
Perceptual Evaluation of Liquid Simulation Methods

KIWON UM, Technical University of Munich
XIANGYU HU, Technical University of Munich
NILS THUEREY, Technical University of Munich

Fig. 1. We evaluate di�erent simulation methods (le�) with user study consisting of pair-wise comparisons with reference (middle). This allows us to robustly
evaluate the di�erent simulation methods (right).

This paper proposes a novel framework to evaluate �uid simulation meth-
ods based on crowd-sourced user studies in order to robustly gather large
numbers of opinions. The key idea for a robust and reliable evaluation is
to use a reference video from a carefully selected real-world setup in the
user study. By conducting a series of controlled user studies and comparing
their evaluation results, we observe various factors that a�ect the perceptual
evaluation. Our data show that the availability of a reference video makes
the evaluation consistent. We introduce this approach for computing scores
of simulation methods as visual accuracy metric. As an application of the
proposed framework, a variety of popular simulation methods are evaluated.
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1 INTRODUCTION
In science, we constantly evaluate the results of our experiments.
While some aspects can be proven by mathematical measures such
as the complexity class of an algorithm, we resort to measurements
for many practical purposes. When measuring a simulation, the
metrics for evaluation could be the computation time of a novel
optimization scheme or the order of accuracy of a new boundary
condition. These evaluation metrics are crucial for scientists to
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demonstrate advances but also useful for users to select the most
suitable one among various methods for a given task.

This paper targets numerical simulations of liquids; in this area,
most methods strive to compute solutions to the established physical
model, i.e., the Navier-Stokes (NS) equations, as accurately as possi-
ble. Thus, researchers often focus on demonstrating an improved
order of convergence to show that a method leads to a more accu-
rate solution [Batty et al. 2007; Enright et al. 2003; Kim et al. 2005].
However, for computer graphics, the overarching goal is typically
to generate believable images from the simulations. It is an open
question how algorithmic improvements such as the contribution of
a certain computational component map to the opinion of viewers
seeing a video generated with this method.

There are several challenges here. Due to the complexity of our
brain, we can be sure that there is a very complex relationship
between the output of a numerical simulation and a human opinion.
So far, there exist no computational models that can approximate
or model this opinion. A second di�culty is that the transfer of
information through our visual system is clearly in�uenced not
only by the simulation itself but also by all factors that are involved
with showing an image such as materials chosen for rendering
and the monitor setup of a user. Despite these challenges, the goal
of this paper is to arrive at a reliable visual evaluation of �uid
simulation methods. We will circumvent the former problem by
directly gathering data from viewers with user studies, and we will
design our user study setup to minimize the in�uence of image-level
changes.

While there are interesting studies that investigate individual
visual stimuli [Han and Keyser 2016] and the in�uence of di�erent
rendering methods for liquid simulations [Bojrab et al. 2013], our
goal is to calculate the perceptual scores for �uid simulations on
a high-level from animations produced with di�erent simulation
methods. We will demonstrate that a robust perceptual evaluation
framework can be realized using crowd-sourced user studies that
utilize carefully chosen simulation setups and a reference video. This
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will allow us to retrieve reliable visual accuracy scores of di�erent
simulation methods evaluated in each study. In order to establish
this framework, we ran an extensive series of user studies gathering
more than 53,000 votes in total. The overview of our framework is
illustrated in Figure 1.

In summary, we propose a novel perceptual evaluation framework
for liquid simulations. To the best of our knowledge, the perceptual
evaluation of physically-based liquid animations has previously not
been studied, and we will use our framework to evaluate di�erent
simulation methods and parameterizations. From our evaluation
results, we will draw useful observations for di�erent simulation
methods.

2 RELATED WORK
Fluid simulation methods typically compute solutions to the NS
equations, which can be written as ∂u/∂t+u ·∇u = g−∇P/ρ+ν∇2u
with the additional constraint to conserve volume: ∇ · u = 0, where
u is the velocity, g is the gravity, P is the pressure, ρ is the den-
sity, and ν is the viscosity coe�cient. Numerical solvers for these
equations can be roughly categorized as Eulerian and Lagrangian
methods. Fluid animations using Eulerian discretizations have been
pioneered by Foster and Metaxas [1996], and the stable �uids solver
[Stam 1999] has been widely used after its introduction. For liquids,
the particle level set method has been demonstrated to yield accu-
rate and smooth surface motions [Enright et al. 2002]. Currently, the
�uid-implicit-particle (FLIP) approach, which combines Eulerian in-
compressibility with a particle-based advection scheme to represent
small-scale details and splashes, is widely used for visual e�ects
[Zhu and Bridson 2005]. The FLIP algorithm has been extended to
many interesting applications such as the artistic control [Pan et al.
2013] and adaptivity [Ando et al. 2013]. In the following, we will
focus on liquid simulations in simple domains without any adap-
tivity. We believe that this is a good starting point for our studies,
but these extensions would of course be interesting for perceptual
evaluations in the future.

The FLIP method was extended to incorporate position correction
of the participating particles [Ando et al. 2012; Um et al. 2014] and
to improve its e�ciency by restricting particles to a narrow band
around the surface [Ferstl et al. 2016]. Secondary e�ects generation
has been a highly popular topic within the �uid simulation area in
order to increase the apparent detail of the simulation [Ihmsen et al.
2012]. Many movies and interactive applications have incorporated
hand-tuned parameters and heuristics to approximate where and
how splashes, foam, and bubbles develop from an under-resolved
simulation. Moreover, a unilateral pressure solver was proposed to
enable large-scale splashes in FLIP [Gerszewski and Bargteil 2013].
Recently, several more FLIP variants were proposed to incorporate
complex material e�ects that go beyond regular Newtonian �uids
[Ram et al. 2015; Stomakhin et al. 2013]. We will later use the closely
related a�ne particle-in-cell (APIC) variant [Jiang et al. 2015] as
one of our candidates for simulation methods.

