of the fluid neighbors for
each diffuse particle, that are used for advection as described in Section 4.4. There are
already methods to compute this efficiently; Ihmsen et al. [Ihm+12] suggest to use
compact hashing. Our implementation only uses a naive, inefficient approach here
because implementing an acceleration structure from scratch is beyond the scope of
this thesis. The resulting plots for SPH shows some curvature because there are still
steps that scale with the number of secondary particles, but these are minor compared
to the neighbor computation.

In relative terms, for our algorithm the ratio of one fluid time step to one secondary
time step is not optimal and the FLIP method takes similar time as the fluid simulation
itself. The reason for this behavior is the upscaled domain that increases the number of
fluid cells that have to be computed and when using an upscale factor of one, a similar
ratio to the SPH method could be achieved. But when comparing the absolute timings
it can be seen that our FLIP adaptation is capable of simulating secondary particles in
similar numbers even faster than the SPH method. However, timings remain in the
same order of magnitude for both implementations: For the Cube Scene the average
number of secondary particles is about 1.4 million in both cases and the FLIP method
is 30% faster than the SPH method. Both simulations take nearly 53 minutes for the
Stairs Scene, but our method handles 46% more diffuse material than the SPH method
on average.
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5.3 Influence of User-Defined Constants

Our model contains many user-defined constants that control the simulations result.
Fine-tuning them for an optimal render outcome can be tedious and time consuming.
Therefore, we want to show the influence of the most important constants and provide
values that can be used as a starting point for users or future research.

Table 2: Set of constants as basis for the influence of user-defined constants.
τmin

k τmax
k τmin

ta τmax
ta τmin

wc τmax
wc kwc kta cs cb kb kd lmin lmax

5 50 5 20 2 8 1000 200 0.3 0.77 1.0 0.6 0.7 1.6

We always used the values from Table 2 for the following simulations and only
altered few parameters to get comparable results. We kept the settings throughout
rendering consistent as well. When sometimes different settings were necessary for
illustration purposes it is mentioned in the respective section. The uniform rendering
also means that images from the following sections that look relatively unrealistic could
create a completely different visual impression when appropriate rendering is applied.
For instance, simulations that contain very few secondary particles would look better
with a higher volume radius for rendering as a compensation.

5.3.1 Potential Thresholds τmin and τmax

The values for the potential thresholds, used in Equation (4), map the generation
criteria from an arbitrary range to the potential range [0, 1] and therefore they influence
how many particles are generated where inside the grid. We tried different value
combinations for all thresholds and as long as the generation criterion of all cells is
reasonably distributed over the interval [τmin, τmax], nearly no visual difference could be
noticed. Only when choosing the maximum threshold clearly too low or the minimum
threshold clearly too high, nearly all cells end up with potential values of zero and
one respectively and thus influence the simulation result negatively. We also advise
against using very low values for the minimum threshold in combination with a small
interval because this can cause every cell to create particles at every time step and lead
to exponentially growing storage consumption.

The potential thresholds from Table 2 gave good results for all scene setups we tested.
Ihmsen et al. [Ihm+12] proposed to use the same values for the SPH method too.
In addition, according to Equation (14) the number of generated particles is heavily
influenced by the choice of the sampling constants, thus we suggest to set potential
thresholds in a suitable order of magnitude and solely control the number of particles
by kwc and kta.
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5.3.2 Sampling Constants kwc and kta

These constants determine how much diffuse material is created at wave crests and at
regions where air is trapped according to Equation (14). Therefore, they influence the
amount of secondary detail visible in the scene. For all the simulations in this section
the corresponding other sampling constant is set to zero to illustrate the effects of the
currently discussed constant more clearly.

Figure 11: The four values 50, 100, 200 and 300 for kta displayed in the columns (left to
right) while kwc is set to zero in all images. The frames 70, 135 and 210 can
be seen in every row (top to bottom).

