

Perceptual Evaluation of Liquid Simulation Methods

Kiwon Um Xiangyu Hu Nils Thuerey

Technical University of Munich

Motivation

Fluid simulation methods		
Grids (or hybrid)	Particles	
Level set (LS)	Smoothed particle hydrodynamics (SPH)	
Fluid-implicit-particle (FLIP)	Weakly compressible SPH (WCSPH)	
Affine particle-in-cell (APIC)	Implicit incompressible SPH (IISPH)	
: :	:	

Visually better?

Overview

Different simulations for a setup

User study with pair-wise questions using a crowd-sourced platform

Evaluation scores

Simulation Setup: Dam

[Kleefsman et al., 2005, A Volume-of-Fluid Based Simulation Method for Wave Impact Problems, JCP]

Simulation Setup: Wave

[Botia-Vera et al., 2010, Three SPH Novel Benchmark Test Cases for Free Surface Flows, ERCOFTAC SPHERIC workshop]

User Study Design

Reference

о **В**

Which one is closer to the reference video?

C.

Visual Accuracy Scores

A set of pair-wise votes for *m* videos from a user study

The Bradley-Terry model [Bradley and Terry, 1952] to compute the score s_i of the video *i* $(p_{ij}: \text{the probability that a participant chooses } i \text{ over } j)$

The log likelihood (

$$L(\mathbf{s} = [s_1, \dots, s_m]) = \sum_{i=1}^m \sum_{j=1}^m \left(w_{ij} s_i - w_{ij} ln(e^{s_i} + e^{s_j}) \right)$$

[Bradley and Terry, 1952, Rank Analysis of Incomplete Block Designs, Biometrika]

Different User Studies

6 videos of dam using FLIP & SPH (3 resolutions per method)

Rendered in opaque & transparent

Effect of the Reference Video

Correlation among the sets of scores from the studies

With reference

Without reference

More Rendering Styles

Two additional styles: glossy & translucent

Additional user studies with the reference video

User Studies with Wave

6 opaque videos of wave with FLIP & SPH (3 resolutions per method)

With & without a reference video

Comparison of two studies	Constant parameter	Correlation
dam vs. wave	with reference	Ο
dam vs. wave	without reference	Ο

Beyond the Experimental Video

User studies for dam with different reference videos: seashore & wave

6 opaque videos using FLIP & SPH

No statistically significant correlation

Different Representative Methods

User studies with different simulation methods

APIC & IISPH (vs. FLIP & SPH in the original studies)

6 opaque videos of the same setups for dam

Comparison of two studies	Constant parameter	Correlation
FLIP&SPH vs. APIC&IISPH	with reference	0
FLIP&SPH vs. APIC&IISPH	without reference	Ο

Our perceptual evaluation framework

Applications

Application: Different Methods

Compare various simulation methods

Grids (or hybrid): Marker-particle (MP), LS, FLIP, and APIC

Particles: WCSPH, IISPH, and SPH

Application: Different Methods (cont'd)

Application: Performance

Similar computation time:

~55 seconds / frame

Resolutions:

320x300x100 grid and 5m particles for both FLIP & APIC

143k and 84k particles for IISPH & SPH

Application: Performance (cont'd)

Application: Particle Skinning

Revisit a heuristic approach

Particle spacing: *h*

Grid spacing for FLIP simulation: 2*h* (e.g., 160x150x50)

Heuristic grid resolution for particle skinning: 2x (e.g., 320x300x100)

Application: Splash Modeling

Inspect a FLIP extension: MLFLIP [Um et al., 2017]

Improvement of splashes using machine learning

[Um et al., 2017, Liquid Splash Modeling with Neural Networks, arXiv]

Application: Splash Modeling (cont'd)

Conclusions

A novel framework

Robust and reliable perceptual evaluation of liquid simulation methods Crowd-sourced user study

Insights:

Viewers prefer SPH when comparable resolutions are used FLIP & APIC are preferred when the computational resources are limited The commonly used factor for particle skinning is confirmed For liquids, splashes are important for visual accuracy

Discussion: Subjective Task

Two additional styles: glossy & translucent

Additional user studies without the reference video

Future Work

Subjective tasks

Other phenomena (e.g., smokes and viscous fluids)

Thank you! Q/A

Further information:

WWW > TUM3D > Publications > 2017 > Perceptual Evaluation of Liquid Simulation Methods

http://ge.in.tum.de/publications/2017-sig-um/