Lagrangian �uid simulation techniques in graphics are typically
based on variants of the smoothed particle hydrodynamics (SPH)
approach. After its �rst use for deformable objects [Debunne et al.
1999], an SPH algorithm for liquids was introduced by Müller et

al. [2003], and then weakly-compressible SPH (WCSPH) was in-
troduced by Becker and Teschner [2007]. The SPH algorithm was
adopted and extended in a multitude of ways such as an adaptive
discretization [Adams et al. 2007] and a predictor-corrector step that
improves e�ciency and stability [Solenthaler and Pajarola 2009].
Techniques for two-way coupling between rigid bodies and liquids
have likewise been proposed [Akinci et al. 2012].

A di�erent formulation using the position-based dynamics view-
point was proposed for real-time simulations [Macklin and Müller
2013] while other researchers suggested an implicit method for bet-
ter convergence rate [Ihmsen et al. 2014a]; this is known as implicit
incompressible SPH (IISPH). From the Lagrangian �eld, we will re-
strict our visual accuracy study to a few selected methods: WCSPH
and IISPH, which are typical and popular in graphics. Additionally,
we also include an engineering SPH variant [Adami et al. 2012],
from which we expect particularly accurate simulations; we denote
this variant as SPH in our studies.

Naturally, researchers have been interested in combining aspects
of the Lagrangian and Eulerian representations by bringing SPH
and grid-based solving components together [Losasso et al. 2008;
Raveendran et al. 2011]. We have not yet included these hybrid
approaches in our studies, although FLIP arguably represents a
hybrid particle-grid method. For a thorough overview of popular
�uid simulations methods, refer to the book by Bridson [2015] and
state-of-the-art report by Ihmsen et al. [2014b].

The human visual system and perception of image and video
contents have received signi�cant attention in computer graphics
in order to study how algorithmic choices in�uence the �nal judg-
ment of the created images. For example, in the area of rendering
techniques, Cater et al. [2002] proposed to use selective and per-
ceptually driven rendering approaches, and Dumont et al. [2003]
introduced a theoretical framework to compute perceptual metrics.
In photography, Masia et al. [2009] perceptually evaluated di�erent
techniques for tone-mapping HDR images with user studies. For
videos, an approach for perceptually-driven up-scaling of 3D con-
tent was proposed [Didyk et al. 2010] while others investigated a
computational model for the perceptual evaluation of videos [Aydin
et al. 2010].

Beyond rendering and video, perceptual studies have also been
used in the �eld of character animation. Especially, human charac-
ters have received attention. For instance, McDonnell et al. [2008]
studied how to populate natural crowds for virtual environments.
More recently, researchers also gathered data on the attractiveness
of virtual characters [Hoyet et al. 2013]. In the area of deformable ob-
jects, Han and Keyser [2016] studied how visual details can in�uence
the perceived sti�ness of materials. Bojrab et al. [2013] studied how
rendering styles of liquids in�uence user opinion. While this work
also considers liquids, our goal is in a way orthogonal to theirs. We
focus on simulation methods without being in�uenced by rendering
styles.

3 VISUAL EVALUATION OF LIQUID SIMULATIONS
Despite the fact that most liquid simulation methods are physically-
based and thus capable of approximating the NS equations in the
limit, noticeable visual di�erences exist among animations created
from the di�erent methods. Being aware of these di�erences, we
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Fig. 2. Two simulation setups [Botia-Vera et al. 2010; Kleefsman et al. 2005]
for evaluation of liquid simulation and example frames of real experiments.

propose a novel approach that employs user studies to evaluate the
di�erent methods in terms of how closely they match real phenom-
ena. The goal of our approach is to robustly and reliably compare
di�erent liquid simulations such that the evaluation re�ects a gen-
eral opinion. Therefore, we employ a crowd-sourcing platform in
order to recruit many participants to retrieve a reliable evaluation.

We focus on the perceptual evaluation of simulations in terms of
what we call visual accuracy. We de�ne this visual accuracy to be a
score computed from user study data to compare di�erent methods,
and we will make sure that it can be computed in a robust and
unbiased way. To collect data, we let users select a preferred video
from pair-wise comparisons, and we found it crucial for robustness
to provide participants with a visual reference. As we will outline
below, this also makes the results very stable with respect to strongly
di�ering rendering styles. These comparisons with a reference video
are also our motivation to see the scores we compute as a form of
accuracy.

Liquid simulations are commonly used tools in visual e�ects
and applied for a vast range of phenomena from drops of blood to
large scale ocean scenes. While it would be highly interesting to
evaluate all of them, we focus on one particular regime of water-like
liquids on human scales. This regime is highly challenging due to
the low viscosity of water. The resulting �ows typically feature high
Reynolds numbers, complex waves, and large amounts of droplets
and splashes. Although this naturally limits the regime of our study,
we believe that it is particularly a representative for many e�ects
and thus worth studying. Next, we will present two carefully chosen
simulation setups that will also form the basis of our user studies in
Section 3.2.

3.1 Simulation Setup
When selecting simulation setups, our requirements are that the
setups are easy to realize in numerical simulations; thus, they do not

involve any specialized domain boundary conditions or any mov-
ing obstacles. Therefore, the setups should be easily reproducible.
Nonetheless, the setups need to result in su�ciently complex dynam-
ics such as overturning waves and splashes in order to be relevant
for visual e�ects applications. Note that our setups stem from the
engineering community. This has the additional bene�t that detailed
�ow measurements are available as well as video data from real
experiments. The latter is especially important for our user study
later.