Figure 11 shows the results from simulations where kwc is reduced to zero for
illustrating purposes and kta is altered. As described in Section 4.2.2 trapped air
primarily appears at large impacts and where waves hit the water surface. These effects
are apparent in the first two rows as they show significantly different amounts of air
bubbles in each column shortly after the impact in frame 70 and near the obstacle in
frame 135. There is some influence in the spray creation due to the advection that drags
particles from the water in the air, but compared to the influence of kwc in Figure 12
the amount of spray here is rather irrelevant. After the water becomes calmer in the
bottom row, nearly no air is trapped and thus the amount of diffuse material is small.
On the one hand the wave in the middle row hits the surface with a relatively high
speed and much spray and foam is created there. On the other hand the wave in the
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lowermost row has few spray particles for all values of kta, because it is slow and only
slightly breaks. Note, that both waves only have few particles at their lip in contrast to
the two lower rows of Figure 12.

Figure 12: Again the frames 70, 135 and 210 can be seen in the different rows (top to
bottom). This time kta is set to zero and the simulations used 125, 250, 500
and 1000 for kwc (left to right).

The wave crest constant kwc determines the number of secondary particles near the
water surface on the lip of each wave. Figure 12 displays in its topmost row that
higher values lead to generally more spray. Only if the region is very turbulent and no
clear surface is recognizable bubbles may be created, visible in the two images on the
right. Therefore, the next row contains nearly no bubbles. The last frame indicates the
influence of kwc on foam very clearly: on the left nearly no details on the surface can
be observed and going to the right the level of detail incrementally increases. In the
rightmost image even smallest waves on the surface are enhanced and create the very
distinct impression of dissolving foam patterns. You can notice that in this row some
small bubble structures appear. These are caused by errors in the normal computation
or can happen due to regions that should be fluid cells, but were missed in the gap
filling process in Section 4.1 as it is not completely accurate.

Figure 13 shows how the different sampling constants influence the number of
secondary particles over the entire simulation time. Both diagrams show a similar peak,
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but it is clearly visible that kta only emphasizes impacts while kwc always enhances
waves with some amount of diffuse material. It is also interesting how doubling kwc

always results in roughly twice as many particles overall, while the particle number
grows a lot faster when doubling kta. The reason for this behavior is the higher number
of fluid cells with high trapped air potential, than the number of cells with high wave
crest potential. This means to adjust the number of particles in the scene generally,
starting by altering kta is suggestive as it provides most of the particles.
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Figure 13: Amount of diffuse material for different sampling constants. On the left
trapped air potentials from Figure 11 are used and on the right wave crest
potentials according to Figure 12 are employed.

5.3.3 Classification Thresholds cs and cb

The classification thresholds on the neighbor ratio determine whether secondary par-
ticles are rated as spray, foam or air bubbles following Equation (19) and control the
transition among the different groups. In addition, they indirectly control how the
diffuse material moves. To illustrate this Figure 14 contains all combinations of two
values for each classification threshold over three frames. The two topmost images of
the left two columns with a spray classification of 0.15 show that particles remain in a
foam state longer and the gravity from Equation (21) for spray advection takes effect
relatively late. The spray particles move far away from the water and although the
main impact on the wall is already over in frame 85, still a lot of spray is in the air. On
the right, where cs is increased by 0.3, spray particles move only near the water and
shortly after the impact almost all spray is gone. Note, that the small spray filaments
in the air only appear due to the way the water moves. The appearance of filaments
in the water is a well-known problem for FLIP simulations. The spray filaments are
closely related to this issue and would disappear if this artifact of FLIP simulations can
be prevented in any way.
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Figure 14: The four possible combinations of cs ∈ [0.15, 0.45] and cb ∈ [0.6, 0.9] in each
column. The order of the (cs, cb) pairs is (0.15, 0.6), (0.15, 0.9), (0.45, 0.6) and
(0.45, 0.9) from left to right. Every row consists of the frames 60, 85 and 170
(top to bottom).

In the lowest row of Figure 14 the influence of the bubble threshold cb is more evident.
On the one hand, low values like in the first and third column force all bubbles to rise
to the very surface and appear as white foam in the images. High values on the other
hand mean that some air bubbles are classified as foam already slightly below the water
surface, for instance seen in column two and four. As a result they stop to rise there
and only move along with the water. Thus, they contribute less to the amount of foam
displayed on top of the surface.

5.3.4 Buoyancy and Drag Constants kb and kd

The bubble movement in our model from Equation (24) is affected by the buoyancy
and drag constants. The buoyancy constant kb controls how fast air bubbles rise in the
water, measured as inverse directed and scaled gravitational force. Figure 15 illustrates
the development of simulations with different buoyancy constants over 40 frames in
each row. The initial image on the far left always shows a similar bubble state, because
the impact of the water on the left boundary shortly before frame 120 created them.
Clearly, in the two top rows with values of 0.25 and 0.5 for kb bubbles rise very slowly
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and even at frame 160 the obstacle is nearly entirely surrounded by air bubbles. In
contrast, the two bottom rows show quicker rising bubbles and the water next to the
obstacle is nearly free from particles in frame 160. This is caused by higher buoyancy
values of 1.0 and 2.0. It might seem like higher buoyancy leads to faster dissolution as
the bottom right corner shows a lot less diffuse material than the top right corner. That
is not the case, because we altered the way the scene was rendered here: to make the
bubble movement more apparent, a transparent shader was applied to the water and
foam and spray particles were entirely excluded from rendering. That means in the
bottom right corner most bubbles are already integrated in the foam and thus are not
visible in the image, but still dissolve at the same speed.

Figure 15: A comparison of different buoyancy values for three different frames. The
rows display simulations with buoyancy values of 0.25, 0.5, 1.0 and 2.0 (top
to bottom). The columns show the frames 120, 140 and 160 for each row (left
to right). Spray and foam particles were excluded from rendering and an
additional transparent shader is applied to the water.

The bubble movement along with the surrounding water is determined by the drag
constant kd from Equation (24) as well. Small values like 0.2 from the top row of Figure
16 produce bubble movement mainly determined by the buoyancy. This means bubbles
rise nearly straight from where they were created and build a relatively thick, uniform
foam on the water surface as visible in the first two frames of this row. Small foam
details, like those seen in the third frame, can tower above the surface to a certain
degree as particles oscillate between a foam and bubble state and thereby slightly move
out of the water. In the second row a drag value of one was used, moving the bubbles
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mainly with the fluid flow, similar to the foam advection from our model. Choosing
kd greater than one means bubbles move faster than the water and overtake it which
generally leads to more spray particles near waves. This can be observed in the first
frame of the bottom row in Figure 16. It can happen that some spray particles move
in the opposite direction than the main waves movement and bubbles can be dragged
back downwards. These effects are apparent in the next frame: there are more bubbles
near the obstacle than above and near the back of the wave spray starts to move to the
left.

Figure 16: Selection of the three drag values 0.2, 1.0 and 1.4, one for every row (top to
bottom). The columns represent the frames 130, 155 and 190 for each row
(left to right).

5.3.5 Lifetime Limits lmin and lmax

Both lifetime limits control how long secondary particles stay in the simulation domain
before they get removed. As seen in Equation (26), lmin and lmax create an interval for
the initial lifetime of every particle. The topmost row in Figure 17 shows that very small
lifetime values can cause spray particles to dissolve in mid-air in the top left corner,
but for high enough values all simulations look similar in the columns further on the
right. The differences become more obvious in the two later frames. Raising lmin and
lmax increases the duration small foam details are preserved. In the first two columns
foam dissolves quickly behind waves, while larger values for lmin and lmax further on
the right drag detailed foam filaments along on the water surface for some time before
dissolving them. This effect is especially strong near the obstacle that swirls the water
surface.
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Figure 17: Various combinations of lifetime limits. The rows represent the frames 80,
210 and 280 (top to bottom). From left to right the (lmin, lmax) pairs used for
the simulations were (0.2, 0.7), (0.7, 1.6), (1.6, 2.1) and (1.6, 4.0).

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

Frame

S
ec
on

d
ar
y
p
ar
ti
cl
es

(m
il
li
on

) lmin = 1.6 lmax = 4.0
lmin = 1.6 lmax = 2.1
lmin = 0.7 lmax = 1.6
lmin = 0.2 lmax = 0.7

Figure 18: Number of particles for the different life-
time limits from Figure 17.