Our �rst setup is close to the popular breaking dam case often
seen in graphics. Such a benchmark setup is also often used for
validation in the engineering studies, which adds an obstacle in
front of the breaking dam for additional complexity [Kleefsman
et al. 2005]. This setup uses a tank of size 3.22m×1m×1m with an
open roof, a static obstacle of 0.16m×0.16m×0.4m, and an initial
water volume of 1.23m×0.55m×1.0m. As the tank is more than three
meters in length and the initial column is considerably high, this
breaking dam setup results in violent and turbulent splashes, which
makes it tough but relevant for our purposes. We will denote this
setup as dam in the following, and the details of its initial conditions
are illustrated in Figure 2-(a).

Our second setup is a sloshing wave tank [Botia-Vera et al. 2010];
this is illustrated in Figure 2-(b). A rectangular tank partially �lled
with water experiences a periodic motion that continually injects
energy into the system leading to waves and splash e�ects form-
ing over time. The size of the tank is 0.9m×0.51m×0.062m, and the
rotation axis is located at the lower center of the tank. The initial
water height is 0.093m. This setup has a signi�cantly smaller overall
water volume; it leads to interesting waves forming over time. These
waves are more prominent here than in the dam setup. We will de-
note this setup as wave in the following. Additional documentation
for both setups is available online [Issa et al. 2017].

For all simulations, we parameterize them according to the real-
world dimensions given above using earth gravity as the only exter-
nal force. Unless otherwise noted, we will not include any additional
viscosity. In the following, we explain the user studies, which are
based on one of these two setups.

3.2 User Study Design
The goal of the user studies is to reliably evaluate the visual accuracy
across a set of m videos produced by di�erent simulation methods.
While many variants of user studies are imaginable [Leroy 2011],
we opted for purely binary questions in order to reduce noise and
inconsistencies in the answers. We also want to make the design as
simple as possible to prevent misunderstandings. Thus, participants
are shown two videos to consider in comparison to a reference video
as illustrated in Figure 3. The videos are played repeatedly without
time limit, and the participants are given the task to select one video
which they consider to be closer to the reference video.

All participants have to give their vote for all possible pairs
in a study. Thus, for m videos under consideration, we collect
m(m − 1)/2 responses per participant. In order to limit the work-
load per participant, we ensure that m is kept small, e.g., m <= 7
for our studies. In order to identify untrustworthy participants, we
duplicate the set of comparisons and randomize their order; then,
we check the consistency of the answers. We reject participants
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Fig. 3. Our user study design.

with a consistency of less than 70% [Cole et al. 2009]. Note that we
also randomize the positioning of both videos for each question (i.e.,
left and right side).

Based on the pair-wise votes per study, we can now compute a
set of scores for all m videos. For this purpose, we adopt the widely
used Bradley-Terry model [Bradley and Terry 1952]. We review the
model brie�y here. Its goal is to compute scores si such that we can
de�ne the probability pi j that a participant chooses video i over
video j as:

pi j = esi−sj /
(
1 + esi−sj

)
. (1)

Letwi j denote the number of times where video i was preferred over
video j in a user study. Assuming the observations are independent,
wi j follows a binomial distribution. Therefore, the log likelihood for
all pairs among all videos can be calculated as follows:

L(s) =
m∑
i=1

m∑
j=1

(
wi jsi −wi j ln(esi + esj )

)
(2)

where s = [s1, s2, ..., sm]. The �nal scores of all videos are computed
by solving for the s that maximizes the likelihood function L in
Equation (2) [Hunter 2004].

The vector of scores s is what we use to evaluate the visual ac-
curacy in the following. Note that these scores do not yield any
“absolute” distances to the reference, and they cannot be used to
make comparisons across di�erent studies. However, we found that
they yield a reliable scoring and probability (see Equation (1)) for
all videos participating in a single study.

In order to prevent bias with respect to the participants, we ran
a series of studies in three di�erent crowd-sourcing platforms and
found that di�erences were negligible. Details for these studies can
be found in Appendix A. Across our studies, we also noticed that
the consistency checks did not substantially in�uence the results,
thus the large majority of participants was trustworthy. We gath-
ered 50 answers per pair-wise comparison question from di�erent
participants in each user study. In total, we collected user study data
for 53,300 questions from 612 participants in 65 countries.

(a) Opaque (b) Transparent

Fig. 4. Example frames of the opaque and transparent rendering styles.

Seeing the consistency of answers across di�erent platforms, we
believe that the user study design described above yields consistent
answers. However, the existence of consistent scores by themselves
does not yet mean that we can draw conclusions about the un-
derlying simulation methods rather than about a certain style of
visualization. In the next section, we will present a series of user
studies to investigate whether we can speci�cally target simulation
methods.

3.3 Visual Accuracy for Simulations
In order to show that there is a very high likelihood that our studies
allow conclusions to be drawn about the simulation methods, we
now turn to comparisons of studies. Thus, instead of considering
individual visual accuracy scores si , we will consider multiple sets
of score vectors s to be compared with each other. Once we have
demonstrated that our user studies allow us to draw conclusions
with high con�dence, we will discuss individual scores for speci�c
simulation-related questions in Section 4.

In the following, we will analyze pairs of studies for which we
make only a single change. For example, one study will have ren-
dering style A, and a second study will have rendering style B while
keeping all other conditions identical. We then perform a correlation
analysis for these studies. If the studies turn out to be correlated,
we can draw conclusions about the in�uence of the change on the
outcome.