Obviously, longer lifetime in-
creases the overall number of dif-
fuse particles in the scene. The
diagram in Figure 18 contains
the number of secondary particles
corresponding to the simulations
from Figure 17. The three plots
in blue, red and green use the
same interval size of 0.5 and thus
they show a closely related gen-
eral shape with a relatively spiky
peak of different height around
frame 120. Larger ranges flatten
the curve and diffuse material dissolves more slowly, displayed in orange. To emphasize
the influence of the lifetime limits and reduce the number of particles for the simulation
with the large lifetime range, we used smaller sampling constants in all simulations by
dividing the numbers for kwc and kta from Table 2 in half.
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6 Conclusion

In this thesis we showed how to simulate visually convincing spray, foam and air
bubble effects for FLIP and other grid-based fluids using secondary particles.

First, we gave an overview over the different possibilities to enhance fluid simulations
and showed how spray, foam and bubble effects are created in related research. The
basic concepts of SPH and FLIP, two very common methods for fluid simulations, were
shortly outlined and further literature was mentioned.

We explained in detail how we altered the approach presented by Ihmsen et al.
[Ihm+12] for purely grid-based and FLIP fluids. Therefore, potentials were computed
according to observable effects in real fluid flow that determined where and how many
particles are initialized. To recreate the volumetric impression of foam and spray we
presented an adapted sampling technique to avoid regular patterns. The secondary
particles were moved in the grid along with the fluid flow or due to gravity depending
on the particles classification using the new concept of a neighbor ratio. Particles are
dissolved in a way to preserve small foam patterns on the surface for high realism and
we compared different boundary handling schemes with their resulting artifacts. Some
insight in our implementation was provided and we discussed how secondary particles
can be displayed by volume rendering.

Next, we compared the visual impression of the SPH method to our grid adaptation
and discussed the performance of both approaches. Shortly summarized, the SPH
method excels in the depiction of realistic spray while FLIP produces better looking
small surface waves and foam details. Finally, the influence of the various user-defined
constants of our model was displayed using several frames from our simulation videos.
This can help users or future researchers to find appropriate starting values for realistic
simulations faster.
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7 Future Work

Secondary enhancement methods for fluid simulations in general are still relatively
unexplored and will be topic of future research as it delivers appealing simulations with
low computational cost. Our secondary particle model for FLIP can still be improved
as well. We found four different directions as a starting points for future work.

Optimization of the underlying simulation. Both approaches, our adaptation and
the one from Ihmsen et al. [Ihm+12], are highly dependent on the quality of the
underlying fluid simulation. The reason is the advection of the diffuse material
along with the water, where artifacts from the fluid create unrealistic initialization
or movement. For instance, some pictures in Chapter 5 show spray filaments due to
artifacts from the FLIP simulation. There are already some approaches to get rid of
them and increase the overall fidelity of FLIP simulations, for example the work from
Um et al. [UHT17]. They propose to use neural networks trained with data from
physically accurate simulations to generate small splashes that basic FLIP could not
create. In addition, some of the combined methods mentioned in Chapter 2 could
also be enhanced by merging secondary particles for SPH and for grids in one large
framework. This seems quite promising, because the weaknesses of both secondary
particle models could be removed as each method would only be employed where it
excels.

Direct improvements for our model. The general boundary handling of our model
is not optimal as discussed in Section 4.6 and could be improved. Slopes that are
already challenging for the underlying fluid simulation cause even more problems for
secondary particle creation and movement. They are typically represented as a stair
shape with small steps, due to the discretization on the grid. This leads to regular foam
patterns as many small wave crests are recognized that also create heavy aliasing effects
in the rendering process. Overall, in the current state of our solver implementation
slopes create highly implausible results. We did not test our suboptimal boundary
handling schemes for moving objects but considering the results for static obstacles
and slopes we assume that this requires additional work as well. Seeding bubbles with
respect to the surface roughness of obstacles as done by Patkar et al. [Pat+13] could be
employed too. Approaches with interactions among secondary particles would reduce

43



7 Future Work

the performance significantly, but could be worth exploring. Heuristic methods would
be a better solution to increase the realism, for example the dispersed bubble flow from
Kim et al. [KSK10]. More effects could be added too, for instance mist as a finer version
of spray in the air similar as proposed by Yang et al. [Yan+14].