For the correlation analysis, we compute the Pearson correla-
tion coe�cient and statistical signi�cance [Pearson 1920], which
are widely used in statistics as a measure of the linear correlation
between two variables x , y ∈ Rm . This correlation coe�cient r is
the covariance of the two variables divided by the product of their
standard deviations σx and σy , i.e., r = cov(x ,y)/σxσy . A strong
positive correlation, i.e., very similar score distributions, will result
in values close to +1, while uncorrelated or inverted scores, hence
very di�erent user opinions, will result in correlations of 0 or even
negative correlations of −1.

In order to investigate the robustness of our visual accuracy eval-
uation, we set up user studies with six videos. The six versions were
chosen to broadly sample the space of typical resolutions and simula-
tion methods. For the studies of this section, we are not particularly
interested in the speci�c details of the simulation methods as long
as they are representative for commonly used methods of graphics
applications. With this goal in mind, we will use a popular Eulerian
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Table 1. Correlation analysis for the sets of scores evaluated from di�erent user studies using FLIP and SPH. Here, ref. denotes the reference video.

ID Comparison (IDs in Table 7) Constant parameters r p-value
C0 opaque (A) vs. transparent (B) dam with ref. 0.97347 0.00105
C1 dam (A) vs. wave (C) rendered in opaque with ref. 0.96557 0.00176
C2 opaque (A*) vs. transparent (B*) dam w/o ref. −0.01308 0.98039
C3 dam (A*) vs. wave (C*) rendered in opaque w/o ref. 0.83895 0.03682
C4 with ref. (A) vs. w/o ref. (A*) dam rendered in opaque 0.64540 0.16632
C5 with ref. (B) vs. w/o ref. (B*) dam rendered in transparent −0.60960 0.19887 -0.6
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-0.2

 0

 0.2
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 0.6

 0.8

with ref.

C0 C1

w/o ref.

C2 C3

with ref. vs. w/o ref.

C4 C5

method FLIP [Zhu and Bridson 2005] and Lagrangian method SPH
[Adami et al. 2012] with three representative resolutions as shown
in Table 2. Note that FLIP e�ectively is a hybrid Lagrangian-Eulerian
method. However, we consider FLIP as Eulerian in our studies due
to its Eulerian pressure solver, which is a key component of the
algorithm. We put an emphasis on visual aspects with the studies
described in the following section.

The space of possible visualization techniques for liquid anima-
tions is huge. Many freely available renderers exist to create realistic
images. Real-time applications typically use specialized shaders for
e�ciency, and visual e�ects in movies employ very re�ned compo-
sitions of many layers to produce highly realistic visuals. Instead
of trying to cover this whole space of possibilities, we focus on
two extremes of the spectrum: a fully opaque rendering style and
perfectly transparent surface. While the former employs a simple
di�use material similar to a preview rendering, the transparent ren-
dering style exhibits complex lighting e�ects, such as refraction,
re�ection, and caustics. A consequence is that the surface is very
clearly visible for the di�use surface in contrast to the transparent
rendering. Still images for an example of these two rendering styles
can be found in Figure 4.

Comparisons of user studies: Assuming that our design for user
studies is reliable, we expect to see a strong correlation when com-
paring two studies with these di�erent rendering styles despite the
di�erences in appearance. This hypothesis is con�rmed with a cor-
relation coe�cient of more than 0.97 with a high con�dence level
(p<0.01). The details for this correlation calculation C0 as well as the
following ones can be found in Table 1, and the full studies under

Table 2. Six simulation configurations for the experiments of Table 1 and
3. Here, S denotes the scaling factors of resolution, and M denotes the
methods: Eulerian (Eu.) and Lagrangian (La.)

S M Resolutions for particle and grid
dam wave

1x Eu. 83k ( 80× 75× 25) 23k ( 75× 42× 5)
2x Eu. 664k (160×150× 50) 186k (150× 84×10)
4x Eu. 5,315k (320×300×100) 1,488k (300×168×20)
1x La. 84k ( 80× 75× 25) 24k ( 75× 42× 5)
2x La. 665k (160×150× 50) 186k (150× 84×10)
3x La. 2,253k (240×225× 75) 634k (225×126×15)

consideration are given in Table 7. Considering the substantially dif-
ferent images resulting from these two rendering styles, we believe
that the strong correlation is an encouraging result.

When removing the reference video from the user study design
(C2), i.e., only showing two videos of numerical simulations with the
task to select the “preferred” version, the result changes drastically.
Instead of a positive correlation, we now see a nearly no correlation
(i.e., r = −0.013). Thus, without the availability of a reference video,
the opinion between videos changes very strongly when switching
from the opaque to the transparent rendering style.

While we used the dam setup for the study above, we now repeat
this comparison keeping the rendering style constant (i.e., opaque)
and comparing simulation setups (dam versus wave). When perform-
ing these studies with reference videos, we see a strong correlation
of 0.97 (C1) with a high con�dence level (p<0.01), whereas the cor-
relation slightly drops to 0.84 when the reference video is removed
(C3). The absence of a reference video does not necessarily lead to
inconsistent results for all cases, rather there is an increased chance
of ambiguity and substantially di�erent responses.

From the �rst two pairs of comparisons, we draw the conclusion
that the availability of a visual reference is crucial for a consistent
evaluation of the liquid motion. Having a reference video even stabi-
lizes results from strongly di�ering visualization styles as illustrated
with the studies of C0. The reference video is also the reason why
we believe our results do not contradict previous work that found
substantial in�uence of rendering styles on perception for animated
water [Bojrab et al. 2013]. Regarding liquid motions in the human-
scale regime, our results indicate that the in�uence of rendering can
be made negligible by providing a visual reference. Note that our
reference does not need to closely match the rendering style used
for the simulation videos. The results are consistent even for con-
siderably stylized and di�erent rendering styles such as our opaque
and transparent styles; both are very di�erent from the reference
video. The di�erent correlation scores are summarized visually at
the �gure in Table 1. This �gure again highlights that the low and
even negative correlations are stabilized by the availability of a
reference video.