Performance. As seen in Section 5.2 our new method already results in reasonably
fast simulations and some potential performance optimizations were already mentioned
there. In addition, it may be possible to advance it even further to work for real-time
applications, like the one from Chentanez and Müller [CM11]. This would require
heavily reduced resolutions and particle numbers, but would be a great addition to more
convincing real-time simulations. For hybrid methods of shallow water simulations,
like proposed by Thuerey et al. [Thu+07a], an entirely new approach for foam and spray
with secondary particles will be necessary due to a very different fluid representation.

Rendering efficiency. Last and most important, the main bottleneck of our simula-
tions is rendering. With three density textures of size 5123 for the volume rendering
the 16 GB of RAM from the used machine were stretched to the limit. For higher image
resolutions this means a single voxel results in several pixels in the rendered picture
and thus the voxel structure becomes visible from a close distance, even when the single
pixels cannot be recognized yet. In addition the textures only support volume radii up
to a certain minimum and therefore restrict the number of secondary particles that can
be displayed. Ray tracing the textures that are applied to several nested volumes is
very time-consuming and Blender does not fully support GPUs for this yet. This could
already result in some performance improvements due to higher parallelization. Future
research needs to decrease time and memory consumption of the rendering process or
develop new techniques for accurate volume rendering. This aspect could be a problem
if the main secondary particle algorithm will be adapted for real-time applications: the
rendering remains very expensive even for relatively few secondary particles and needs
to be addressed before real-time foam and spray effects can be simulated convincingly.
Additionally, rendering particles with adaptive radii and color could further improve
the visual realism.

44



Bibliography

[Aki+13] N. Akinci, A. Dippel, G. Akinci, and M. Teschner. “Screen Space Foam
Rendering.” In: Journal of WSCG 21.3 (June 2013), pp. 173–182. issn: 1213-
6972.

[BM07] R. Bridson and M. Müller-Fischer. “Fluid Simulation: SIGGRAPH 2007
Course notes.” In: ACM SIGGRAPH 2007 Courses. SIGGRAPH ’07. San
Diego, California: ACM, 2007, pp. 1–81. isbn: 978-1-4503-1823-5. doi: 10.
1145/1281500.1281681.

[Bri16] R. Bridson. Fluid simulation for computer graphics. Second edition. Boca
Raton ; London ; New York: CRC Press, 2016, XI, 263 Pages. isbn: 978-1-
4822-3283-7.

[BUH15] S. Baek, K. Um, and J. Han. “Muddy water animation with different
details.” In: Computer Animation and Virtual Worlds 26.3-4 (2015), pp. 347–
355. issn: 1546-427X. doi: 10.1002/cav.1646.

[Cle+07] P. W. Cleary, S. H. Pyo, M. Prakash, and B. K. Koo. “Bubbling and Frothing
Liquids.” In: ACM SIGGRAPH 2007 Papers. SIGGRAPH ’07. San Diego,
California: ACM, 2007. doi: 10.1145/1275808.1276499.

[CM11] N. Chentanez and M. Müller. “Real-time Eulerian Water Simulation Using
a Restricted Tall Cell Grid.” In: ACM SIGGRAPH 2011 Papers. SIGGRAPH
’11. Vancouver, British Columbia, Canada: ACM, 2011, 82:1–82:10. isbn:
978-1-4503-0943-1. doi: 10.1145/1964921.1964977.

[Cor+14] J. Cornelis, M. Ihmsen, A. Peer, and M. Teschner. “IISPH-FLIP for incom-
pressible fluids.” In: Computer Graphics Forum 33.2 (2014), pp. 255–262. issn:
1467-8659. doi: 10.1111/cgf.12324.

[EMF02] D. Enright, S. Marschner, and R. Fedkiw. “Animation and Rendering of
Complex Water Surfaces.” In: Proceedings of the 29th Annual Conference on
Computer Graphics and Interactive Techniques. SIGGRAPH ’02. San Antonio,
Texas: ACM, 2002, pp. 736–744. isbn: 1-58113-521-1. doi: 10.1145/566570.
566645.

45

https://doi.org/10.1145/1281500.1281681
https://doi.org/10.1145/1281500.1281681
https://doi.org/10.1002/cav.1646
https://doi.org/10.1145/1275808.1276499
https://doi.org/10.1145/1964921.1964977
https://doi.org/10.1111/cgf.12324
https://doi.org/10.1145/566570.566645
https://doi.org/10.1145/566570.566645


Bibliography

[FGP07] E. Froemling, T. Goktekin, and D. Peachey. “Simulating Whitewater Rapids
in Ratatouille.” In: ACM SIGGRAPH 2007 Sketches. SIGGRAPH ’07. San
Diego, California: ACM, 2007. isbn: 978-1-4503-4726-6. doi: 10.1145/
1278780.1278862.