To shed further light on this topic, we compute correlations be-
tween the studies with and without reference video. These cor-
respondences can be found in C4,5 in Table 1. In both cases, the
visual accuracy scores of the methods under consideration change
substantially when the reference video is removed. This results in
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Fig. 5. Example frames of our alternate reference video for dam.

the correlations that are not statistically signi�cant (p>0.05). Be-
sides, the results with the transparent rendering style show a drastic
change of user opinions. Thus, without a reference video, visual
appearance can strongly in�uence the scores.

Reference videos: The video we used as reference for the dam
example has a visual appearance that is clearly di�erent from our
renderings. We note that visual accuracy can be evaluated even
when the simulated phenomena bear only rough resemblance to
the reference video. Figure 5 shows the example frames of a video
recorded in nature at a seashore. In an additional user study with
the dam simulations, we use this seashore video as reference instead
of the one shown in Figure 2. The resulting scores (A+ in Table 7)
are highly correlated with the results of the original study with the
video of the dam experiment (A in Table 7). Here, the correlation is
0.93 with a high con�dence level (p<0.01).

On the other hand, when we use a video that di�ers more strongly
in another additional user study, the results start to change. The
correlation between a study using the wave video with the dam
simulations (A− in Table 7) and the original study (A in Table 7) is
not statistically signi�cant (p>0.05). To summarize, our results show
that a reliable visual accuracy can be established even if no reference
to the exact simulation setup is available. The human visual system
is powerful enough to correlate the visual inputs despite di�erent
appearance. However, the stability of the results drops when the
physics di�er substantially.

Representative methods: At this point, we also want to con�rm
our assumption that the two initially chosen simulation methods
are representative for commonly used Eulerian and Lagrangian
methods. We choose two di�erent methods from the Eulerian and
Lagrangian classes: APIC [Jiang et al. 2015] and IISPH [Ihmsen et al.
2014a]. With these two methods, we performed new user studies
keeping the remainder of the user study and simulation setups
constant; i.e., the simulations use the same resolutions of particle
and grid as before (Table 2). The strong positive correlation for
this pair of studies con�rms our initial assumption (C6 in Table 3).
Note that our two sets of simulation methods are also correlated in
studies without a reference video (C7). Presumably, this indicates
that the participants’ tendency in preference among the two classes
of methods is fairly consistent. In this case, the individual scores
of each method change substantially between the FLIP&SPH and
APIC&IISPH sets. Thus, this makes it di�cult to draw a conclusion
among the di�erent methods of each class. However, the correlation
between the two sets of methods con�rms our assumption that
these methods cover the space of Eulerian and Lagrangian classes
well. In addition, we �nd that the availability of a reference video
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Fig. 6. Visual accuracy scores of the seven simulation methods under con-
sideration (J and K in Table 7).

a�ects the stability also in these methods (C8). This is consistent
with the aforementioned results indicating again that the absence
of reference video results in a chance of ambiguity.

4 APPLICATIONS AND RESULTS
In this section, we use our approach to evaluate the visual accuracy
of various simulation methods (Section 4.1 and 4.2). We also demon-
strate that our evaluation allows us to redeem heuristic approaches,
such as the grid resolution for particle skinning (Section 4.3), or algo-
rithmic modi�cations, such as a splash model for FLIP simulations
(Section 4.4).

4.1 Liquid Simulation Methods
When establishing our evaluation framework, a central goal was to
compare simulation methods. In the following, we evaluate seven
simulation methods from the Eulerian and Lagrangian classes: marker-
particles (MP) [Foster and Metaxas 1996], a solver with level set
surface tracking (LS) [Foster and Fedkiw 2001], FLIP [Zhu and Brid-
son 2005], and APIC [Jiang et al. 2015] as representatives of Eulerian
methods; WCSPH [Becker and Teschner 2007], IISPH [Ihmsen et al.
2014a], and a so-called wall-boundary SPH method [Adami et al.
2012] as representatives of Lagrangian ones. Note that this classi�-
cation is primarily based on whether the method uses a grid in the
pressure solver. Using these seven methods, we simulate our two
simulation setups, i.e., dam and wave from Section 3.1.

The evaluation results are summarized in Figure 6. Interestingly,
the Lagrangian methods (particularly, IISPH and SPH) consistently
receive higher visual accuracy scores than the other methods. Among
the Eulerian methods, the FLIP variants (i.e., APIC and FLIP) receive
higher scores than MP and LS. Our guess for the latter results is
that the MP and LS versions exhibit a very small amount of droplets.
Note that the score of WCSPH is also noticeably low in the wave
example; we observe that the amount of splashes is likewise very
small, and the surface motion is highly viscous due to its arti�cial
viscosity. Here, the level set method receives a higher score than
WCSPH. We presume that this is caused by the arti�cial viscosity
of the WCSPH solve, which often results in a stronger damping of
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Table 3. Additional correlation analysis for two sets of simulation methods. Here, the dam example is used with opaque style.

ID Comparison (IDs in Table 7) Constant parameters r p-value
C6 FLIP&SPH (A) vs. APIC&IISPH (D) with ref. 0.96057 0.00230
C7 FLIP&SPH (A*) vs. APIC&IISPH (D*) w/o ref. 0.96932 0.00140
C8 with ref. (D) vs. w/o ref. (D*) APIC&IISPH 0.72139 0.10562

its surface motion in comparison to the LS solve. Figure 7 shows
several still frames of all the methods.

For the implementation of each method, we followed the original
work without any considerable modi�cations. The Eulerian methods
(i.e., MP, LS, FLIP, and PIC) used grid resolutions of 160×150×50 for
dam and 150×84×10 for wave. All methods except LS used 665K par-
ticles for dam and 186K particles for wave. Although the Lagrangian
methods did not use any grid in their solve, we used the same un-
derlying grid for initializing the particles and sampled each cell
with eight particles. While the Lagrangian methods used a uniform
sampling, the Eulerian methods randomly jittered the particles to
avoid aliasing. Note that this resulted in slightly di�erent numbers
of particles (∼1k) between the two classes of methods; the particles
were not reseeded during the simulation. In order to ensure a com-
parable resolution for surface tracking in all methods, we used a
doubled resolution for tracking the level set in LS. For the pressure
solver of the Eulerian methods, we used a standard conjugate gra-
dient method with modi�ed incomplete Cholesky preconditioning
[Bridson 2015]. All implementations and setups can be found online.

4.2 Limited Computational Budget
This experiment focuses on the four methods that ranked high-
est from the previous evaluation and re-evaluates them with the
constraint of a limited computational budget per frame. While the
previous study kept resolution and particle count constant, we have
adjusted them to yield comparable runtimes for this study. We sim-
ulated the dam example using APIC, FLIP, IISPH and SPH such that
they all required approximately 55 seconds per frame of animation.
Here, we do not include the computational costs for non-simulation
steps such as surface generation and rendering. We are aware that
absolute comparisons of performance are di�cult in general, but we
have made our best e�orts to treat all methods fairly and to bring
all implementations up to a similar level of optimization (e.g., all
implementations employ shared-memory parallelism with OpenMP
for most of their steps).

The time restriction leads to signi�cant reduction in resolution
for the SPH-based methods. Both FLIP and APIC use a 320×300×100
grid and 5,315k particles; IISPH uses 143k particles sampled from
a 96×90×30 grid, while SPH uses 84k particles sampled from a
80×75×25 grid. Example frames for these simulation con�gurations
are shown in Figure 8.

In contrast to the previous evaluation in Section 4.1, our partici-
pants gave the Eulerian methods higher visual accuracy scores. The
results are shown in Figure 9. Thus, while the previous study sug-
gests that Lagrangian methods capture large-scale splashes better
at a given resolution, this study suggests that FLIP and APIC lead
to improved results under a restriction in computation time.

4.3 Particle Skinning
Our evaluation approach is also useful to redeem heuristic ap-
proaches, where parameters are typically chosen by intuition. One
example is the grid resolution for generating a surface mesh from
particle data, i.e., particle skinning. The commonly used heuristic for
this is to use a two times higher resolution of the simulation grid,
but there has been little motivation for this particular setting.

As the base simulation for this experiment, we use FLIP with a
160×150×50 grid and 664k particles. After simulation, a signed dis-
tance �eld is computed from the particles [Zhu and Bridson 2005],
which we triangulate with marching cubes. Since the particles are
sampled at a 23 sub-grid, the cell size of the base resolution (1x)
is 2h, where h denotes the particle spacing. We perform the parti-
cle skinning using di�erent resolutions with seven scaling factors
relative to h: 0.5x, 0.75x, 1x, 1.5x, 2x, 3x, and 4x. In order to avoid
missing particles in the grids that are more than h apart, the particle
diameter is adjusted to the larger of either the grid spacing or the
particle spacing. The example frames are shown in Figure 10.

As Figure 11 shows, the evaluation result indicates that the heuris-
tic of 2x [Zhu and Bridson 2005] is a good one. The higher resolutions
do not yield results that can reliably be considered better than the
2x factor, which thus represents the best performance.

4.4 Visual Impact of Splash Modeling
This section inspects a speci�c FLIP extension that claims to yield an
increased amount of visual detail with secondary e�ects. It employs
a neural-networks approach to model the sub-grid scale dynamics
that lead to splashes [Um et al. 2017], and we will denote it asMLFLIP
in the following. A visual comparison of example frames from both
FLIP and MLFLIP can be seen in Figure 12.

In order to see whether this splash model indeed results in better
visual accuracy scores, we evaluate both FLIP and MLFLIP with two
additional methods for reference (i.e., MP and SPH). Figure 13 shows
the resulting visual accuracy scores. For the dam setup, we observe
that the MLFLIP approach yields a notable improvement in score
from 2.28 for regular FLIP to 4.18 for MLFLIP. The gain for the wave
setup is lower, from 1.83 to 2.66, but we can still �nd a statistically
relevant improvement. These results indicate that splashes are an
important visual cue for large-scale liquid phenomena.

5 DISCUSSION OF RENDERING STYLES
As our core method of evaluation, we propose to use measurements
of visual accuracy scores from user studies with a reference video.
However, seeing the strong variability in the previous results, es-
pecially for the transparent rendering style, we believe that it is
important to discuss additional studies that we conducted to investi-
gate the in�uence of rendering on the scores of simulation methods
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Fig. 7. Example frames of seven simulations in two examples: (top) dam and (bo�om) wave. From le� to right, MP, LS, FLIP, APIC, WCSPH, IISPH and SPH are
shown.

(a) FLIP (b) APIC

(c) IISPH (d) SPH

Fig. 8. Example frames of four simulations with a similar computation time.
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Fig. 9. Visual accuracy scores of the four videos simulated in a similar
computation time (L in Table 7).

when no reference video is available. However, we found this area
to be highly complex; thus, the following results are far from a
complete mapping of rendering space.