[Gei+06] W. Geiger, M. Leo, N. Rasmussen, F. Losasso, and R. Fedkiw. “So Real
It’ll Make You Wet.” In: ACM SIGGRAPH 2006 Sketches. SIGGRAPH ’06.
Boston, Massachusetts: ACM, 2006. isbn: 1-59593-364-6. doi: 10.1145/
1179849.1179874.

[GH04] S. T. Greenwood and D. H. House. “Better with Bubbles: Enhancing the
Visual Realism of Simulated Fluid.” In: Proceedings of the 2004 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. SCA ’04. Grenoble,
France: Eurographics Association, 2004, pp. 287–296. isbn: 3-905673-14-2.
doi: 10.1145/1028523.1028562.

[HK03] J.-M. Hong and C.-H. Kim. “Animation of Bubbles in Liquid.” In: Computer
Graphics Forum 22.3 (2003), pp. 253–262. issn: 1467-8659. doi: 10.1111/
1467-8659.00672.

[Hon+08] J.-M. Hong, H.-Y. Lee, J.-C. Yoon, and C.-H. Kim. “Bubbles Alive.” In: ACM
SIGGRAPH 2008 Papers. SIGGRAPH ’08. Los Angeles, California: ACM,
2008, 48:1–48:4. isbn: 978-1-4503-0112-1. doi: 10.1145/1399504.1360647.

[Ihm+10] M. Ihmsen, N. Akinci, M. Gissler, and M. Teschner. “Boundary Handling
and Adaptive Time-Stepping for PCISPH.” In: Proc. VRIPHYS. Copen-
hagen, Denmark, Nov. 11, 2010, pp. 79–88.

[Ihm+11] M. Ihmsen, J. Bader, G. Akinci, and M. Teschner. “Animation of Air
Bubbles with SPH.” In: Proceedings of the International Conference on Com-
puter Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP
2011). INSTICC. SciTePress, 2011, pp. 225–234. isbn: 978-989-8425-45-4. doi:
10.5220/0003322902250234.

[Ihm+12] M. Ihmsen, N. Akinci, G. Akinci, and M. Teschner. “Unified Spray, Foam
and Air Bubbles for Particle-based Fluids.” In: Vis. Comput. 28.6-8 (June
2012), pp. 669–677. issn: 0178-2789. doi: 10.1007/s00371-012-0697-9.

[Ihm+14a] M. Ihmsen, J. Cornelis, B. Solenthaler, C. Horvath, and M. Teschner.
“Implicit Incompressible SPH.” In: IEEE Transactions on Visualization and
Computer Graphics 20.3 (Mar. 2014), pp. 426–435. issn: 1077-2626. doi:
10.1109/TVCG.2013.105.

46

https://doi.org/10.1145/1278780.1278862
https://doi.org/10.1145/1278780.1278862
https://doi.org/10.1145/1179849.1179874
https://doi.org/10.1145/1179849.1179874
https://doi.org/10.1145/1028523.1028562
https://doi.org/10.1111/1467-8659.00672
https://doi.org/10.1111/1467-8659.00672
https://doi.org/10.1145/1399504.1360647
https://doi.org/10.5220/0003322902250234
https://doi.org/10.1007/s00371-012-0697-9
https://doi.org/10.1109/TVCG.2013.105


Bibliography

[Ihm+14b] M. Ihmsen, J. Orthmann, B. Solenthaler, A. Kolb, and M. Teschner. “SPH
Fluids in Computer Graphics.” In: Eurographics 2014 - State of the Art
Reports, Strasbourg, France, April 7-11, 2014. 2014, pp. 21–42.

[Ihm13] M. Ihmsen. “Particle-Based Simulation of Large Bodies of Water with
Bubbles, Spray and Foam.” 2013.