In a �rst series of studies, we investigate the behavior of the transi-
tion between opaque and transparent rendering styles. We generated
a sequence of three in-between versions by linearly blending the
two styles in image space as shown in Figure 14 and performed
user studies. Interestingly, the correlations between this series of
studies change smoothly, albeit not linearly, when moving from
opaque towards transparent. The data are shown in Figure 15. Due
to the strong di�erence in initial results (C2 from Table 1), we found

Table 4. Correlation analysis for the additional rendering styles.

Comparison (IDs in Table 7) r p-value
Opaque (A*) vs. Glossy (H*) 0.94329 0.00473

Opaque (A*) vs. Translucent (I*) 0.93170 0.00684
Transparent (B*) vs. Glossy (H*) 0.55867 0.24918

Transparent (B*) vs. Translucent (I*) 0.59764 0.21027

it surprising that the space between these two extremes behaves
smoothly.

We also performed the user studies with the same setup using
two additional rendering styles, which we selected to be di�erent
from both opaque and transparent styles. The �rst additional style
is a dark-green glossy surface, while the second one is a translucent
volume with attenuation e�ects. These two rendering styles are
shown in Figure 16. The correlation coe�cients for these two styles
with respect to our two initial styles indicate that both the glossy
and translucent styles are strongly correlated with the opaque one
as shown in Table 4. Note that all studies discussed in this section
were performed without the reference video. The results indicate
that the opaque style covers a broader range of other rendering
styles by showing the strong correlations even when no reference
video is given. Presumably, the transparent rendering style with its
complex light e�ects triggers a very di�erent “mental image” for
the participants when no reference video is given. This leads to a
substantially di�erent evaluation of the videos with transparent
rendering. However, note that all studies in Section 4 are conducted
with the opaque rendering style and a reference since our goal is to
reliably assess di�erent methods.

6 CONCLUSIONS AND OUTLOOK
We have presented the �rst framework to perceptually evaluate
liquid simulation methods by employing crowd-sourced user studies.
By analyzing the evaluation results from controlled studies, we
have demonstrated that our framework can reliably measure user
opinions in the form of a visual accuracy score. Our key �nding here
is that the availability of a reference video makes stable evaluations
possible. Most importantly, the scores are not in�uenced by a certain
choice of rendering method.

The �ndings from our studies have led to several insights. For
our chosen settings, the studies suggest that
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Fig. 10. Example frames of seven resolutions for particle skinning. From le� to right, 0.5x, 0.75x, 1x, 1.5x, 2x, 3x, and 4x are shown.
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Fig. 11. Visual accuracy scores of the seven resolutions for particle skinning
(M in Table 7).

• viewers prefer SPH-based methods when comparable parti-
cle counts are used,

• FLIP and especially APIC are preferred when the computa-
tional resources are limited,

• the commonly used factor of two for particle skinning is
con�rmed by our experiment,

• and the splash e�ects are an important visual component
for large-scale liquids.

As the perception of physical phenomena such as liquids is highly
complex, our work clearly represents only a �rst step. We have not
investigated the demographics of our participants in more detail.
Moreover, we currently focus on a speci�c regime of liquid �ows,
and it is not clear how applicable our results are for other regimes.
Likewise, we have only tested a small selection of simulation meth-
ods with our studies. There are many interesting variants that could
be evaluated in addition to our current selection. In the future, we are

(a) FLIP (b) MLFLIP

Fig. 12. Visual comparison of MLFLIP with FLIP in two examples: (top) dam
and (bo�om) wave.

also highly interested in extending our studies to smoke �ows and
other types of materials such as objects undergoing elasto-plastic
deformations. As we have proposed a �rst perceptual evaluation
framework for liquid simulation methods, we believe these direc-
tions are very interesting avenues for future work.
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A CROWD-SOURCING PLATFORMS
There exist several crowd sourcing services that provide a web-based
platform where the requester can launch user studies with a web-
interface. This section compares three popular platforms: Amazon
Mechanical Turk (MT), CrowdFlower (CF), and Microworkers (MW).

In order to investigate consistency of all three platforms, we use
our study setup for dam from Section 3.3 with six di�erent versions.
In addition, we included an additional seventh dummy video, which
was synthesized by interleaving the six videos for each one second;
we did not include reverse questions in these three studies.

Table 5 and Figure 17 show the evaluation results from the user
study run on all three platforms, and Table 6 shows the resulting
correlation coe�cients. As all p-values (<0.01) in the table indicate,
there is signi�cant evidence with 99% con�dence to conclude that
the user studies obtained on the di�erent platforms match. Thus,
when only considering the results of a single study, all three plat-
forms yield very similar results.

However, there are noticeable di�erences in the cost for each
study. All platforms allow the requester to set a cost for each query
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Fig. 17. Graph of seven scores evaluated from three platforms.

and the required number of participants. An additional service fee
is typically charged on top of this. For our user study, we selected
50 participants for 21 queries and a per query payment of 0.01 USD,
which resulted in costs of 21.00 USD for MT, 12.60 USD for CF, and
23.10 USD for MW. In addition, there were considerable di�erences
in execution speed. With these settings, the MT platform took sev-
eral weeks to complete the study, while the other two platforms
yielded results in less than three days. Due to additional limitations
with respect to the maximal number of queries in the CF platform,
we chose the MW platform for all our studies.

Table 5. Three sets of scores evaluated from three platforms.