[JM12] W. Jakob and S. Marschner. “Manifold Exploration: A Markov Chain Monte
Carlo Technique for Rendering Scenes with Difficult Specular Transport.”
In: ACM Trans. Graph. 31.4 (July 2012), 58:1–58:13. issn: 0730-0301. doi:
10.1145/2185520.2185554.

[Kim+06] J. Kim, D. Cha, B. Chang, B. Koo, and I. Ihm. “Practical Animation of Tur-
bulent Splashing Water.” In: Proceedings of the 2006 ACM SIGGRAPH/Eu-
rographics Symposium on Computer Animation. SCA ’06. Vienna, Austria:
Eurographics Association, 2006, pp. 335–344. isbn: 3-905673-34-7.

[KSK10] D. Kim, O.-y. Song, and H.-S. Ko. “A Practical Simulation of Dispersed
Bubble Flow.” In: ACM SIGGRAPH 2010 Papers. SIGGRAPH ’10. Los
Angeles, California: ACM, 2010, 70:1–70:5. isbn: 978-1-4503-0210-4. doi:
10.1145/1833349.1778807.

[KVG02] H. Kück, C. Vogelgsang, and G. Greiner. “Simulation and Rendering of
Liquid Foams.” In: Proceedings - Graphics Interface. June 2002.

[Los+08] F. Losasso, J. Talton, N. Kwatra, and R. Fedkiw. “Two-Way Coupled SPH
and Particle Level Set Fluid Simulation.” In: IEEE Transactions on Visualiza-
tion and Computer Graphics 14.4 (July 2008), pp. 797–804. issn: 1077-2626.
doi: 10.1109/TVCG.2008.37.

[MCG03] M. Müller, D. Charypar, and M. Gross. “Particle-based Fluid Simulation for
Interactive Applications.” In: Proceedings of the 2003 ACM SIGGRAPH/Euro-
graphics Symposium on Computer Animation. SCA ’03. San Diego, California:
Eurographics Association, 2003, pp. 154–159. isbn: 1-58113-659-5.

[MMS09] V. Mihalef, D. Metaxas, and M. Sussman. “Simulation of two-phase flow
with sub-scale droplet and bubble effects.” In: Computer Graphics Forum
28.2 (2009), pp. 229–238. issn: 1467-8659. doi: 10.1111/j.1467-8659.2009.
01362.x.

[Mon92] J. J. Monaghan. “Smoothed Particle Hydrodynamics.” In: Annual Review of
Astronomy and Astrophysics 30.1 (1992), pp. 543–574. doi: 10.1146/annurev.
aa.30.090192.002551.

47

https://doi.org/10.1145/2185520.2185554
https://doi.org/10.1145/1833349.1778807
https://doi.org/10.1109/TVCG.2008.37
https://doi.org/10.1111/j.1467-8659.2009.01362.x
https://doi.org/10.1111/j.1467-8659.2009.01362.x
https://doi.org/10.1146/annurev.aa.30.090192.002551
https://doi.org/10.1146/annurev.aa.30.090192.002551


Bibliography

[NØ13] M. B. Nielsen and O. Østerby. “A Two-continua Approach to Eulerian
Simulation of Water Spray.” In: ACM Trans. Graph. 32.4 (July 2013), 67:1–
67:10. issn: 0730-0301. doi: 10.1145/2461912.2461918.

[OF03] S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces.
New York: Springer-Verlag, 2003, XIII, 273 Pages. isbn: 978-0-387-95482-0.
doi: 10.1007/b98879.

[Pat+13] S. Patkar, M. Aanjaneya, D. Karpman, and R. Fedkiw. “A Hybrid
Lagrangian-Eulerian Formulation for Bubble Generation and Dynam-
ics.” In: Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on
Computer Animation. SCA ’13. Anaheim, California: ACM, 2013, pp. 105–
114. isbn: 978-1-4503-2132-7. doi: 10.1145/2485895.2485912.

[Tak+03] T. Takahashi, H. Fujii, A. Kunimatsu, K. Hiwada, T. Saito, K. Tanaka, and
H. Ueki. “Realistic Animation of Fluid with Splash and Foam.” In: Comput.
Graph. Forum. Vol. 22. Sept. 2003, pp. 391–400.

[Thu+07a] N. Thuerey, M. Müller-Fischer, S. Schirm, and M. Gross. “Real-time Break-
ing Waves for Shallow Water Simulations.” In: Computer Graphics and
Applications, 2007. PG ’07. 15th Pacific Conference on. Oct. 2007, pp. 39–46.
doi: 10.1109/PG.2007.33.

[Thu+07b] N. Thuerey, F. Sadlo, S. Schirm, M. Müller-Fischer, and M. Gross. “Real-
time Simulations of Bubbles and Foam Within a Shallow Water Frame-
work.” In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation. SCA ’07. San Diego, California: Eurographics As-
sociation, 2007, pp. 191–198. isbn: 978-1-59593-624-0.

[TRS06] N. Thuerey, U. Rüde, and M. Stamminger. “Animation of Open Water
Phenomena with Coupled Shallow Water and Free Surface Simulations.”
In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation. SCA ’06. Vienna, Austria: Eurographics Association,
2006, pp. 157–164. isbn: 3-905673-34-7.

[UHT17] K. Um, X. Hu, and N. Thuerey. Liquid Splash Modeling with Neural Networks.
Apr. 2017. arXiv: 1704.04456 [cs.GR].

[Wan+13] C.-b. Wang, Q. Zhang, F.-l. Kong, and H. Qin. “Hybrid particle-grid fluid
animation with enhanced details.” In: The Visual Computer 29.9 (Sept. 2013),
pp. 937–947. issn: 1432-2315. doi: 10.1007/s00371-013-0849-6.

[Yan+14] L. Yang, S. Li, A. Hao, and H. Qin. “Hybrid Particle-grid Modeling for
Multi-scale Droplet/Spray Simulation.” In: Computer Graphics Forum 33.7
(2014), pp. 199–208. issn: 1467-8659. doi: 10.1111/cgf.12488.

48

https://doi.org/10.1145/2461912.2461918
https://doi.org/10.1007/b98879
https://doi.org/10.1145/2485895.2485912
https://doi.org/10.1109/PG.2007.33
http://arxiv.org/abs/1704.04456
https://doi.org/10.1007/s00371-013-0849-6
https://doi.org/10.1111/cgf.12488


Bibliography

[Yan+15] L. Yang, S. Li, Q. Xia, H. Qin, and A. Hao. “A Novel Integrated Analysis-
and-simulation Approach for Detail Enhancement in FLIP Fluid Interac-
tion.” In: Proceedings of the 21st ACM Symposium on Virtual Reality Software
and Technology. VRST ’15. Beijing, China: ACM, 2015, pp. 103–112. isbn:
978-1-4503-3990-2. doi: 10.1145/2821592.2821598.

[Yue+15] Y. Yue, B. Smith, C. Batty, C. Zheng, and E. Grinspun. “Continuum Foam: A
Material Point Method for Shear-Dependent Flows.” In: ACM Trans. Graph.
34.5 (Nov. 2015), 160:1–160:20. issn: 0730-0301. doi: 10.1145/2751541.

[ZB05] Y. Zhu and R. Bridson. “Animating Sand As a Fluid.” In: ACM SIGGRAPH
2005 Papers. SIGGRAPH ’05. Los Angeles, California: ACM, 2005, pp. 965–
972. doi: 10.1145/1186822.1073298.

[ZYP06] W. Zheng, J.-H. Yong, and J.-C. Paul. “Simulation of Bubbles.” In: Proceed-
ings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation. SCA ’06. Vienna, Austria: Eurographics Association, 2006, pp. 325–
333. isbn: 3-905673-34-7.

49

https://doi.org/10.1145/2821592.2821598
https://doi.org/10.1145/2751541
https://doi.org/10.1145/1186822.1073298

	Acknowledgments
	Abstract
	Contents
	Introduction
	Related Work
	SPH and FLIP
	Smoothed Particle Hydrodynamics (SPH)
	Fluid-Implicit-Particles (FLIP)

	Secondary Particles for SPH and Adaptations for FLIP
	Loading Simulation Data
	Potentials for Diffuse Material
	Sampling and Initialization
	Advection
	Dissolution
	Boundaries
	Implementation and Rendering

	Results
	Comparison between SPH and FLIP
	Performance
	Influence of User-Defined Constants

	Conclusion
	Future Work
	Bibliography