Score (standard error)
ID CF MW MT
a1 0.3317 (0.1637) 0.6556 (0.1685) 0.3677 (0.1661)
a2 0.2673 (0.1640) 0.3539 (0.1693) 0.0000 (0.1687)
a3 1.1146 (0.1665) 0.9845 (0.1696) 0.7923 (0.1666)
a4 1.6024 (0.1744) 1.8701 (0.1820) 1.8208 (0.1820)
a5 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)
a6 0.8540 (0.1643) 1.2118 (0.1715) 1.0997 (0.1692)
a7 1.2931 (0.1688) 1.7273 (0.1790) 1.5849 (0.1766)

Table 6. Pearson’s correlations for the three platforms.

CF, MW MW, MT MT, CF
r 0.95808 0.98596 0.95170

p-value 0.00068 0.00004 0.00096
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Table 7. The visual accuracy scores (and standard errors).

Di�erent examples and renderings (Section 3.3 and 5), where A*, B*, D*, and E*-I* denote the studies without the reference video.
ID Ex. Rendering FLIP, 1x FLIP, 2x FLIP, 4x SPH, 1x SPH, 2x SPH, 3x

A dam opaque 0.0000 (0.0000) 3.1368 (0.4584) 4.6271 (0.4786) 4.9480 (0.4813) 6.5291 (0.4961) 6.7529 (0.4989)
A* dam opaque 0.0000 (0.0000) 1.0822 (0.1975) 1.6328 (0.2083) 0.0579 (0.1964) 0.9089 (0.1955) 1.0300 (0.1968)
B dam transparent 0.0000 (0.0000) 2.0498 (0.3272) 3.8288 (0.3572) 2.8715 (0.3428) 4.6016 (0.3700) 5.3260 (0.3864)
B* dam transparent 1.6860 (0.1785) 1.7125 (0.1789) 1.5685 (0.1765) 0.8198 (0.1694) 0.4223 (0.1695) 0.0000 (0.0000)
C wave opaque 0.0000 (0.0000) 3.2189 (0.4720) 3.6823 (0.4771) 3.0738 (0.4701) 5.2235 (0.4996) 5.0324 (0.4958)

APIC, 1x APIC, 2x APIC, 4x IISPH, 1x IISPH, 2x IISPH, 3x

D dam opaque 0.0000 (0.0000) 2.6095 (0.3411) 3.7208 (0.3541) 2.6466 (0.3416) 4.2966 (0.3618) 4.9892 (0.3751)
D* dam opaque 0.1480 (0.1816) 1.5857 (0.1857) 2.0321 (0.1933) 0.0000 (0.0000) 1.4117 (0.1835) 1.8044 (0.1890)

FLIP, 1x FLIP, 2x FLIP, 4x SPH, 1x SPH, 2x SPH, 3x

E* dam blend 25% 0.0000 (0.0000) -0.0776 (0.1762) 0.0000 (0.1769) -1.9924 (0.1972) -1.4552 (0.1849) -1.6837 (0.1895)
F* dam blend 50% 0.0000 (0.0000) 0.1456 (0.1629) 0.2132 (0.1636) -1.2302 (0.1726) -0.6418 (0.1629) -0.7460 (0.1641)
G* dam blend 75% 0.0000 (0.0000) 0.8031 (0.1843) 1.1089 (0.1919) -1.0177 (0.1914) -0.2983 (0.1779) -0.2034 (0.1772)
H* dam glossy 0.0000 (0.0000) 0.5613 (0.1489) 0.8232 (0.1524) -0.7548 (0.1553) 0.1286 (0.1465) 0.0537 (0.1465)
I* dam translucent 0.0000 (0.0000) 0.8324 (0.1484) 0.8324 (0.1484) -0.2321 (0.1456) 0.1135 (0.1437) 0.0723 (0.1438)

Di�erent reference videos with dam simulations (Section 3.3).
ID Reference FLIP, 1x FLIP, 2x FLIP, 4x SPH, 1x SPH, 2x SPH, 3x

A+ seashore 0.0000 (0.0000) 1.2957 (0.1997) 2.1712 (0.2095) 1.1659 (0.1987) 2.6929 (0.2186) 2.9781 (0.2250)
A− wave 0.0000 (0.0000) 1.3566 (0.1975) 2.0606 (0.2078) 0.3904 (0.1947) 1.7945 (0.2031) 2.2241 (0.2112)

Seven simulation methods (Section 4.1).
ID Ex. MP LS FLIP APIC WCSPH IISPH SPH
J dam 0.0000 (0.0000) 0.1248 (0.1769) 2.0613 (0.1962) 3.4211 (0.2136) 2.6271 (0.2039) 4.4595 (0.2294) 4.3855 (0.2280)
K wave 0.0000 (0.0000) 1.6646 (0.1943) 2.6871 (0.2058) 2.6987 (0.2060) 0.7209 (0.1876) 3.7943 (0.2229) 3.7943 (0.2229)

Four simulation methods for dam in similar computation time (Section 4.2).
ID FLIP APIC IISPH SPH
L 1.5215 (0.3387) 2.8256 (0.4205) 0.0000 (0.0000) 0.1410 (0.3070)

Seven grid resolutions for particle skinning (Section 4.3).
ID 0.5x 0.75x 1x 1.5x 2x 3x 4x

M 0.0000 (0.0000) 0.9397 (0.2308) 1.0235 (0.2310) 1.9248 (0.2393) 2.7473 (0.2533) 2.7891 (0.2542) 2.9170 (0.2572)

Four methods including MLFLIP (Section 4.4).
ID MP FLIP MLFLIP SPH
N 0.0000 (0.0000) 2.2833 (0.3723) 4.1758 (0.4353) 5.0077 (0.4569)
O 0.0000 (0.0000) 1.8312 (0.3069) 2.6612 (0.3282) 3.5203 (0.3538)
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